--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: microsoft/swin-large-patch4-window7-224-in22k datasets: - medmnist-v2 metrics: - accuracy - precision - recall - f1 model-index: - name: organamnist-swin-base-finetuned results: [] --- # organamnist-swin-base-finetuned This model is a fine-tuned version of [microsoft/swin-large-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-large-patch4-window7-224-in22k) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.2521 - Accuracy: 0.9387 - Precision: 0.9430 - Recall: 0.9343 - F1: 0.9373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6172 | 1.0 | 540 | 0.1913 | 0.9373 | 0.9481 | 0.9427 | 0.9422 | | 0.6346 | 2.0 | 1081 | 0.0756 | 0.9760 | 0.9799 | 0.9752 | 0.9770 | | 0.6405 | 3.0 | 1621 | 0.1310 | 0.9553 | 0.9600 | 0.9515 | 0.9537 | | 0.5005 | 4.0 | 2162 | 0.1138 | 0.9663 | 0.9757 | 0.9718 | 0.9729 | | 0.5669 | 5.0 | 2702 | 0.1142 | 0.9603 | 0.9704 | 0.9647 | 0.9665 | | 0.5548 | 6.0 | 3243 | 0.0569 | 0.9772 | 0.9812 | 0.9785 | 0.9795 | | 0.4298 | 7.0 | 3783 | 0.0989 | 0.9663 | 0.9770 | 0.9723 | 0.9736 | | 0.3932 | 8.0 | 4324 | 0.0335 | 0.9884 | 0.9903 | 0.9887 | 0.9894 | | 0.3409 | 9.0 | 4864 | 0.0371 | 0.9878 | 0.9900 | 0.9877 | 0.9887 | | 0.3111 | 9.99 | 5400 | 0.0433 | 0.9846 | 0.9888 | 0.9864 | 0.9874 | ### Framework versions - PEFT 0.11.1 - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2