--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-cat-emotions results: - task: name: Image Classification type: image-classification dataset: name: custom dataset type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.6352941176470588 --- # vit-base-cat-emotions You can try out the model live [here](https://cat-emotion-classifier.streamlit.app/), and check out the [GitHub repository](https://github.com/semihdervis/cat-emotion-classifier) for more details. This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the custom dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.0160 - Accuracy: 0.6353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3361 | 3.125 | 100 | 1.0125 | 0.6548 | | 0.0723 | 6.25 | 200 | 0.9043 | 0.7381 | | 0.0321 | 9.375 | 300 | 0.9268 | 0.7143 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.2.2+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1