PEFT
Safetensors
krx
South-Korea-Shuan commited on
Commit
6f0625d
·
verified ·
1 Parent(s): 68fa2b2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -166
README.md CHANGED
@@ -8,200 +8,145 @@ tags:
8
  - krx
9
  ---
10
 
11
- # Model Card for Model ID
 
 
 
 
12
 
13
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
 
 
 
 
 
 
14
 
 
 
 
 
 
 
15
 
 
16
 
17
- ## Model Details
18
 
19
- ### Model Description
 
 
 
 
20
 
21
- <!-- Provide a longer summary of what this model is. -->
22
 
 
 
 
 
23
 
 
24
 
25
- - **Developed by:** [More Information Needed]
26
- - **Funded by [optional]:** [More Information Needed]
27
- - **Shared by [optional]:** [More Information Needed]
28
- - **Model type:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
- - **Finetuned from model [optional]:** [More Information Needed]
32
 
33
- ### Model Sources [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
- <!-- Provide the basic links for the model. -->
36
 
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
 
41
- ## Uses
 
 
 
42
 
43
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
 
45
- ### Direct Use
 
 
 
46
 
47
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
48
 
49
- [More Information Needed]
 
 
 
 
50
 
51
- ### Downstream Use [optional]
 
 
 
 
52
 
53
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
 
55
- [More Information Needed]
 
 
56
 
57
- ### Out-of-Scope Use
58
 
59
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
 
60
 
61
- [More Information Needed]
62
 
63
- ## Bias, Risks, and Limitations
 
 
64
 
65
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
66
 
67
- [More Information Needed]
68
 
69
- ### Recommendations
70
 
71
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
 
72
 
73
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
 
75
- ## How to Get Started with the Model
 
 
 
 
 
76
 
77
- Use the code below to get started with the model.
78
-
79
- [More Information Needed]
80
-
81
- ## Training Details
82
-
83
- ### Training Data
84
-
85
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
-
87
- [More Information Needed]
88
-
89
- ### Training Procedure
90
-
91
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
-
93
- #### Preprocessing [optional]
94
-
95
- [More Information Needed]
96
-
97
-
98
- #### Training Hyperparameters
99
-
100
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
-
102
- #### Speeds, Sizes, Times [optional]
103
-
104
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
-
106
- [More Information Needed]
107
-
108
- ## Evaluation
109
-
110
- <!-- This section describes the evaluation protocols and provides the results. -->
111
-
112
- ### Testing Data, Factors & Metrics
113
-
114
- #### Testing Data
115
-
116
- <!-- This should link to a Dataset Card if possible. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Factors
121
-
122
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
-
124
- [More Information Needed]
125
-
126
- #### Metrics
127
-
128
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
-
130
- [More Information Needed]
131
-
132
- ### Results
133
-
134
- [More Information Needed]
135
-
136
- #### Summary
137
-
138
-
139
-
140
- ## Model Examination [optional]
141
-
142
- <!-- Relevant interpretability work for the model goes here -->
143
-
144
- [More Information Needed]
145
-
146
- ## Environmental Impact
147
-
148
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
-
150
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
-
152
- - **Hardware Type:** [More Information Needed]
153
- - **Hours used:** [More Information Needed]
154
- - **Cloud Provider:** [More Information Needed]
155
- - **Compute Region:** [More Information Needed]
156
- - **Carbon Emitted:** [More Information Needed]
157
-
158
- ## Technical Specifications [optional]
159
-
160
- ### Model Architecture and Objective
161
-
162
- [More Information Needed]
163
-
164
- ### Compute Infrastructure
165
-
166
- [More Information Needed]
167
-
168
- #### Hardware
169
-
170
- [More Information Needed]
171
-
172
- #### Software
173
-
174
- [More Information Needed]
175
-
176
- ## Citation [optional]
177
-
178
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
-
180
- **BibTeX:**
181
-
182
- [More Information Needed]
183
-
184
- **APA:**
185
-
186
- [More Information Needed]
187
-
188
- ## Glossary [optional]
189
-
190
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
-
192
- [More Information Needed]
193
-
194
- ## More Information [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Authors [optional]
199
-
200
- [More Information Needed]
201
-
202
- ## Model Card Contact
203
-
204
- [More Information Needed]
205
- ### Framework versions
206
-
207
- - PEFT 0.7.1
 
8
  - krx
9
  ---
10
 
11
+ 여기 마크다운 형식으로 수정된 버전입니다:
12
+
13
+ # Qwen 2.5 7B Instruct Model Fine-tuning
14
+
15
+ This repository contains code for fine-tuning the Qwen 2.5 7B Instruct model using Amazon SageMaker. The project uses QLoRA (Quantized Low-Rank Adaptation) for efficient fine-tuning of large language models.
16
 
17
+ ## Project Structure
18
+
19
+ ```
20
+ .
21
+ ├── scripts/
22
+ │ ├── train.py
23
+ │ ├── tokenization_qwen2.py
24
+ │ ├── requirements.txt
25
+ │ └── bootstrap.sh
26
+ ├── sagemaker_train.py
27
+ └── README.md
28
+ ```
29
 
30
+ ## Prerequisites
31
+
32
+ - Amazon SageMaker access
33
+ - Hugging Face account and access token
34
+ - AWS credentials configured
35
+ - Python 3.10+
36
 
37
+ ## Environment Setup
38
 
39
+ The project uses the following key dependencies:
40
 
41
+ - PyTorch 2.1.0
42
+ - Transformers (latest from main branch)
43
+ - Accelerate >= 0.27.0
44
+ - PEFT >= 0.6.0
45
+ - BitsAndBytes >= 0.41.0
46
 
47
+ ## Model Configuration
48
 
49
+ - Base Model: `Qwen/Qwen2.5-7B-Instruct`
50
+ - Training Method: QLoRA (4-bit quantization)
51
+ - Instance Type: ml.p5.48xlarge
52
+ - Distribution Strategy: PyTorch DDP
53
 
54
+ ## Training Configuration
55
 
56
+ ### Hyperparameters
 
 
 
 
 
 
57
 
58
+ ```python
59
+ {
60
+ 'epochs': 3,
61
+ 'per_device_train_batch_size': 4,
62
+ 'gradient_accumulation_steps': 8,
63
+ 'learning_rate': 1e-5,
64
+ 'max_steps': 1000,
65
+ 'bf16': True,
66
+ 'max_length': 2048,
67
+ 'gradient_checkpointing': True,
68
+ 'optim': 'adamw_torch',
69
+ 'lr_scheduler_type': 'cosine',
70
+ 'warmup_ratio': 0.1,
71
+ 'weight_decay': 0.01,
72
+ 'max_grad_norm': 0.3
73
+ }
74
+ ```
75
 
76
+ ### Environment Variables
77
 
78
+ The training environment is configured with optimizations for distributed training and memory management:
 
 
79
 
80
+ - CUDA device configuration
81
+ - Memory optimization settings
82
+ - EFA (Elastic Fabric Adapter) configuration for distributed training
83
+ - Hugging Face token and cache settings
84
 
85
+ ## Training Process
86
 
87
+ 1. **Environment Preparation**:
88
+ - Creates `requirements.txt` with necessary dependencies
89
+ - Generates `bootstrap.sh` for Transformers installation
90
+ - Sets up SageMaker training configuration
91
 
92
+ 2. **Model Loading**:
93
+ - Loads the base Qwen 2.5 7B model with 4-bit quantization
94
+ - Configures BitsAndBytes for quantization
95
+ - Prepares model for k-bit training
96
 
97
+ 3. **Dataset Processing**:
98
+ - Uses the Sujet Finance dataset
99
+ - Formats conversations in Qwen2 format
100
+ - Applies tokenization with maximum length of 2048 tokens
101
+ - Implements data preprocessing with parallel processing
102
 
103
+ 4. **Training**:
104
+ - Implements gradient checkpointing for memory efficiency
105
+ - Uses cosine learning rate schedule with warmup
106
+ - Saves checkpoints every 50 steps
107
+ - Logs training metrics every 10 steps
108
 
109
+ ## Monitoring and Metrics
110
 
111
+ The training process tracks the following metrics:
112
+ - Training loss
113
+ - Evaluation loss
114
 
115
+ ## Error Handling
116
 
117
+ The implementation includes comprehensive error handling and logging:
118
+ - Environment validation
119
+ - Dataset preparation verification
120
+ - Training process monitoring
121
+ - Detailed error messages and stack traces
122
 
123
+ ## Usage
124
 
125
+ 1. Configure AWS credentials and SageMaker role
126
+ 2. Set up Hugging Face token
127
+ 3. Run the training script:
128
 
129
+ ```bash
130
+ python sagemaker_train.py
131
+ ```
132
 
133
+ ## Custom Components
134
 
135
+ ### Custom Tokenizer
136
 
137
+ The project includes a custom implementation of the Qwen2 tokenizer (`tokenization_qwen2.py`) with:
138
+ - Special token handling
139
+ - Unicode normalization
140
+ - Vocabulary management
141
+ - Input preparation for model training
142
 
143
+ ## Notes
144
 
145
+ - The training script is optimized for the ml.p5.48xlarge instance type
146
+ - Uses PyTorch Distributed Data Parallel for training
147
+ - Implements gradient checkpointing for memory optimization
148
+ - Includes automatic retry mechanism for training failures
149
+
150
+ ## License
151
 
152
+ [Add License Information]