Update README.md
Browse files
README.md
CHANGED
@@ -8,200 +8,145 @@ tags:
|
|
8 |
- krx
|
9 |
---
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
|
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
|
|
|
|
|
|
|
|
|
23 |
|
|
|
24 |
|
25 |
-
|
26 |
-
- **Funded by [optional]:** [More Information Needed]
|
27 |
-
- **Shared by [optional]:** [More Information Needed]
|
28 |
-
- **Model type:** [More Information Needed]
|
29 |
-
- **Language(s) (NLP):** [More Information Needed]
|
30 |
-
- **License:** [More Information Needed]
|
31 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
- **Paper [optional]:** [More Information Needed]
|
39 |
-
- **Demo [optional]:** [More Information Needed]
|
40 |
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
|
45 |
-
|
|
|
|
|
|
|
46 |
|
47 |
-
|
|
|
|
|
|
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
|
55 |
-
|
|
|
|
|
56 |
|
57 |
-
|
58 |
|
59 |
-
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
|
63 |
-
|
|
|
|
|
64 |
|
65 |
-
|
|
|
|
|
66 |
|
67 |
-
|
68 |
|
69 |
-
###
|
70 |
|
71 |
-
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
[More Information Needed]
|
80 |
-
|
81 |
-
## Training Details
|
82 |
-
|
83 |
-
### Training Data
|
84 |
-
|
85 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
86 |
-
|
87 |
-
[More Information Needed]
|
88 |
-
|
89 |
-
### Training Procedure
|
90 |
-
|
91 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
92 |
-
|
93 |
-
#### Preprocessing [optional]
|
94 |
-
|
95 |
-
[More Information Needed]
|
96 |
-
|
97 |
-
|
98 |
-
#### Training Hyperparameters
|
99 |
-
|
100 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
101 |
-
|
102 |
-
#### Speeds, Sizes, Times [optional]
|
103 |
-
|
104 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
105 |
-
|
106 |
-
[More Information Needed]
|
107 |
-
|
108 |
-
## Evaluation
|
109 |
-
|
110 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
111 |
-
|
112 |
-
### Testing Data, Factors & Metrics
|
113 |
-
|
114 |
-
#### Testing Data
|
115 |
-
|
116 |
-
<!-- This should link to a Dataset Card if possible. -->
|
117 |
-
|
118 |
-
[More Information Needed]
|
119 |
-
|
120 |
-
#### Factors
|
121 |
-
|
122 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
123 |
-
|
124 |
-
[More Information Needed]
|
125 |
-
|
126 |
-
#### Metrics
|
127 |
-
|
128 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
129 |
-
|
130 |
-
[More Information Needed]
|
131 |
-
|
132 |
-
### Results
|
133 |
-
|
134 |
-
[More Information Needed]
|
135 |
-
|
136 |
-
#### Summary
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
## Model Examination [optional]
|
141 |
-
|
142 |
-
<!-- Relevant interpretability work for the model goes here -->
|
143 |
-
|
144 |
-
[More Information Needed]
|
145 |
-
|
146 |
-
## Environmental Impact
|
147 |
-
|
148 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
149 |
-
|
150 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
151 |
-
|
152 |
-
- **Hardware Type:** [More Information Needed]
|
153 |
-
- **Hours used:** [More Information Needed]
|
154 |
-
- **Cloud Provider:** [More Information Needed]
|
155 |
-
- **Compute Region:** [More Information Needed]
|
156 |
-
- **Carbon Emitted:** [More Information Needed]
|
157 |
-
|
158 |
-
## Technical Specifications [optional]
|
159 |
-
|
160 |
-
### Model Architecture and Objective
|
161 |
-
|
162 |
-
[More Information Needed]
|
163 |
-
|
164 |
-
### Compute Infrastructure
|
165 |
-
|
166 |
-
[More Information Needed]
|
167 |
-
|
168 |
-
#### Hardware
|
169 |
-
|
170 |
-
[More Information Needed]
|
171 |
-
|
172 |
-
#### Software
|
173 |
-
|
174 |
-
[More Information Needed]
|
175 |
-
|
176 |
-
## Citation [optional]
|
177 |
-
|
178 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
179 |
-
|
180 |
-
**BibTeX:**
|
181 |
-
|
182 |
-
[More Information Needed]
|
183 |
-
|
184 |
-
**APA:**
|
185 |
-
|
186 |
-
[More Information Needed]
|
187 |
-
|
188 |
-
## Glossary [optional]
|
189 |
-
|
190 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
191 |
-
|
192 |
-
[More Information Needed]
|
193 |
-
|
194 |
-
## More Information [optional]
|
195 |
-
|
196 |
-
[More Information Needed]
|
197 |
-
|
198 |
-
## Model Card Authors [optional]
|
199 |
-
|
200 |
-
[More Information Needed]
|
201 |
-
|
202 |
-
## Model Card Contact
|
203 |
-
|
204 |
-
[More Information Needed]
|
205 |
-
### Framework versions
|
206 |
-
|
207 |
-
- PEFT 0.7.1
|
|
|
8 |
- krx
|
9 |
---
|
10 |
|
11 |
+
여기 마크다운 형식으로 수정된 버전입니다:
|
12 |
+
|
13 |
+
# Qwen 2.5 7B Instruct Model Fine-tuning
|
14 |
+
|
15 |
+
This repository contains code for fine-tuning the Qwen 2.5 7B Instruct model using Amazon SageMaker. The project uses QLoRA (Quantized Low-Rank Adaptation) for efficient fine-tuning of large language models.
|
16 |
|
17 |
+
## Project Structure
|
18 |
+
|
19 |
+
```
|
20 |
+
.
|
21 |
+
├── scripts/
|
22 |
+
│ ├── train.py
|
23 |
+
│ ├── tokenization_qwen2.py
|
24 |
+
│ ├── requirements.txt
|
25 |
+
│ └── bootstrap.sh
|
26 |
+
├── sagemaker_train.py
|
27 |
+
└── README.md
|
28 |
+
```
|
29 |
|
30 |
+
## Prerequisites
|
31 |
+
|
32 |
+
- Amazon SageMaker access
|
33 |
+
- Hugging Face account and access token
|
34 |
+
- AWS credentials configured
|
35 |
+
- Python 3.10+
|
36 |
|
37 |
+
## Environment Setup
|
38 |
|
39 |
+
The project uses the following key dependencies:
|
40 |
|
41 |
+
- PyTorch 2.1.0
|
42 |
+
- Transformers (latest from main branch)
|
43 |
+
- Accelerate >= 0.27.0
|
44 |
+
- PEFT >= 0.6.0
|
45 |
+
- BitsAndBytes >= 0.41.0
|
46 |
|
47 |
+
## Model Configuration
|
48 |
|
49 |
+
- Base Model: `Qwen/Qwen2.5-7B-Instruct`
|
50 |
+
- Training Method: QLoRA (4-bit quantization)
|
51 |
+
- Instance Type: ml.p5.48xlarge
|
52 |
+
- Distribution Strategy: PyTorch DDP
|
53 |
|
54 |
+
## Training Configuration
|
55 |
|
56 |
+
### Hyperparameters
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
```python
|
59 |
+
{
|
60 |
+
'epochs': 3,
|
61 |
+
'per_device_train_batch_size': 4,
|
62 |
+
'gradient_accumulation_steps': 8,
|
63 |
+
'learning_rate': 1e-5,
|
64 |
+
'max_steps': 1000,
|
65 |
+
'bf16': True,
|
66 |
+
'max_length': 2048,
|
67 |
+
'gradient_checkpointing': True,
|
68 |
+
'optim': 'adamw_torch',
|
69 |
+
'lr_scheduler_type': 'cosine',
|
70 |
+
'warmup_ratio': 0.1,
|
71 |
+
'weight_decay': 0.01,
|
72 |
+
'max_grad_norm': 0.3
|
73 |
+
}
|
74 |
+
```
|
75 |
|
76 |
+
### Environment Variables
|
77 |
|
78 |
+
The training environment is configured with optimizations for distributed training and memory management:
|
|
|
|
|
79 |
|
80 |
+
- CUDA device configuration
|
81 |
+
- Memory optimization settings
|
82 |
+
- EFA (Elastic Fabric Adapter) configuration for distributed training
|
83 |
+
- Hugging Face token and cache settings
|
84 |
|
85 |
+
## Training Process
|
86 |
|
87 |
+
1. **Environment Preparation**:
|
88 |
+
- Creates `requirements.txt` with necessary dependencies
|
89 |
+
- Generates `bootstrap.sh` for Transformers installation
|
90 |
+
- Sets up SageMaker training configuration
|
91 |
|
92 |
+
2. **Model Loading**:
|
93 |
+
- Loads the base Qwen 2.5 7B model with 4-bit quantization
|
94 |
+
- Configures BitsAndBytes for quantization
|
95 |
+
- Prepares model for k-bit training
|
96 |
|
97 |
+
3. **Dataset Processing**:
|
98 |
+
- Uses the Sujet Finance dataset
|
99 |
+
- Formats conversations in Qwen2 format
|
100 |
+
- Applies tokenization with maximum length of 2048 tokens
|
101 |
+
- Implements data preprocessing with parallel processing
|
102 |
|
103 |
+
4. **Training**:
|
104 |
+
- Implements gradient checkpointing for memory efficiency
|
105 |
+
- Uses cosine learning rate schedule with warmup
|
106 |
+
- Saves checkpoints every 50 steps
|
107 |
+
- Logs training metrics every 10 steps
|
108 |
|
109 |
+
## Monitoring and Metrics
|
110 |
|
111 |
+
The training process tracks the following metrics:
|
112 |
+
- Training loss
|
113 |
+
- Evaluation loss
|
114 |
|
115 |
+
## Error Handling
|
116 |
|
117 |
+
The implementation includes comprehensive error handling and logging:
|
118 |
+
- Environment validation
|
119 |
+
- Dataset preparation verification
|
120 |
+
- Training process monitoring
|
121 |
+
- Detailed error messages and stack traces
|
122 |
|
123 |
+
## Usage
|
124 |
|
125 |
+
1. Configure AWS credentials and SageMaker role
|
126 |
+
2. Set up Hugging Face token
|
127 |
+
3. Run the training script:
|
128 |
|
129 |
+
```bash
|
130 |
+
python sagemaker_train.py
|
131 |
+
```
|
132 |
|
133 |
+
## Custom Components
|
134 |
|
135 |
+
### Custom Tokenizer
|
136 |
|
137 |
+
The project includes a custom implementation of the Qwen2 tokenizer (`tokenization_qwen2.py`) with:
|
138 |
+
- Special token handling
|
139 |
+
- Unicode normalization
|
140 |
+
- Vocabulary management
|
141 |
+
- Input preparation for model training
|
142 |
|
143 |
+
## Notes
|
144 |
|
145 |
+
- The training script is optimized for the ml.p5.48xlarge instance type
|
146 |
+
- Uses PyTorch Distributed Data Parallel for training
|
147 |
+
- Implements gradient checkpointing for memory optimization
|
148 |
+
- Includes automatic retry mechanism for training failures
|
149 |
+
|
150 |
+
## License
|
151 |
|
152 |
+
[Add License Information]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|