Commit
·
239ee43
1
Parent(s):
19c0ae1
Upload 12 files
Browse files- __init__.py +21 -0
- cli.py +180 -0
- configs.py +181 -0
- data.py +137 -0
- default_config.json +50 -0
- elucidated_imagen.py +940 -0
- imagen_pytorch.py +2731 -0
- imagen_video.py +1935 -0
- t5.py +119 -0
- trainer.py +992 -0
- utils.py +61 -0
- version.py +1 -0
__init__.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from imagen_pytorch.imagen_pytorch import Imagen, Unet
|
| 2 |
+
from imagen_pytorch.imagen_pytorch import NullUnet
|
| 3 |
+
from imagen_pytorch.imagen_pytorch import BaseUnet64, SRUnet256, SRUnet1024
|
| 4 |
+
from imagen_pytorch.trainer import ImagenTrainer
|
| 5 |
+
from imagen_pytorch.version import __version__
|
| 6 |
+
|
| 7 |
+
# imagen using the elucidated ddpm from Tero Karras' new paper
|
| 8 |
+
|
| 9 |
+
from imagen_pytorch.elucidated_imagen import ElucidatedImagen
|
| 10 |
+
|
| 11 |
+
# config driven creation of imagen instances
|
| 12 |
+
|
| 13 |
+
from imagen_pytorch.configs import UnetConfig, ImagenConfig, ElucidatedImagenConfig, ImagenTrainerConfig
|
| 14 |
+
|
| 15 |
+
# utils
|
| 16 |
+
|
| 17 |
+
from imagen_pytorch.utils import load_imagen_from_checkpoint
|
| 18 |
+
|
| 19 |
+
# video
|
| 20 |
+
|
| 21 |
+
from imagen_pytorch.imagen_video import Unet3D
|
cli.py
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import click
|
| 2 |
+
import torch
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import pkgutil
|
| 5 |
+
|
| 6 |
+
from imagen_pytorch import load_imagen_from_checkpoint
|
| 7 |
+
from imagen_pytorch.version import __version__
|
| 8 |
+
from imagen_pytorch.data import Collator
|
| 9 |
+
from imagen_pytorch.utils import safeget
|
| 10 |
+
from imagen_pytorch import ImagenTrainer, ElucidatedImagenConfig, ImagenConfig
|
| 11 |
+
from datasets import load_dataset
|
| 12 |
+
|
| 13 |
+
import json
|
| 14 |
+
|
| 15 |
+
def exists(val):
|
| 16 |
+
return val is not None
|
| 17 |
+
|
| 18 |
+
def simple_slugify(text, max_length = 255):
|
| 19 |
+
return text.replace('-', '_').replace(',', '').replace(' ', '_').replace('|', '--').strip('-_')[:max_length]
|
| 20 |
+
|
| 21 |
+
def main():
|
| 22 |
+
pass
|
| 23 |
+
|
| 24 |
+
@click.group()
|
| 25 |
+
def imagen():
|
| 26 |
+
pass
|
| 27 |
+
|
| 28 |
+
@imagen.command(help = 'Sample from the Imagen model checkpoint')
|
| 29 |
+
@click.option('--model', default = './imagen.pt', help = 'path to trained Imagen model')
|
| 30 |
+
@click.option('--cond_scale', default = 5, help = 'conditioning scale (classifier free guidance) in decoder')
|
| 31 |
+
@click.option('--load_ema', default = True, help = 'load EMA version of unets if available')
|
| 32 |
+
@click.argument('text')
|
| 33 |
+
def sample(
|
| 34 |
+
model,
|
| 35 |
+
cond_scale,
|
| 36 |
+
load_ema,
|
| 37 |
+
text
|
| 38 |
+
):
|
| 39 |
+
model_path = Path(model)
|
| 40 |
+
full_model_path = str(model_path.resolve())
|
| 41 |
+
assert model_path.exists(), f'model not found at {full_model_path}'
|
| 42 |
+
loaded = torch.load(str(model_path))
|
| 43 |
+
|
| 44 |
+
# get version
|
| 45 |
+
|
| 46 |
+
version = safeget(loaded, 'version')
|
| 47 |
+
print(f'loading Imagen from {full_model_path}, saved at version {version} - current package version is {__version__}')
|
| 48 |
+
|
| 49 |
+
# get imagen parameters and type
|
| 50 |
+
|
| 51 |
+
imagen = load_imagen_from_checkpoint(str(model_path), load_ema_if_available = load_ema)
|
| 52 |
+
imagen.cuda()
|
| 53 |
+
|
| 54 |
+
# generate image
|
| 55 |
+
|
| 56 |
+
pil_image = imagen.sample(text, cond_scale = cond_scale, return_pil_images = True)
|
| 57 |
+
|
| 58 |
+
image_path = f'./{simple_slugify(text)}.png'
|
| 59 |
+
pil_image[0].save(image_path)
|
| 60 |
+
|
| 61 |
+
print(f'image saved to {str(image_path)}')
|
| 62 |
+
return
|
| 63 |
+
|
| 64 |
+
@imagen.command(help = 'Generate a config for the Imagen model')
|
| 65 |
+
@click.option('--path', default = './imagen_config.json', help = 'Path to the Imagen model config')
|
| 66 |
+
def config(
|
| 67 |
+
path
|
| 68 |
+
):
|
| 69 |
+
data = pkgutil.get_data(__name__, 'default_config.json').decode("utf-8")
|
| 70 |
+
with open(path, 'w') as f:
|
| 71 |
+
f.write(data)
|
| 72 |
+
|
| 73 |
+
@imagen.command(help = 'Train the Imagen model')
|
| 74 |
+
@click.option('--config', default = './imagen_config.json', help = 'Path to the Imagen model config')
|
| 75 |
+
@click.option('--unet', default = 1, help = 'Unet to train', type = click.IntRange(1, 3, False, True, True))
|
| 76 |
+
@click.option('--epoches', default = 1000, help = 'Amount of epoches to train for')
|
| 77 |
+
@click.option('--text', required = False, help = 'Text to sample with between epoches', type=str)
|
| 78 |
+
@click.option('--valid', is_flag = False, flag_value=50, default = 0, help = 'Do validation between epoches', show_default = True)
|
| 79 |
+
def train(
|
| 80 |
+
config,
|
| 81 |
+
unet,
|
| 82 |
+
epoches,
|
| 83 |
+
text,
|
| 84 |
+
valid
|
| 85 |
+
):
|
| 86 |
+
# check config path
|
| 87 |
+
|
| 88 |
+
config_path = Path(config)
|
| 89 |
+
full_config_path = str(config_path.resolve())
|
| 90 |
+
assert config_path.exists(), f'config not found at {full_config_path}'
|
| 91 |
+
|
| 92 |
+
with open(config_path, 'r') as f:
|
| 93 |
+
config_data = json.loads(f.read())
|
| 94 |
+
|
| 95 |
+
assert 'checkpoint_path' in config_data, 'checkpoint path not found in config'
|
| 96 |
+
|
| 97 |
+
model_path = Path(config_data['checkpoint_path'])
|
| 98 |
+
full_model_path = str(model_path.resolve())
|
| 99 |
+
|
| 100 |
+
# setup imagen config
|
| 101 |
+
|
| 102 |
+
imagen_config_klass = ElucidatedImagenConfig if config_data['type'] == 'elucidated' else ImagenConfig
|
| 103 |
+
imagen = imagen_config_klass(**config_data['imagen']).create()
|
| 104 |
+
|
| 105 |
+
trainer = ImagenTrainer(
|
| 106 |
+
imagen = imagen,
|
| 107 |
+
**config_data['trainer']
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
# load pt
|
| 111 |
+
if model_path.exists():
|
| 112 |
+
loaded = torch.load(str(model_path))
|
| 113 |
+
version = safeget(loaded, 'version')
|
| 114 |
+
print(f'loading Imagen from {full_model_path}, saved at version {version} - current package version is {__version__}')
|
| 115 |
+
trainer.load(model_path)
|
| 116 |
+
|
| 117 |
+
if torch.cuda.is_available():
|
| 118 |
+
trainer = trainer.cuda()
|
| 119 |
+
|
| 120 |
+
size = config_data['imagen']['image_sizes'][unet-1]
|
| 121 |
+
|
| 122 |
+
max_batch_size = config_data['max_batch_size'] if 'max_batch_size' in config_data else 1
|
| 123 |
+
|
| 124 |
+
channels = 'RGB'
|
| 125 |
+
if 'channels' in config_data['imagen']:
|
| 126 |
+
assert config_data['imagen']['channels'] > 0 and config_data['imagen']['channels'] < 5, 'Imagen only support 1 to 4 channels L, LA, RGB, RGBA'
|
| 127 |
+
if config_data['imagen']['channels'] == 4:
|
| 128 |
+
channels = 'RGBA' # Color with alpha
|
| 129 |
+
elif config_data['imagen']['channels'] == 2:
|
| 130 |
+
channels == 'LA' # Luminance (Greyscale) with alpha
|
| 131 |
+
elif config_data['imagen']['channels'] == 1:
|
| 132 |
+
channels = 'L' # Luminance (Greyscale)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
assert 'batch_size' in config_data['dataset'], 'A batch_size is required in the config file'
|
| 136 |
+
|
| 137 |
+
# load and add train dataset and valid dataset
|
| 138 |
+
ds = load_dataset(config_data['dataset_name'])
|
| 139 |
+
trainer.add_train_dataset(
|
| 140 |
+
ds = ds['train'],
|
| 141 |
+
collate_fn = Collator(
|
| 142 |
+
image_size = size,
|
| 143 |
+
image_label = config_data['image_label'],
|
| 144 |
+
text_label = config_data['text_label'],
|
| 145 |
+
url_label = config_data['url_label'],
|
| 146 |
+
name = imagen.text_encoder_name,
|
| 147 |
+
channels = channels
|
| 148 |
+
),
|
| 149 |
+
**config_data['dataset']
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
if not trainer.split_valid_from_train and valid != 0:
|
| 154 |
+
assert 'valid' in ds, 'There is no validation split in the dataset'
|
| 155 |
+
trainer.add_valid_dataset(
|
| 156 |
+
ds = ds['valid'],
|
| 157 |
+
collate_fn = Collator(
|
| 158 |
+
image_size = size,
|
| 159 |
+
image_label = config_data['image_label'],
|
| 160 |
+
text_label= config_data['text_label'],
|
| 161 |
+
url_label = config_data['url_label'],
|
| 162 |
+
name = imagen.text_encoder_name,
|
| 163 |
+
channels = channels
|
| 164 |
+
),
|
| 165 |
+
**config_data['dataset']
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
for i in range(epoches):
|
| 169 |
+
loss = trainer.train_step(unet_number = unet, max_batch_size = max_batch_size)
|
| 170 |
+
print(f'loss: {loss}')
|
| 171 |
+
|
| 172 |
+
if valid != 0 and not (i % valid) and i > 0:
|
| 173 |
+
valid_loss = trainer.valid_step(unet_number = unet, max_batch_size = max_batch_size)
|
| 174 |
+
print(f'valid loss: {valid_loss}')
|
| 175 |
+
|
| 176 |
+
if not (i % 100) and i > 0 and trainer.is_main and text is not None:
|
| 177 |
+
images = trainer.sample(texts = [text], batch_size = 1, return_pil_images = True, stop_at_unet_number = unet)
|
| 178 |
+
images[0].save(f'./sample-{i // 100}.png')
|
| 179 |
+
|
| 180 |
+
trainer.save(model_path)
|
configs.py
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from pydantic import BaseModel, validator
|
| 3 |
+
from typing import List, Iterable, Optional, Union, Tuple, Dict, Any
|
| 4 |
+
from enum import Enum
|
| 5 |
+
|
| 6 |
+
from imagen_pytorch.imagen_pytorch import Imagen, Unet, Unet3D, NullUnet
|
| 7 |
+
from imagen_pytorch.trainer import ImagenTrainer
|
| 8 |
+
from imagen_pytorch.elucidated_imagen import ElucidatedImagen
|
| 9 |
+
from imagen_pytorch.t5 import DEFAULT_T5_NAME, get_encoded_dim
|
| 10 |
+
|
| 11 |
+
# helper functions
|
| 12 |
+
|
| 13 |
+
def exists(val):
|
| 14 |
+
return val is not None
|
| 15 |
+
|
| 16 |
+
def default(val, d):
|
| 17 |
+
return val if exists(val) else d
|
| 18 |
+
|
| 19 |
+
def ListOrTuple(inner_type):
|
| 20 |
+
return Union[List[inner_type], Tuple[inner_type]]
|
| 21 |
+
|
| 22 |
+
def SingleOrList(inner_type):
|
| 23 |
+
return Union[inner_type, ListOrTuple(inner_type)]
|
| 24 |
+
|
| 25 |
+
# noise schedule
|
| 26 |
+
|
| 27 |
+
class NoiseSchedule(Enum):
|
| 28 |
+
cosine = 'cosine'
|
| 29 |
+
linear = 'linear'
|
| 30 |
+
|
| 31 |
+
class AllowExtraBaseModel(BaseModel):
|
| 32 |
+
class Config:
|
| 33 |
+
extra = "allow"
|
| 34 |
+
use_enum_values = True
|
| 35 |
+
|
| 36 |
+
# imagen pydantic classes
|
| 37 |
+
|
| 38 |
+
class NullUnetConfig(BaseModel):
|
| 39 |
+
is_null: bool
|
| 40 |
+
|
| 41 |
+
def create(self):
|
| 42 |
+
return NullUnet()
|
| 43 |
+
|
| 44 |
+
class UnetConfig(AllowExtraBaseModel):
|
| 45 |
+
dim: int
|
| 46 |
+
dim_mults: ListOrTuple(int)
|
| 47 |
+
text_embed_dim: int = get_encoded_dim(DEFAULT_T5_NAME)
|
| 48 |
+
cond_dim: int = None
|
| 49 |
+
channels: int = 3
|
| 50 |
+
attn_dim_head: int = 32
|
| 51 |
+
attn_heads: int = 16
|
| 52 |
+
|
| 53 |
+
def create(self):
|
| 54 |
+
return Unet(**self.dict())
|
| 55 |
+
|
| 56 |
+
class Unet3DConfig(AllowExtraBaseModel):
|
| 57 |
+
dim: int
|
| 58 |
+
dim_mults: ListOrTuple(int)
|
| 59 |
+
text_embed_dim: int = get_encoded_dim(DEFAULT_T5_NAME)
|
| 60 |
+
cond_dim: int = None
|
| 61 |
+
channels: int = 3
|
| 62 |
+
attn_dim_head: int = 32
|
| 63 |
+
attn_heads: int = 16
|
| 64 |
+
|
| 65 |
+
def create(self):
|
| 66 |
+
return Unet3D(**self.dict())
|
| 67 |
+
|
| 68 |
+
class ImagenConfig(AllowExtraBaseModel):
|
| 69 |
+
unets: ListOrTuple(Union[UnetConfig, Unet3DConfig, NullUnetConfig])
|
| 70 |
+
image_sizes: ListOrTuple(int)
|
| 71 |
+
video: bool = False
|
| 72 |
+
timesteps: SingleOrList(int) = 1000
|
| 73 |
+
noise_schedules: SingleOrList(NoiseSchedule) = 'cosine'
|
| 74 |
+
text_encoder_name: str = DEFAULT_T5_NAME
|
| 75 |
+
channels: int = 3
|
| 76 |
+
loss_type: str = 'l2'
|
| 77 |
+
cond_drop_prob: float = 0.5
|
| 78 |
+
|
| 79 |
+
@validator('image_sizes')
|
| 80 |
+
def check_image_sizes(cls, image_sizes, values):
|
| 81 |
+
unets = values.get('unets')
|
| 82 |
+
if len(image_sizes) != len(unets):
|
| 83 |
+
raise ValueError(f'image sizes length {len(image_sizes)} must be equivalent to the number of unets {len(unets)}')
|
| 84 |
+
return image_sizes
|
| 85 |
+
|
| 86 |
+
def create(self):
|
| 87 |
+
decoder_kwargs = self.dict()
|
| 88 |
+
unets_kwargs = decoder_kwargs.pop('unets')
|
| 89 |
+
is_video = decoder_kwargs.pop('video', False)
|
| 90 |
+
|
| 91 |
+
unets = []
|
| 92 |
+
|
| 93 |
+
for unet, unet_kwargs in zip(self.unets, unets_kwargs):
|
| 94 |
+
if isinstance(unet, NullUnetConfig):
|
| 95 |
+
unet_klass = NullUnet
|
| 96 |
+
elif is_video:
|
| 97 |
+
unet_klass = Unet3D
|
| 98 |
+
else:
|
| 99 |
+
unet_klass = Unet
|
| 100 |
+
|
| 101 |
+
unets.append(unet_klass(**unet_kwargs))
|
| 102 |
+
|
| 103 |
+
imagen = Imagen(unets, **decoder_kwargs)
|
| 104 |
+
|
| 105 |
+
imagen._config = self.dict().copy()
|
| 106 |
+
return imagen
|
| 107 |
+
|
| 108 |
+
class ElucidatedImagenConfig(AllowExtraBaseModel):
|
| 109 |
+
unets: ListOrTuple(Union[UnetConfig, Unet3DConfig, NullUnetConfig])
|
| 110 |
+
image_sizes: ListOrTuple(int)
|
| 111 |
+
video: bool = False
|
| 112 |
+
text_encoder_name: str = DEFAULT_T5_NAME
|
| 113 |
+
channels: int = 3
|
| 114 |
+
cond_drop_prob: float = 0.5
|
| 115 |
+
num_sample_steps: SingleOrList(int) = 32
|
| 116 |
+
sigma_min: SingleOrList(float) = 0.002
|
| 117 |
+
sigma_max: SingleOrList(int) = 80
|
| 118 |
+
sigma_data: SingleOrList(float) = 0.5
|
| 119 |
+
rho: SingleOrList(int) = 7
|
| 120 |
+
P_mean: SingleOrList(float) = -1.2
|
| 121 |
+
P_std: SingleOrList(float) = 1.2
|
| 122 |
+
S_churn: SingleOrList(int) = 80
|
| 123 |
+
S_tmin: SingleOrList(float) = 0.05
|
| 124 |
+
S_tmax: SingleOrList(int) = 50
|
| 125 |
+
S_noise: SingleOrList(float) = 1.003
|
| 126 |
+
|
| 127 |
+
@validator('image_sizes')
|
| 128 |
+
def check_image_sizes(cls, image_sizes, values):
|
| 129 |
+
unets = values.get('unets')
|
| 130 |
+
if len(image_sizes) != len(unets):
|
| 131 |
+
raise ValueError(f'image sizes length {len(image_sizes)} must be equivalent to the number of unets {len(unets)}')
|
| 132 |
+
return image_sizes
|
| 133 |
+
|
| 134 |
+
def create(self):
|
| 135 |
+
decoder_kwargs = self.dict()
|
| 136 |
+
unets_kwargs = decoder_kwargs.pop('unets')
|
| 137 |
+
is_video = decoder_kwargs.pop('video', False)
|
| 138 |
+
|
| 139 |
+
unet_klass = Unet3D if is_video else Unet
|
| 140 |
+
|
| 141 |
+
unets = []
|
| 142 |
+
|
| 143 |
+
for unet, unet_kwargs in zip(self.unets, unets_kwargs):
|
| 144 |
+
if isinstance(unet, NullUnetConfig):
|
| 145 |
+
unet_klass = NullUnet
|
| 146 |
+
elif is_video:
|
| 147 |
+
unet_klass = Unet3D
|
| 148 |
+
else:
|
| 149 |
+
unet_klass = Unet
|
| 150 |
+
|
| 151 |
+
unets.append(unet_klass(**unet_kwargs))
|
| 152 |
+
|
| 153 |
+
imagen = ElucidatedImagen(unets, **decoder_kwargs)
|
| 154 |
+
|
| 155 |
+
imagen._config = self.dict().copy()
|
| 156 |
+
return imagen
|
| 157 |
+
|
| 158 |
+
class ImagenTrainerConfig(AllowExtraBaseModel):
|
| 159 |
+
imagen: dict
|
| 160 |
+
elucidated: bool = False
|
| 161 |
+
video: bool = False
|
| 162 |
+
use_ema: bool = True
|
| 163 |
+
lr: SingleOrList(float) = 1e-4
|
| 164 |
+
eps: SingleOrList(float) = 1e-8
|
| 165 |
+
beta1: float = 0.9
|
| 166 |
+
beta2: float = 0.99
|
| 167 |
+
max_grad_norm: Optional[float] = None
|
| 168 |
+
group_wd_params: bool = True
|
| 169 |
+
warmup_steps: SingleOrList(Optional[int]) = None
|
| 170 |
+
cosine_decay_max_steps: SingleOrList(Optional[int]) = None
|
| 171 |
+
|
| 172 |
+
def create(self):
|
| 173 |
+
trainer_kwargs = self.dict()
|
| 174 |
+
|
| 175 |
+
imagen_config = trainer_kwargs.pop('imagen')
|
| 176 |
+
elucidated = trainer_kwargs.pop('elucidated')
|
| 177 |
+
|
| 178 |
+
imagen_config_klass = ElucidatedImagenConfig if elucidated else ImagenConfig
|
| 179 |
+
imagen = imagen_config_klass(**{**imagen_config, 'video': video}).create()
|
| 180 |
+
|
| 181 |
+
return ImagenTrainer(imagen, **trainer_kwargs)
|
data.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
from functools import partial
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
from torch.utils.data import Dataset, DataLoader
|
| 7 |
+
from torchvision import transforms as T, utils
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from imagen_pytorch import t5
|
| 10 |
+
from torch.nn.utils.rnn import pad_sequence
|
| 11 |
+
|
| 12 |
+
from PIL import Image
|
| 13 |
+
|
| 14 |
+
from datasets.utils.file_utils import get_datasets_user_agent
|
| 15 |
+
import io
|
| 16 |
+
import urllib
|
| 17 |
+
|
| 18 |
+
USER_AGENT = get_datasets_user_agent()
|
| 19 |
+
|
| 20 |
+
# helpers functions
|
| 21 |
+
|
| 22 |
+
def exists(val):
|
| 23 |
+
return val is not None
|
| 24 |
+
|
| 25 |
+
def cycle(dl):
|
| 26 |
+
while True:
|
| 27 |
+
for data in dl:
|
| 28 |
+
yield data
|
| 29 |
+
|
| 30 |
+
def convert_image_to(img_type, image):
|
| 31 |
+
if image.mode != img_type:
|
| 32 |
+
return image.convert(img_type)
|
| 33 |
+
return image
|
| 34 |
+
|
| 35 |
+
# dataset, dataloader, collator
|
| 36 |
+
|
| 37 |
+
class Collator:
|
| 38 |
+
def __init__(self, image_size, url_label, text_label, image_label, name, channels):
|
| 39 |
+
self.url_label = url_label
|
| 40 |
+
self.text_label = text_label
|
| 41 |
+
self.image_label = image_label
|
| 42 |
+
self.download = url_label is not None
|
| 43 |
+
self.name = name
|
| 44 |
+
self.channels = channels
|
| 45 |
+
self.transform = T.Compose([
|
| 46 |
+
T.Resize(image_size),
|
| 47 |
+
T.CenterCrop(image_size),
|
| 48 |
+
T.ToTensor(),
|
| 49 |
+
])
|
| 50 |
+
def __call__(self, batch):
|
| 51 |
+
|
| 52 |
+
texts = []
|
| 53 |
+
images = []
|
| 54 |
+
for item in batch:
|
| 55 |
+
try:
|
| 56 |
+
if self.download:
|
| 57 |
+
image = self.fetch_single_image(item[self.url_label])
|
| 58 |
+
else:
|
| 59 |
+
image = item[self.image_label]
|
| 60 |
+
image = self.transform(image.convert(self.channels))
|
| 61 |
+
except:
|
| 62 |
+
continue
|
| 63 |
+
|
| 64 |
+
text = t5.t5_encode_text([item[self.text_label]], name=self.name)
|
| 65 |
+
texts.append(torch.squeeze(text))
|
| 66 |
+
images.append(image)
|
| 67 |
+
|
| 68 |
+
if len(texts) == 0:
|
| 69 |
+
return None
|
| 70 |
+
|
| 71 |
+
texts = pad_sequence(texts, True)
|
| 72 |
+
|
| 73 |
+
newbatch = []
|
| 74 |
+
for i in range(len(texts)):
|
| 75 |
+
newbatch.append((images[i], texts[i]))
|
| 76 |
+
|
| 77 |
+
return torch.utils.data.dataloader.default_collate(newbatch)
|
| 78 |
+
|
| 79 |
+
def fetch_single_image(self, image_url, timeout=1):
|
| 80 |
+
try:
|
| 81 |
+
request = urllib.request.Request(
|
| 82 |
+
image_url,
|
| 83 |
+
data=None,
|
| 84 |
+
headers={"user-agent": USER_AGENT},
|
| 85 |
+
)
|
| 86 |
+
with urllib.request.urlopen(request, timeout=timeout) as req:
|
| 87 |
+
image = Image.open(io.BytesIO(req.read())).convert('RGB')
|
| 88 |
+
except Exception:
|
| 89 |
+
image = None
|
| 90 |
+
return image
|
| 91 |
+
|
| 92 |
+
class Dataset(Dataset):
|
| 93 |
+
def __init__(
|
| 94 |
+
self,
|
| 95 |
+
folder,
|
| 96 |
+
image_size,
|
| 97 |
+
exts = ['jpg', 'jpeg', 'png', 'tiff'],
|
| 98 |
+
convert_image_to_type = None
|
| 99 |
+
):
|
| 100 |
+
super().__init__()
|
| 101 |
+
self.folder = folder
|
| 102 |
+
self.image_size = image_size
|
| 103 |
+
self.paths = [p for ext in exts for p in Path(f'{folder}').glob(f'**/*.{ext}')]
|
| 104 |
+
|
| 105 |
+
convert_fn = partial(convert_image_to, convert_image_to_type) if exists(convert_image_to_type) else nn.Identity()
|
| 106 |
+
|
| 107 |
+
self.transform = T.Compose([
|
| 108 |
+
T.Lambda(convert_fn),
|
| 109 |
+
T.Resize(image_size),
|
| 110 |
+
T.RandomHorizontalFlip(),
|
| 111 |
+
T.CenterCrop(image_size),
|
| 112 |
+
T.ToTensor()
|
| 113 |
+
])
|
| 114 |
+
|
| 115 |
+
def __len__(self):
|
| 116 |
+
return len(self.paths)
|
| 117 |
+
|
| 118 |
+
def __getitem__(self, index):
|
| 119 |
+
path = self.paths[index]
|
| 120 |
+
img = Image.open(path)
|
| 121 |
+
return self.transform(img)
|
| 122 |
+
|
| 123 |
+
def get_images_dataloader(
|
| 124 |
+
folder,
|
| 125 |
+
*,
|
| 126 |
+
batch_size,
|
| 127 |
+
image_size,
|
| 128 |
+
shuffle = True,
|
| 129 |
+
cycle_dl = False,
|
| 130 |
+
pin_memory = True
|
| 131 |
+
):
|
| 132 |
+
ds = Dataset(folder, image_size)
|
| 133 |
+
dl = DataLoader(ds, batch_size = batch_size, shuffle = shuffle, pin_memory = pin_memory)
|
| 134 |
+
|
| 135 |
+
if cycle_dl:
|
| 136 |
+
dl = cycle(dl)
|
| 137 |
+
return dl
|
default_config.json
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"type": "original",
|
| 3 |
+
"imagen": {
|
| 4 |
+
"video": false,
|
| 5 |
+
"timesteps": [1024, 512, 512],
|
| 6 |
+
"image_sizes": [64, 256, 1024],
|
| 7 |
+
"random_crop_sizes": [null, 64, 256],
|
| 8 |
+
"condition_on_text": true,
|
| 9 |
+
"cond_drop_prob": 0.1,
|
| 10 |
+
"text_encoder_name": "google/t5-v1_1-large",
|
| 11 |
+
"unets": [
|
| 12 |
+
{
|
| 13 |
+
"dim": 512,
|
| 14 |
+
"dim_mults": [1, 2, 3, 4],
|
| 15 |
+
"num_resnet_blocks": 3,
|
| 16 |
+
"layer_attns": [false, true, true, true],
|
| 17 |
+
"layer_cross_attns": [false, true, true, true],
|
| 18 |
+
"attn_heads": 8
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"dim": 128,
|
| 22 |
+
"dim_mults": [1, 2, 4, 8],
|
| 23 |
+
"num_resnet_blocks": [2, 4, 8, 8],
|
| 24 |
+
"layer_attns": [false, false, false, true],
|
| 25 |
+
"layer_cross_attns": [false, false, false, true],
|
| 26 |
+
"attn_heads": 8
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"dim": 128,
|
| 30 |
+
"dim_mults": [1, 2, 4, 8],
|
| 31 |
+
"num_resnet_blocks": [2, 4, 8, 8],
|
| 32 |
+
"layer_attns": false,
|
| 33 |
+
"layer_cross_attns": [false, false, false, true],
|
| 34 |
+
"attn_heads": 8
|
| 35 |
+
}
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
"trainer": {
|
| 39 |
+
"lr": 1e-4
|
| 40 |
+
},
|
| 41 |
+
"dataset_name": "laion/laion2B-en",
|
| 42 |
+
"dataset": {
|
| 43 |
+
"batch_size": 2048,
|
| 44 |
+
"shuffle": true
|
| 45 |
+
},
|
| 46 |
+
"image_label": null,
|
| 47 |
+
"url_label": "URL",
|
| 48 |
+
"text_label": "TEXT",
|
| 49 |
+
"checkpoint_path": "./imagen.pt"
|
| 50 |
+
}
|
elucidated_imagen.py
ADDED
|
@@ -0,0 +1,940 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from math import sqrt
|
| 2 |
+
from random import random
|
| 3 |
+
from functools import partial
|
| 4 |
+
from contextlib import contextmanager, nullcontext
|
| 5 |
+
from typing import List, Union
|
| 6 |
+
from collections import namedtuple
|
| 7 |
+
from tqdm.auto import tqdm
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from torch import nn, einsum
|
| 12 |
+
from torch.cuda.amp import autocast
|
| 13 |
+
from torch.nn.parallel import DistributedDataParallel
|
| 14 |
+
import torchvision.transforms as T
|
| 15 |
+
|
| 16 |
+
import kornia.augmentation as K
|
| 17 |
+
|
| 18 |
+
from einops import rearrange, repeat, reduce
|
| 19 |
+
|
| 20 |
+
from imagen_pytorch.imagen_pytorch import (
|
| 21 |
+
GaussianDiffusionContinuousTimes,
|
| 22 |
+
Unet,
|
| 23 |
+
NullUnet,
|
| 24 |
+
first,
|
| 25 |
+
exists,
|
| 26 |
+
identity,
|
| 27 |
+
maybe,
|
| 28 |
+
default,
|
| 29 |
+
cast_tuple,
|
| 30 |
+
cast_uint8_images_to_float,
|
| 31 |
+
eval_decorator,
|
| 32 |
+
pad_tuple_to_length,
|
| 33 |
+
resize_image_to,
|
| 34 |
+
calc_all_frame_dims,
|
| 35 |
+
safe_get_tuple_index,
|
| 36 |
+
right_pad_dims_to,
|
| 37 |
+
module_device,
|
| 38 |
+
normalize_neg_one_to_one,
|
| 39 |
+
unnormalize_zero_to_one,
|
| 40 |
+
compact,
|
| 41 |
+
maybe_transform_dict_key
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
from imagen_pytorch.imagen_video import (
|
| 45 |
+
Unet3D,
|
| 46 |
+
resize_video_to,
|
| 47 |
+
scale_video_time
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
from imagen_pytorch.t5 import t5_encode_text, get_encoded_dim, DEFAULT_T5_NAME
|
| 51 |
+
|
| 52 |
+
# constants
|
| 53 |
+
|
| 54 |
+
Hparams_fields = [
|
| 55 |
+
'num_sample_steps',
|
| 56 |
+
'sigma_min',
|
| 57 |
+
'sigma_max',
|
| 58 |
+
'sigma_data',
|
| 59 |
+
'rho',
|
| 60 |
+
'P_mean',
|
| 61 |
+
'P_std',
|
| 62 |
+
'S_churn',
|
| 63 |
+
'S_tmin',
|
| 64 |
+
'S_tmax',
|
| 65 |
+
'S_noise'
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
Hparams = namedtuple('Hparams', Hparams_fields)
|
| 69 |
+
|
| 70 |
+
# helper functions
|
| 71 |
+
|
| 72 |
+
def log(t, eps = 1e-20):
|
| 73 |
+
return torch.log(t.clamp(min = eps))
|
| 74 |
+
|
| 75 |
+
# main class
|
| 76 |
+
|
| 77 |
+
class ElucidatedImagen(nn.Module):
|
| 78 |
+
def __init__(
|
| 79 |
+
self,
|
| 80 |
+
unets,
|
| 81 |
+
*,
|
| 82 |
+
image_sizes, # for cascading ddpm, image size at each stage
|
| 83 |
+
text_encoder_name = DEFAULT_T5_NAME,
|
| 84 |
+
text_embed_dim = None,
|
| 85 |
+
channels = 3,
|
| 86 |
+
cond_drop_prob = 0.1,
|
| 87 |
+
random_crop_sizes = None,
|
| 88 |
+
resize_mode = 'nearest',
|
| 89 |
+
temporal_downsample_factor = 1,
|
| 90 |
+
resize_cond_video_frames = True,
|
| 91 |
+
lowres_sample_noise_level = 0.2, # in the paper, they present a new trick where they noise the lowres conditioning image, and at sample time, fix it to a certain level (0.1 or 0.3) - the unets are also made to be conditioned on this noise level
|
| 92 |
+
per_sample_random_aug_noise_level = False, # unclear when conditioning on augmentation noise level, whether each batch element receives a random aug noise value - turning off due to @marunine's find
|
| 93 |
+
condition_on_text = True,
|
| 94 |
+
auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader
|
| 95 |
+
dynamic_thresholding = True,
|
| 96 |
+
dynamic_thresholding_percentile = 0.95, # unsure what this was based on perusal of paper
|
| 97 |
+
only_train_unet_number = None,
|
| 98 |
+
lowres_noise_schedule = 'linear',
|
| 99 |
+
num_sample_steps = 32, # number of sampling steps
|
| 100 |
+
sigma_min = 0.002, # min noise level
|
| 101 |
+
sigma_max = 80, # max noise level
|
| 102 |
+
sigma_data = 0.5, # standard deviation of data distribution
|
| 103 |
+
rho = 7, # controls the sampling schedule
|
| 104 |
+
P_mean = -1.2, # mean of log-normal distribution from which noise is drawn for training
|
| 105 |
+
P_std = 1.2, # standard deviation of log-normal distribution from which noise is drawn for training
|
| 106 |
+
S_churn = 80, # parameters for stochastic sampling - depends on dataset, Table 5 in apper
|
| 107 |
+
S_tmin = 0.05,
|
| 108 |
+
S_tmax = 50,
|
| 109 |
+
S_noise = 1.003,
|
| 110 |
+
):
|
| 111 |
+
super().__init__()
|
| 112 |
+
|
| 113 |
+
self.only_train_unet_number = only_train_unet_number
|
| 114 |
+
|
| 115 |
+
# conditioning hparams
|
| 116 |
+
|
| 117 |
+
self.condition_on_text = condition_on_text
|
| 118 |
+
self.unconditional = not condition_on_text
|
| 119 |
+
|
| 120 |
+
# channels
|
| 121 |
+
|
| 122 |
+
self.channels = channels
|
| 123 |
+
|
| 124 |
+
# automatically take care of ensuring that first unet is unconditional
|
| 125 |
+
# while the rest of the unets are conditioned on the low resolution image produced by previous unet
|
| 126 |
+
|
| 127 |
+
unets = cast_tuple(unets)
|
| 128 |
+
num_unets = len(unets)
|
| 129 |
+
|
| 130 |
+
# randomly cropping for upsampler training
|
| 131 |
+
|
| 132 |
+
self.random_crop_sizes = cast_tuple(random_crop_sizes, num_unets)
|
| 133 |
+
assert not exists(first(self.random_crop_sizes)), 'you should not need to randomly crop image during training for base unet, only for upsamplers - so pass in `random_crop_sizes = (None, 128, 256)` as example'
|
| 134 |
+
|
| 135 |
+
# lowres augmentation noise schedule
|
| 136 |
+
|
| 137 |
+
self.lowres_noise_schedule = GaussianDiffusionContinuousTimes(noise_schedule = lowres_noise_schedule)
|
| 138 |
+
|
| 139 |
+
# get text encoder
|
| 140 |
+
|
| 141 |
+
self.text_encoder_name = text_encoder_name
|
| 142 |
+
self.text_embed_dim = default(text_embed_dim, lambda: get_encoded_dim(text_encoder_name))
|
| 143 |
+
|
| 144 |
+
self.encode_text = partial(t5_encode_text, name = text_encoder_name)
|
| 145 |
+
|
| 146 |
+
# construct unets
|
| 147 |
+
|
| 148 |
+
self.unets = nn.ModuleList([])
|
| 149 |
+
self.unet_being_trained_index = -1 # keeps track of which unet is being trained at the moment
|
| 150 |
+
|
| 151 |
+
for ind, one_unet in enumerate(unets):
|
| 152 |
+
assert isinstance(one_unet, (Unet, Unet3D, NullUnet))
|
| 153 |
+
is_first = ind == 0
|
| 154 |
+
|
| 155 |
+
one_unet = one_unet.cast_model_parameters(
|
| 156 |
+
lowres_cond = not is_first,
|
| 157 |
+
cond_on_text = self.condition_on_text,
|
| 158 |
+
text_embed_dim = self.text_embed_dim if self.condition_on_text else None,
|
| 159 |
+
channels = self.channels,
|
| 160 |
+
channels_out = self.channels
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
self.unets.append(one_unet)
|
| 164 |
+
|
| 165 |
+
# determine whether we are training on images or video
|
| 166 |
+
|
| 167 |
+
is_video = any([isinstance(unet, Unet3D) for unet in self.unets])
|
| 168 |
+
self.is_video = is_video
|
| 169 |
+
|
| 170 |
+
self.right_pad_dims_to_datatype = partial(rearrange, pattern = ('b -> b 1 1 1' if not is_video else 'b -> b 1 1 1 1'))
|
| 171 |
+
|
| 172 |
+
self.resize_to = resize_video_to if is_video else resize_image_to
|
| 173 |
+
self.resize_to = partial(self.resize_to, mode = resize_mode)
|
| 174 |
+
|
| 175 |
+
# unet image sizes
|
| 176 |
+
|
| 177 |
+
self.image_sizes = cast_tuple(image_sizes)
|
| 178 |
+
assert num_unets == len(self.image_sizes), f'you did not supply the correct number of u-nets ({len(self.unets)}) for resolutions {self.image_sizes}'
|
| 179 |
+
|
| 180 |
+
self.sample_channels = cast_tuple(self.channels, num_unets)
|
| 181 |
+
|
| 182 |
+
# cascading ddpm related stuff
|
| 183 |
+
|
| 184 |
+
lowres_conditions = tuple(map(lambda t: t.lowres_cond, self.unets))
|
| 185 |
+
assert lowres_conditions == (False, *((True,) * (num_unets - 1))), 'the first unet must be unconditioned (by low resolution image), and the rest of the unets must have `lowres_cond` set to True'
|
| 186 |
+
|
| 187 |
+
self.lowres_sample_noise_level = lowres_sample_noise_level
|
| 188 |
+
self.per_sample_random_aug_noise_level = per_sample_random_aug_noise_level
|
| 189 |
+
|
| 190 |
+
# classifier free guidance
|
| 191 |
+
|
| 192 |
+
self.cond_drop_prob = cond_drop_prob
|
| 193 |
+
self.can_classifier_guidance = cond_drop_prob > 0.
|
| 194 |
+
|
| 195 |
+
# normalize and unnormalize image functions
|
| 196 |
+
|
| 197 |
+
self.normalize_img = normalize_neg_one_to_one if auto_normalize_img else identity
|
| 198 |
+
self.unnormalize_img = unnormalize_zero_to_one if auto_normalize_img else identity
|
| 199 |
+
self.input_image_range = (0. if auto_normalize_img else -1., 1.)
|
| 200 |
+
|
| 201 |
+
# dynamic thresholding
|
| 202 |
+
|
| 203 |
+
self.dynamic_thresholding = cast_tuple(dynamic_thresholding, num_unets)
|
| 204 |
+
self.dynamic_thresholding_percentile = dynamic_thresholding_percentile
|
| 205 |
+
|
| 206 |
+
# temporal interpolations
|
| 207 |
+
|
| 208 |
+
temporal_downsample_factor = cast_tuple(temporal_downsample_factor, num_unets)
|
| 209 |
+
self.temporal_downsample_factor = temporal_downsample_factor
|
| 210 |
+
|
| 211 |
+
self.resize_cond_video_frames = resize_cond_video_frames
|
| 212 |
+
self.temporal_downsample_divisor = temporal_downsample_factor[0]
|
| 213 |
+
|
| 214 |
+
assert temporal_downsample_factor[-1] == 1, 'downsample factor of last stage must be 1'
|
| 215 |
+
assert tuple(sorted(temporal_downsample_factor, reverse = True)) == temporal_downsample_factor, 'temporal downsample factor must be in order of descending'
|
| 216 |
+
|
| 217 |
+
# elucidating parameters
|
| 218 |
+
|
| 219 |
+
hparams = [
|
| 220 |
+
num_sample_steps,
|
| 221 |
+
sigma_min,
|
| 222 |
+
sigma_max,
|
| 223 |
+
sigma_data,
|
| 224 |
+
rho,
|
| 225 |
+
P_mean,
|
| 226 |
+
P_std,
|
| 227 |
+
S_churn,
|
| 228 |
+
S_tmin,
|
| 229 |
+
S_tmax,
|
| 230 |
+
S_noise,
|
| 231 |
+
]
|
| 232 |
+
|
| 233 |
+
hparams = [cast_tuple(hp, num_unets) for hp in hparams]
|
| 234 |
+
self.hparams = [Hparams(*unet_hp) for unet_hp in zip(*hparams)]
|
| 235 |
+
|
| 236 |
+
# one temp parameter for keeping track of device
|
| 237 |
+
|
| 238 |
+
self.register_buffer('_temp', torch.tensor([0.]), persistent = False)
|
| 239 |
+
|
| 240 |
+
# default to device of unets passed in
|
| 241 |
+
|
| 242 |
+
self.to(next(self.unets.parameters()).device)
|
| 243 |
+
|
| 244 |
+
def force_unconditional_(self):
|
| 245 |
+
self.condition_on_text = False
|
| 246 |
+
self.unconditional = True
|
| 247 |
+
|
| 248 |
+
for unet in self.unets:
|
| 249 |
+
unet.cond_on_text = False
|
| 250 |
+
|
| 251 |
+
@property
|
| 252 |
+
def device(self):
|
| 253 |
+
return self._temp.device
|
| 254 |
+
|
| 255 |
+
def get_unet(self, unet_number):
|
| 256 |
+
assert 0 < unet_number <= len(self.unets)
|
| 257 |
+
index = unet_number - 1
|
| 258 |
+
|
| 259 |
+
if isinstance(self.unets, nn.ModuleList):
|
| 260 |
+
unets_list = [unet for unet in self.unets]
|
| 261 |
+
delattr(self, 'unets')
|
| 262 |
+
self.unets = unets_list
|
| 263 |
+
|
| 264 |
+
if index != self.unet_being_trained_index:
|
| 265 |
+
for unet_index, unet in enumerate(self.unets):
|
| 266 |
+
unet.to(self.device if unet_index == index else 'cpu')
|
| 267 |
+
|
| 268 |
+
self.unet_being_trained_index = index
|
| 269 |
+
return self.unets[index]
|
| 270 |
+
|
| 271 |
+
def reset_unets_all_one_device(self, device = None):
|
| 272 |
+
device = default(device, self.device)
|
| 273 |
+
self.unets = nn.ModuleList([*self.unets])
|
| 274 |
+
self.unets.to(device)
|
| 275 |
+
|
| 276 |
+
self.unet_being_trained_index = -1
|
| 277 |
+
|
| 278 |
+
@contextmanager
|
| 279 |
+
def one_unet_in_gpu(self, unet_number = None, unet = None):
|
| 280 |
+
assert exists(unet_number) ^ exists(unet)
|
| 281 |
+
|
| 282 |
+
if exists(unet_number):
|
| 283 |
+
unet = self.unets[unet_number - 1]
|
| 284 |
+
|
| 285 |
+
cpu = torch.device('cpu')
|
| 286 |
+
|
| 287 |
+
devices = [module_device(unet) for unet in self.unets]
|
| 288 |
+
|
| 289 |
+
self.unets.to(cpu)
|
| 290 |
+
unet.to(self.device)
|
| 291 |
+
|
| 292 |
+
yield
|
| 293 |
+
|
| 294 |
+
for unet, device in zip(self.unets, devices):
|
| 295 |
+
unet.to(device)
|
| 296 |
+
|
| 297 |
+
# overriding state dict functions
|
| 298 |
+
|
| 299 |
+
def state_dict(self, *args, **kwargs):
|
| 300 |
+
self.reset_unets_all_one_device()
|
| 301 |
+
return super().state_dict(*args, **kwargs)
|
| 302 |
+
|
| 303 |
+
def load_state_dict(self, *args, **kwargs):
|
| 304 |
+
self.reset_unets_all_one_device()
|
| 305 |
+
return super().load_state_dict(*args, **kwargs)
|
| 306 |
+
|
| 307 |
+
# dynamic thresholding
|
| 308 |
+
|
| 309 |
+
def threshold_x_start(self, x_start, dynamic_threshold = True):
|
| 310 |
+
if not dynamic_threshold:
|
| 311 |
+
return x_start.clamp(-1., 1.)
|
| 312 |
+
|
| 313 |
+
s = torch.quantile(
|
| 314 |
+
rearrange(x_start, 'b ... -> b (...)').abs(),
|
| 315 |
+
self.dynamic_thresholding_percentile,
|
| 316 |
+
dim = -1
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
s.clamp_(min = 1.)
|
| 320 |
+
s = right_pad_dims_to(x_start, s)
|
| 321 |
+
return x_start.clamp(-s, s) / s
|
| 322 |
+
|
| 323 |
+
# derived preconditioning params - Table 1
|
| 324 |
+
|
| 325 |
+
def c_skip(self, sigma_data, sigma):
|
| 326 |
+
return (sigma_data ** 2) / (sigma ** 2 + sigma_data ** 2)
|
| 327 |
+
|
| 328 |
+
def c_out(self, sigma_data, sigma):
|
| 329 |
+
return sigma * sigma_data * (sigma_data ** 2 + sigma ** 2) ** -0.5
|
| 330 |
+
|
| 331 |
+
def c_in(self, sigma_data, sigma):
|
| 332 |
+
return 1 * (sigma ** 2 + sigma_data ** 2) ** -0.5
|
| 333 |
+
|
| 334 |
+
def c_noise(self, sigma):
|
| 335 |
+
return log(sigma) * 0.25
|
| 336 |
+
|
| 337 |
+
# preconditioned network output
|
| 338 |
+
# equation (7) in the paper
|
| 339 |
+
|
| 340 |
+
def preconditioned_network_forward(
|
| 341 |
+
self,
|
| 342 |
+
unet_forward,
|
| 343 |
+
noised_images,
|
| 344 |
+
sigma,
|
| 345 |
+
*,
|
| 346 |
+
sigma_data,
|
| 347 |
+
clamp = False,
|
| 348 |
+
dynamic_threshold = True,
|
| 349 |
+
**kwargs
|
| 350 |
+
):
|
| 351 |
+
batch, device = noised_images.shape[0], noised_images.device
|
| 352 |
+
|
| 353 |
+
if isinstance(sigma, float):
|
| 354 |
+
sigma = torch.full((batch,), sigma, device = device)
|
| 355 |
+
|
| 356 |
+
padded_sigma = self.right_pad_dims_to_datatype(sigma)
|
| 357 |
+
|
| 358 |
+
net_out = unet_forward(
|
| 359 |
+
self.c_in(sigma_data, padded_sigma) * noised_images,
|
| 360 |
+
self.c_noise(sigma),
|
| 361 |
+
**kwargs
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
out = self.c_skip(sigma_data, padded_sigma) * noised_images + self.c_out(sigma_data, padded_sigma) * net_out
|
| 365 |
+
|
| 366 |
+
if not clamp:
|
| 367 |
+
return out
|
| 368 |
+
|
| 369 |
+
return self.threshold_x_start(out, dynamic_threshold)
|
| 370 |
+
|
| 371 |
+
# sampling
|
| 372 |
+
|
| 373 |
+
# sample schedule
|
| 374 |
+
# equation (5) in the paper
|
| 375 |
+
|
| 376 |
+
def sample_schedule(
|
| 377 |
+
self,
|
| 378 |
+
num_sample_steps,
|
| 379 |
+
rho,
|
| 380 |
+
sigma_min,
|
| 381 |
+
sigma_max
|
| 382 |
+
):
|
| 383 |
+
N = num_sample_steps
|
| 384 |
+
inv_rho = 1 / rho
|
| 385 |
+
|
| 386 |
+
steps = torch.arange(num_sample_steps, device = self.device, dtype = torch.float32)
|
| 387 |
+
sigmas = (sigma_max ** inv_rho + steps / (N - 1) * (sigma_min ** inv_rho - sigma_max ** inv_rho)) ** rho
|
| 388 |
+
|
| 389 |
+
sigmas = F.pad(sigmas, (0, 1), value = 0.) # last step is sigma value of 0.
|
| 390 |
+
return sigmas
|
| 391 |
+
|
| 392 |
+
@torch.no_grad()
|
| 393 |
+
def one_unet_sample(
|
| 394 |
+
self,
|
| 395 |
+
unet,
|
| 396 |
+
shape,
|
| 397 |
+
*,
|
| 398 |
+
unet_number,
|
| 399 |
+
clamp = True,
|
| 400 |
+
dynamic_threshold = True,
|
| 401 |
+
cond_scale = 1.,
|
| 402 |
+
use_tqdm = True,
|
| 403 |
+
inpaint_videos = None,
|
| 404 |
+
inpaint_images = None,
|
| 405 |
+
inpaint_masks = None,
|
| 406 |
+
inpaint_resample_times = 5,
|
| 407 |
+
init_images = None,
|
| 408 |
+
skip_steps = None,
|
| 409 |
+
sigma_min = None,
|
| 410 |
+
sigma_max = None,
|
| 411 |
+
**kwargs
|
| 412 |
+
):
|
| 413 |
+
# video
|
| 414 |
+
|
| 415 |
+
is_video = len(shape) == 5
|
| 416 |
+
frames = shape[-3] if is_video else None
|
| 417 |
+
resize_kwargs = dict(target_frames = frames) if exists(frames) else dict()
|
| 418 |
+
|
| 419 |
+
# get specific sampling hyperparameters for unet
|
| 420 |
+
|
| 421 |
+
hp = self.hparams[unet_number - 1]
|
| 422 |
+
|
| 423 |
+
sigma_min = default(sigma_min, hp.sigma_min)
|
| 424 |
+
sigma_max = default(sigma_max, hp.sigma_max)
|
| 425 |
+
|
| 426 |
+
# get the schedule, which is returned as (sigma, gamma) tuple, and pair up with the next sigma and gamma
|
| 427 |
+
|
| 428 |
+
sigmas = self.sample_schedule(hp.num_sample_steps, hp.rho, sigma_min, sigma_max)
|
| 429 |
+
|
| 430 |
+
gammas = torch.where(
|
| 431 |
+
(sigmas >= hp.S_tmin) & (sigmas <= hp.S_tmax),
|
| 432 |
+
min(hp.S_churn / hp.num_sample_steps, sqrt(2) - 1),
|
| 433 |
+
0.
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
sigmas_and_gammas = list(zip(sigmas[:-1], sigmas[1:], gammas[:-1]))
|
| 437 |
+
|
| 438 |
+
# images is noise at the beginning
|
| 439 |
+
|
| 440 |
+
init_sigma = sigmas[0]
|
| 441 |
+
|
| 442 |
+
images = init_sigma * torch.randn(shape, device = self.device)
|
| 443 |
+
|
| 444 |
+
# initializing with an image
|
| 445 |
+
|
| 446 |
+
if exists(init_images):
|
| 447 |
+
images += init_images
|
| 448 |
+
|
| 449 |
+
# keeping track of x0, for self conditioning if needed
|
| 450 |
+
|
| 451 |
+
x_start = None
|
| 452 |
+
|
| 453 |
+
# prepare inpainting images and mask
|
| 454 |
+
|
| 455 |
+
inpaint_images = default(inpaint_videos, inpaint_images)
|
| 456 |
+
has_inpainting = exists(inpaint_images) and exists(inpaint_masks)
|
| 457 |
+
resample_times = inpaint_resample_times if has_inpainting else 1
|
| 458 |
+
|
| 459 |
+
if has_inpainting:
|
| 460 |
+
inpaint_images = self.normalize_img(inpaint_images)
|
| 461 |
+
inpaint_images = self.resize_to(inpaint_images, shape[-1], **resize_kwargs)
|
| 462 |
+
inpaint_masks = self.resize_to(rearrange(inpaint_masks, 'b ... -> b 1 ...').float(), shape[-1], **resize_kwargs).bool()
|
| 463 |
+
|
| 464 |
+
# unet kwargs
|
| 465 |
+
|
| 466 |
+
unet_kwargs = dict(
|
| 467 |
+
sigma_data = hp.sigma_data,
|
| 468 |
+
clamp = clamp,
|
| 469 |
+
dynamic_threshold = dynamic_threshold,
|
| 470 |
+
cond_scale = cond_scale,
|
| 471 |
+
**kwargs
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
# gradually denoise
|
| 475 |
+
|
| 476 |
+
initial_step = default(skip_steps, 0)
|
| 477 |
+
sigmas_and_gammas = sigmas_and_gammas[initial_step:]
|
| 478 |
+
|
| 479 |
+
total_steps = len(sigmas_and_gammas)
|
| 480 |
+
|
| 481 |
+
for ind, (sigma, sigma_next, gamma) in tqdm(enumerate(sigmas_and_gammas), total = total_steps, desc = 'sampling time step', disable = not use_tqdm):
|
| 482 |
+
is_last_timestep = ind == (total_steps - 1)
|
| 483 |
+
|
| 484 |
+
sigma, sigma_next, gamma = map(lambda t: t.item(), (sigma, sigma_next, gamma))
|
| 485 |
+
|
| 486 |
+
for r in reversed(range(resample_times)):
|
| 487 |
+
is_last_resample_step = r == 0
|
| 488 |
+
|
| 489 |
+
eps = hp.S_noise * torch.randn(shape, device = self.device) # stochastic sampling
|
| 490 |
+
|
| 491 |
+
sigma_hat = sigma + gamma * sigma
|
| 492 |
+
added_noise = sqrt(sigma_hat ** 2 - sigma ** 2) * eps
|
| 493 |
+
|
| 494 |
+
images_hat = images + added_noise
|
| 495 |
+
|
| 496 |
+
self_cond = x_start if unet.self_cond else None
|
| 497 |
+
|
| 498 |
+
if has_inpainting:
|
| 499 |
+
images_hat = images_hat * ~inpaint_masks + (inpaint_images + added_noise) * inpaint_masks
|
| 500 |
+
|
| 501 |
+
model_output = self.preconditioned_network_forward(
|
| 502 |
+
unet.forward_with_cond_scale,
|
| 503 |
+
images_hat,
|
| 504 |
+
sigma_hat,
|
| 505 |
+
self_cond = self_cond,
|
| 506 |
+
**unet_kwargs
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
denoised_over_sigma = (images_hat - model_output) / sigma_hat
|
| 510 |
+
|
| 511 |
+
images_next = images_hat + (sigma_next - sigma_hat) * denoised_over_sigma
|
| 512 |
+
|
| 513 |
+
# second order correction, if not the last timestep
|
| 514 |
+
|
| 515 |
+
has_second_order_correction = sigma_next != 0
|
| 516 |
+
|
| 517 |
+
if has_second_order_correction:
|
| 518 |
+
self_cond = model_output if unet.self_cond else None
|
| 519 |
+
|
| 520 |
+
model_output_next = self.preconditioned_network_forward(
|
| 521 |
+
unet.forward_with_cond_scale,
|
| 522 |
+
images_next,
|
| 523 |
+
sigma_next,
|
| 524 |
+
self_cond = self_cond,
|
| 525 |
+
**unet_kwargs
|
| 526 |
+
)
|
| 527 |
+
|
| 528 |
+
denoised_prime_over_sigma = (images_next - model_output_next) / sigma_next
|
| 529 |
+
images_next = images_hat + 0.5 * (sigma_next - sigma_hat) * (denoised_over_sigma + denoised_prime_over_sigma)
|
| 530 |
+
|
| 531 |
+
images = images_next
|
| 532 |
+
|
| 533 |
+
if has_inpainting and not (is_last_resample_step or is_last_timestep):
|
| 534 |
+
# renoise in repaint and then resample
|
| 535 |
+
repaint_noise = torch.randn(shape, device = self.device)
|
| 536 |
+
images = images + (sigma - sigma_next) * repaint_noise
|
| 537 |
+
|
| 538 |
+
x_start = model_output if not has_second_order_correction else model_output_next # save model output for self conditioning
|
| 539 |
+
|
| 540 |
+
images = images.clamp(-1., 1.)
|
| 541 |
+
|
| 542 |
+
if has_inpainting:
|
| 543 |
+
images = images * ~inpaint_masks + inpaint_images * inpaint_masks
|
| 544 |
+
|
| 545 |
+
return self.unnormalize_img(images)
|
| 546 |
+
|
| 547 |
+
@torch.no_grad()
|
| 548 |
+
@eval_decorator
|
| 549 |
+
def sample(
|
| 550 |
+
self,
|
| 551 |
+
texts: List[str] = None,
|
| 552 |
+
text_masks = None,
|
| 553 |
+
text_embeds = None,
|
| 554 |
+
cond_images = None,
|
| 555 |
+
cond_video_frames = None,
|
| 556 |
+
post_cond_video_frames = None,
|
| 557 |
+
inpaint_videos = None,
|
| 558 |
+
inpaint_images = None,
|
| 559 |
+
inpaint_masks = None,
|
| 560 |
+
inpaint_resample_times = 5,
|
| 561 |
+
init_images = None,
|
| 562 |
+
skip_steps = None,
|
| 563 |
+
sigma_min = None,
|
| 564 |
+
sigma_max = None,
|
| 565 |
+
video_frames = None,
|
| 566 |
+
batch_size = 1,
|
| 567 |
+
cond_scale = 1.,
|
| 568 |
+
lowres_sample_noise_level = None,
|
| 569 |
+
start_at_unet_number = 1,
|
| 570 |
+
start_image_or_video = None,
|
| 571 |
+
stop_at_unet_number = None,
|
| 572 |
+
return_all_unet_outputs = False,
|
| 573 |
+
return_pil_images = False,
|
| 574 |
+
use_tqdm = True,
|
| 575 |
+
use_one_unet_in_gpu = True,
|
| 576 |
+
device = None,
|
| 577 |
+
):
|
| 578 |
+
device = default(device, self.device)
|
| 579 |
+
self.reset_unets_all_one_device(device = device)
|
| 580 |
+
|
| 581 |
+
cond_images = maybe(cast_uint8_images_to_float)(cond_images)
|
| 582 |
+
|
| 583 |
+
if exists(texts) and not exists(text_embeds) and not self.unconditional:
|
| 584 |
+
assert all([*map(len, texts)]), 'text cannot be empty'
|
| 585 |
+
|
| 586 |
+
with autocast(enabled = False):
|
| 587 |
+
text_embeds, text_masks = self.encode_text(texts, return_attn_mask = True)
|
| 588 |
+
|
| 589 |
+
text_embeds, text_masks = map(lambda t: t.to(device), (text_embeds, text_masks))
|
| 590 |
+
|
| 591 |
+
if not self.unconditional:
|
| 592 |
+
assert exists(text_embeds), 'text must be passed in if the network was not trained without text `condition_on_text` must be set to `False` when training'
|
| 593 |
+
|
| 594 |
+
text_masks = default(text_masks, lambda: torch.any(text_embeds != 0., dim = -1))
|
| 595 |
+
batch_size = text_embeds.shape[0]
|
| 596 |
+
|
| 597 |
+
# inpainting
|
| 598 |
+
|
| 599 |
+
inpaint_images = default(inpaint_videos, inpaint_images)
|
| 600 |
+
|
| 601 |
+
if exists(inpaint_images):
|
| 602 |
+
if self.unconditional:
|
| 603 |
+
if batch_size == 1: # assume researcher wants to broadcast along inpainted images
|
| 604 |
+
batch_size = inpaint_images.shape[0]
|
| 605 |
+
|
| 606 |
+
assert inpaint_images.shape[0] == batch_size, 'number of inpainting images must be equal to the specified batch size on sample `sample(batch_size=<int>)``'
|
| 607 |
+
assert not (self.condition_on_text and inpaint_images.shape[0] != text_embeds.shape[0]), 'number of inpainting images must be equal to the number of text to be conditioned on'
|
| 608 |
+
|
| 609 |
+
assert not (self.condition_on_text and not exists(text_embeds)), 'text or text encodings must be passed into imagen if specified'
|
| 610 |
+
assert not (not self.condition_on_text and exists(text_embeds)), 'imagen specified not to be conditioned on text, yet it is presented'
|
| 611 |
+
assert not (exists(text_embeds) and text_embeds.shape[-1] != self.text_embed_dim), f'invalid text embedding dimension being passed in (should be {self.text_embed_dim})'
|
| 612 |
+
|
| 613 |
+
assert not (exists(inpaint_images) ^ exists(inpaint_masks)), 'inpaint images and masks must be both passed in to do inpainting'
|
| 614 |
+
|
| 615 |
+
outputs = []
|
| 616 |
+
|
| 617 |
+
is_cuda = next(self.parameters()).is_cuda
|
| 618 |
+
device = next(self.parameters()).device
|
| 619 |
+
|
| 620 |
+
lowres_sample_noise_level = default(lowres_sample_noise_level, self.lowres_sample_noise_level)
|
| 621 |
+
|
| 622 |
+
num_unets = len(self.unets)
|
| 623 |
+
cond_scale = cast_tuple(cond_scale, num_unets)
|
| 624 |
+
|
| 625 |
+
# handle video and frame dimension
|
| 626 |
+
|
| 627 |
+
if self.is_video and exists(inpaint_images):
|
| 628 |
+
video_frames = inpaint_images.shape[2]
|
| 629 |
+
|
| 630 |
+
if inpaint_masks.ndim == 3:
|
| 631 |
+
inpaint_masks = repeat(inpaint_masks, 'b h w -> b f h w', f = video_frames)
|
| 632 |
+
|
| 633 |
+
assert inpaint_masks.shape[1] == video_frames
|
| 634 |
+
|
| 635 |
+
assert not (self.is_video and not exists(video_frames)), 'video_frames must be passed in on sample time if training on video'
|
| 636 |
+
|
| 637 |
+
# determine the frame dimensions, if needed
|
| 638 |
+
|
| 639 |
+
all_frame_dims = calc_all_frame_dims(self.temporal_downsample_factor, video_frames)
|
| 640 |
+
|
| 641 |
+
# initializing with an image or video
|
| 642 |
+
|
| 643 |
+
init_images = cast_tuple(init_images, num_unets)
|
| 644 |
+
init_images = [maybe(self.normalize_img)(init_image) for init_image in init_images]
|
| 645 |
+
|
| 646 |
+
skip_steps = cast_tuple(skip_steps, num_unets)
|
| 647 |
+
|
| 648 |
+
sigma_min = cast_tuple(sigma_min, num_unets)
|
| 649 |
+
sigma_max = cast_tuple(sigma_max, num_unets)
|
| 650 |
+
|
| 651 |
+
# handle starting at a unet greater than 1, for training only-upscaler training
|
| 652 |
+
|
| 653 |
+
if start_at_unet_number > 1:
|
| 654 |
+
assert start_at_unet_number <= num_unets, 'must start a unet that is less than the total number of unets'
|
| 655 |
+
assert not exists(stop_at_unet_number) or start_at_unet_number <= stop_at_unet_number
|
| 656 |
+
assert exists(start_image_or_video), 'starting image or video must be supplied if only doing upscaling'
|
| 657 |
+
|
| 658 |
+
prev_image_size = self.image_sizes[start_at_unet_number - 2]
|
| 659 |
+
img = self.resize_to(start_image_or_video, prev_image_size)
|
| 660 |
+
|
| 661 |
+
# go through each unet in cascade
|
| 662 |
+
|
| 663 |
+
for unet_number, unet, channel, image_size, frame_dims, unet_hparam, dynamic_threshold, unet_cond_scale, unet_init_images, unet_skip_steps, unet_sigma_min, unet_sigma_max in tqdm(zip(range(1, num_unets + 1), self.unets, self.sample_channels, self.image_sizes, all_frame_dims, self.hparams, self.dynamic_thresholding, cond_scale, init_images, skip_steps, sigma_min, sigma_max), disable = not use_tqdm):
|
| 664 |
+
if unet_number < start_at_unet_number:
|
| 665 |
+
continue
|
| 666 |
+
|
| 667 |
+
assert not isinstance(unet, NullUnet), 'cannot sample from null unet'
|
| 668 |
+
|
| 669 |
+
context = self.one_unet_in_gpu(unet = unet) if is_cuda and use_one_unet_in_gpu else nullcontext()
|
| 670 |
+
|
| 671 |
+
with context:
|
| 672 |
+
lowres_cond_img = lowres_noise_times = None
|
| 673 |
+
|
| 674 |
+
shape = (batch_size, channel, *frame_dims, image_size, image_size)
|
| 675 |
+
|
| 676 |
+
resize_kwargs = dict()
|
| 677 |
+
video_kwargs = dict()
|
| 678 |
+
|
| 679 |
+
if self.is_video:
|
| 680 |
+
resize_kwargs = dict(target_frames = frame_dims[0])
|
| 681 |
+
|
| 682 |
+
video_kwargs = dict(
|
| 683 |
+
cond_video_frames = cond_video_frames,
|
| 684 |
+
post_cond_video_frames = post_cond_video_frames
|
| 685 |
+
)
|
| 686 |
+
|
| 687 |
+
video_kwargs = compact(video_kwargs)
|
| 688 |
+
|
| 689 |
+
# handle video conditioning frames
|
| 690 |
+
|
| 691 |
+
if self.is_video and self.resize_cond_video_frames:
|
| 692 |
+
downsample_scale = self.temporal_downsample_factor[unet_number - 1]
|
| 693 |
+
temporal_downsample_fn = partial(scale_video_time, downsample_scale = downsample_scale)
|
| 694 |
+
video_kwargs = maybe_transform_dict_key(video_kwargs, 'cond_video_frames', temporal_downsample_fn)
|
| 695 |
+
video_kwargs = maybe_transform_dict_key(video_kwargs, 'post_cond_video_frames', temporal_downsample_fn)
|
| 696 |
+
|
| 697 |
+
# low resolution conditioning
|
| 698 |
+
|
| 699 |
+
if unet.lowres_cond:
|
| 700 |
+
lowres_noise_times = self.lowres_noise_schedule.get_times(batch_size, lowres_sample_noise_level, device = device)
|
| 701 |
+
|
| 702 |
+
lowres_cond_img = self.resize_to(img, image_size, **resize_kwargs)
|
| 703 |
+
lowres_cond_img = self.normalize_img(lowres_cond_img)
|
| 704 |
+
|
| 705 |
+
lowres_cond_img, *_ = self.lowres_noise_schedule.q_sample(x_start = lowres_cond_img, t = lowres_noise_times, noise = torch.randn_like(lowres_cond_img))
|
| 706 |
+
|
| 707 |
+
if exists(unet_init_images):
|
| 708 |
+
unet_init_images = self.resize_to(unet_init_images, image_size, **resize_kwargs)
|
| 709 |
+
|
| 710 |
+
shape = (batch_size, self.channels, *frame_dims, image_size, image_size)
|
| 711 |
+
|
| 712 |
+
img = self.one_unet_sample(
|
| 713 |
+
unet,
|
| 714 |
+
shape,
|
| 715 |
+
unet_number = unet_number,
|
| 716 |
+
text_embeds = text_embeds,
|
| 717 |
+
text_mask = text_masks,
|
| 718 |
+
cond_images = cond_images,
|
| 719 |
+
inpaint_images = inpaint_images,
|
| 720 |
+
inpaint_masks = inpaint_masks,
|
| 721 |
+
inpaint_resample_times = inpaint_resample_times,
|
| 722 |
+
init_images = unet_init_images,
|
| 723 |
+
skip_steps = unet_skip_steps,
|
| 724 |
+
sigma_min = unet_sigma_min,
|
| 725 |
+
sigma_max = unet_sigma_max,
|
| 726 |
+
cond_scale = unet_cond_scale,
|
| 727 |
+
lowres_cond_img = lowres_cond_img,
|
| 728 |
+
lowres_noise_times = lowres_noise_times,
|
| 729 |
+
dynamic_threshold = dynamic_threshold,
|
| 730 |
+
use_tqdm = use_tqdm,
|
| 731 |
+
**video_kwargs
|
| 732 |
+
)
|
| 733 |
+
|
| 734 |
+
outputs.append(img)
|
| 735 |
+
|
| 736 |
+
if exists(stop_at_unet_number) and stop_at_unet_number == unet_number:
|
| 737 |
+
break
|
| 738 |
+
|
| 739 |
+
output_index = -1 if not return_all_unet_outputs else slice(None) # either return last unet output or all unet outputs
|
| 740 |
+
|
| 741 |
+
if not return_pil_images:
|
| 742 |
+
return outputs[output_index]
|
| 743 |
+
|
| 744 |
+
if not return_all_unet_outputs:
|
| 745 |
+
outputs = outputs[-1:]
|
| 746 |
+
|
| 747 |
+
assert not self.is_video, 'automatically converting video tensor to video file for saving is not built yet'
|
| 748 |
+
|
| 749 |
+
pil_images = list(map(lambda img: list(map(T.ToPILImage(), img.unbind(dim = 0))), outputs))
|
| 750 |
+
|
| 751 |
+
return pil_images[output_index] # now you have a bunch of pillow images you can just .save(/where/ever/you/want.png)
|
| 752 |
+
|
| 753 |
+
# training
|
| 754 |
+
|
| 755 |
+
def loss_weight(self, sigma_data, sigma):
|
| 756 |
+
return (sigma ** 2 + sigma_data ** 2) * (sigma * sigma_data) ** -2
|
| 757 |
+
|
| 758 |
+
def noise_distribution(self, P_mean, P_std, batch_size):
|
| 759 |
+
return (P_mean + P_std * torch.randn((batch_size,), device = self.device)).exp()
|
| 760 |
+
|
| 761 |
+
def forward(
|
| 762 |
+
self,
|
| 763 |
+
images, # rename to images or video
|
| 764 |
+
unet: Union[Unet, Unet3D, NullUnet, DistributedDataParallel] = None,
|
| 765 |
+
texts: List[str] = None,
|
| 766 |
+
text_embeds = None,
|
| 767 |
+
text_masks = None,
|
| 768 |
+
unet_number = None,
|
| 769 |
+
cond_images = None,
|
| 770 |
+
**kwargs
|
| 771 |
+
):
|
| 772 |
+
if self.is_video and images.ndim == 4:
|
| 773 |
+
images = rearrange(images, 'b c h w -> b c 1 h w')
|
| 774 |
+
kwargs.update(ignore_time = True)
|
| 775 |
+
|
| 776 |
+
assert images.shape[-1] == images.shape[-2], f'the images you pass in must be a square, but received dimensions of {images.shape[2]}, {images.shape[-1]}'
|
| 777 |
+
assert not (len(self.unets) > 1 and not exists(unet_number)), f'you must specify which unet you want trained, from a range of 1 to {len(self.unets)}, if you are training cascading DDPM (multiple unets)'
|
| 778 |
+
unet_number = default(unet_number, 1)
|
| 779 |
+
assert not exists(self.only_train_unet_number) or self.only_train_unet_number == unet_number, 'you can only train on unet #{self.only_train_unet_number}'
|
| 780 |
+
|
| 781 |
+
images = cast_uint8_images_to_float(images)
|
| 782 |
+
cond_images = maybe(cast_uint8_images_to_float)(cond_images)
|
| 783 |
+
|
| 784 |
+
assert images.dtype == torch.float, f'images tensor needs to be floats but {images.dtype} dtype found instead'
|
| 785 |
+
|
| 786 |
+
unet_index = unet_number - 1
|
| 787 |
+
|
| 788 |
+
unet = default(unet, lambda: self.get_unet(unet_number))
|
| 789 |
+
|
| 790 |
+
assert not isinstance(unet, NullUnet), 'null unet cannot and should not be trained'
|
| 791 |
+
|
| 792 |
+
target_image_size = self.image_sizes[unet_index]
|
| 793 |
+
random_crop_size = self.random_crop_sizes[unet_index]
|
| 794 |
+
prev_image_size = self.image_sizes[unet_index - 1] if unet_index > 0 else None
|
| 795 |
+
hp = self.hparams[unet_index]
|
| 796 |
+
|
| 797 |
+
batch_size, c, *_, h, w, device, is_video = *images.shape, images.device, (images.ndim == 5)
|
| 798 |
+
|
| 799 |
+
frames = images.shape[2] if is_video else None
|
| 800 |
+
all_frame_dims = tuple(safe_get_tuple_index(el, 0) for el in calc_all_frame_dims(self.temporal_downsample_factor, frames))
|
| 801 |
+
ignore_time = kwargs.get('ignore_time', False)
|
| 802 |
+
|
| 803 |
+
target_frame_size = all_frame_dims[unet_index] if is_video and not ignore_time else None
|
| 804 |
+
prev_frame_size = all_frame_dims[unet_index - 1] if is_video and not ignore_time and unet_index > 0 else None
|
| 805 |
+
frames_to_resize_kwargs = lambda frames: dict(target_frames = frames) if exists(frames) else dict()
|
| 806 |
+
|
| 807 |
+
assert images.shape[1] == self.channels
|
| 808 |
+
assert h >= target_image_size and w >= target_image_size
|
| 809 |
+
|
| 810 |
+
if exists(texts) and not exists(text_embeds) and not self.unconditional:
|
| 811 |
+
assert all([*map(len, texts)]), 'text cannot be empty'
|
| 812 |
+
assert len(texts) == len(images), 'number of text captions does not match up with the number of images given'
|
| 813 |
+
|
| 814 |
+
with autocast(enabled = False):
|
| 815 |
+
text_embeds, text_masks = self.encode_text(texts, return_attn_mask = True)
|
| 816 |
+
|
| 817 |
+
text_embeds, text_masks = map(lambda t: t.to(images.device), (text_embeds, text_masks))
|
| 818 |
+
|
| 819 |
+
if not self.unconditional:
|
| 820 |
+
text_masks = default(text_masks, lambda: torch.any(text_embeds != 0., dim = -1))
|
| 821 |
+
|
| 822 |
+
assert not (self.condition_on_text and not exists(text_embeds)), 'text or text encodings must be passed into decoder if specified'
|
| 823 |
+
assert not (not self.condition_on_text and exists(text_embeds)), 'decoder specified not to be conditioned on text, yet it is presented'
|
| 824 |
+
|
| 825 |
+
assert not (exists(text_embeds) and text_embeds.shape[-1] != self.text_embed_dim), f'invalid text embedding dimension being passed in (should be {self.text_embed_dim})'
|
| 826 |
+
|
| 827 |
+
# handle video conditioning frames
|
| 828 |
+
|
| 829 |
+
if self.is_video and self.resize_cond_video_frames:
|
| 830 |
+
downsample_scale = self.temporal_downsample_factor[unet_index]
|
| 831 |
+
temporal_downsample_fn = partial(scale_video_time, downsample_scale = downsample_scale)
|
| 832 |
+
kwargs = maybe_transform_dict_key(kwargs, 'cond_video_frames', temporal_downsample_fn)
|
| 833 |
+
kwargs = maybe_transform_dict_key(kwargs, 'post_cond_video_frames', temporal_downsample_fn)
|
| 834 |
+
|
| 835 |
+
# low resolution conditioning
|
| 836 |
+
|
| 837 |
+
lowres_cond_img = lowres_aug_times = None
|
| 838 |
+
if exists(prev_image_size):
|
| 839 |
+
lowres_cond_img = self.resize_to(images, prev_image_size, **frames_to_resize_kwargs(prev_frame_size), clamp_range = self.input_image_range)
|
| 840 |
+
lowres_cond_img = self.resize_to(lowres_cond_img, target_image_size, **frames_to_resize_kwargs(target_frame_size), clamp_range = self.input_image_range)
|
| 841 |
+
|
| 842 |
+
if self.per_sample_random_aug_noise_level:
|
| 843 |
+
lowres_aug_times = self.lowres_noise_schedule.sample_random_times(batch_size, device = device)
|
| 844 |
+
else:
|
| 845 |
+
lowres_aug_time = self.lowres_noise_schedule.sample_random_times(1, device = device)
|
| 846 |
+
lowres_aug_times = repeat(lowres_aug_time, '1 -> b', b = batch_size)
|
| 847 |
+
|
| 848 |
+
images = self.resize_to(images, target_image_size, **frames_to_resize_kwargs(target_frame_size))
|
| 849 |
+
|
| 850 |
+
# normalize to [-1, 1]
|
| 851 |
+
|
| 852 |
+
images = self.normalize_img(images)
|
| 853 |
+
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
|
| 854 |
+
|
| 855 |
+
# random cropping during training
|
| 856 |
+
# for upsamplers
|
| 857 |
+
|
| 858 |
+
if exists(random_crop_size):
|
| 859 |
+
aug = K.RandomCrop((random_crop_size, random_crop_size), p = 1.)
|
| 860 |
+
|
| 861 |
+
if is_video:
|
| 862 |
+
images, lowres_cond_img = map(lambda t: rearrange(t, 'b c f h w -> (b f) c h w'), (images, lowres_cond_img))
|
| 863 |
+
|
| 864 |
+
# make sure low res conditioner and image both get augmented the same way
|
| 865 |
+
# detailed https://kornia.readthedocs.io/en/latest/augmentation.module.html?highlight=randomcrop#kornia.augmentation.RandomCrop
|
| 866 |
+
images = aug(images)
|
| 867 |
+
lowres_cond_img = aug(lowres_cond_img, params = aug._params)
|
| 868 |
+
|
| 869 |
+
if is_video:
|
| 870 |
+
images, lowres_cond_img = map(lambda t: rearrange(t, '(b f) c h w -> b c f h w', f = frames), (images, lowres_cond_img))
|
| 871 |
+
|
| 872 |
+
# noise the lowres conditioning image
|
| 873 |
+
# at sample time, they then fix the noise level of 0.1 - 0.3
|
| 874 |
+
|
| 875 |
+
lowres_cond_img_noisy = None
|
| 876 |
+
if exists(lowres_cond_img):
|
| 877 |
+
lowres_cond_img_noisy, *_ = self.lowres_noise_schedule.q_sample(x_start = lowres_cond_img, t = lowres_aug_times, noise = torch.randn_like(lowres_cond_img))
|
| 878 |
+
|
| 879 |
+
# get the sigmas
|
| 880 |
+
|
| 881 |
+
sigmas = self.noise_distribution(hp.P_mean, hp.P_std, batch_size)
|
| 882 |
+
padded_sigmas = self.right_pad_dims_to_datatype(sigmas)
|
| 883 |
+
|
| 884 |
+
# noise
|
| 885 |
+
|
| 886 |
+
noise = torch.randn_like(images)
|
| 887 |
+
noised_images = images + padded_sigmas * noise # alphas are 1. in the paper
|
| 888 |
+
|
| 889 |
+
# unet kwargs
|
| 890 |
+
|
| 891 |
+
unet_kwargs = dict(
|
| 892 |
+
sigma_data = hp.sigma_data,
|
| 893 |
+
text_embeds = text_embeds,
|
| 894 |
+
text_mask = text_masks,
|
| 895 |
+
cond_images = cond_images,
|
| 896 |
+
lowres_noise_times = self.lowres_noise_schedule.get_condition(lowres_aug_times),
|
| 897 |
+
lowres_cond_img = lowres_cond_img_noisy,
|
| 898 |
+
cond_drop_prob = self.cond_drop_prob,
|
| 899 |
+
**kwargs
|
| 900 |
+
)
|
| 901 |
+
|
| 902 |
+
# self conditioning - https://arxiv.org/abs/2208.04202 - training will be 25% slower
|
| 903 |
+
|
| 904 |
+
# Because 'unet' can be an instance of DistributedDataParallel coming from the
|
| 905 |
+
# ImagenTrainer.unet_being_trained when invoking ImagenTrainer.forward(), we need to
|
| 906 |
+
# access the member 'module' of the wrapped unet instance.
|
| 907 |
+
self_cond = unet.module.self_cond if isinstance(unet, DistributedDataParallel) else unet.self_cond
|
| 908 |
+
|
| 909 |
+
if self_cond and random() < 0.5:
|
| 910 |
+
with torch.no_grad():
|
| 911 |
+
pred_x0 = self.preconditioned_network_forward(
|
| 912 |
+
unet.forward,
|
| 913 |
+
noised_images,
|
| 914 |
+
sigmas,
|
| 915 |
+
**unet_kwargs
|
| 916 |
+
).detach()
|
| 917 |
+
|
| 918 |
+
unet_kwargs = {**unet_kwargs, 'self_cond': pred_x0}
|
| 919 |
+
|
| 920 |
+
# get prediction
|
| 921 |
+
|
| 922 |
+
denoised_images = self.preconditioned_network_forward(
|
| 923 |
+
unet.forward,
|
| 924 |
+
noised_images,
|
| 925 |
+
sigmas,
|
| 926 |
+
**unet_kwargs
|
| 927 |
+
)
|
| 928 |
+
|
| 929 |
+
# losses
|
| 930 |
+
|
| 931 |
+
losses = F.mse_loss(denoised_images, images, reduction = 'none')
|
| 932 |
+
losses = reduce(losses, 'b ... -> b', 'mean')
|
| 933 |
+
|
| 934 |
+
# loss weighting
|
| 935 |
+
|
| 936 |
+
losses = losses * self.loss_weight(hp.sigma_data, sigmas)
|
| 937 |
+
|
| 938 |
+
# return average loss
|
| 939 |
+
|
| 940 |
+
return losses.mean()
|
imagen_pytorch.py
ADDED
|
@@ -0,0 +1,2731 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import copy
|
| 3 |
+
from random import random
|
| 4 |
+
from beartype.typing import List, Union
|
| 5 |
+
from beartype import beartype
|
| 6 |
+
from tqdm.auto import tqdm
|
| 7 |
+
from functools import partial, wraps
|
| 8 |
+
from contextlib import contextmanager, nullcontext
|
| 9 |
+
from collections import namedtuple
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
from torch.nn.parallel import DistributedDataParallel
|
| 15 |
+
from torch import nn, einsum
|
| 16 |
+
from torch.cuda.amp import autocast
|
| 17 |
+
from torch.special import expm1
|
| 18 |
+
import torchvision.transforms as T
|
| 19 |
+
|
| 20 |
+
import kornia.augmentation as K
|
| 21 |
+
|
| 22 |
+
from einops import rearrange, repeat, reduce, pack, unpack
|
| 23 |
+
from einops.layers.torch import Rearrange, Reduce
|
| 24 |
+
|
| 25 |
+
from imagen_pytorch.t5 import t5_encode_text, get_encoded_dim, DEFAULT_T5_NAME
|
| 26 |
+
|
| 27 |
+
from imagen_pytorch.imagen_video import Unet3D, resize_video_to, scale_video_time
|
| 28 |
+
|
| 29 |
+
# helper functions
|
| 30 |
+
|
| 31 |
+
def exists(val):
|
| 32 |
+
return val is not None
|
| 33 |
+
|
| 34 |
+
def identity(t, *args, **kwargs):
|
| 35 |
+
return t
|
| 36 |
+
|
| 37 |
+
def divisible_by(numer, denom):
|
| 38 |
+
return (numer % denom) == 0
|
| 39 |
+
|
| 40 |
+
def first(arr, d = None):
|
| 41 |
+
if len(arr) == 0:
|
| 42 |
+
return d
|
| 43 |
+
return arr[0]
|
| 44 |
+
|
| 45 |
+
def maybe(fn):
|
| 46 |
+
@wraps(fn)
|
| 47 |
+
def inner(x):
|
| 48 |
+
if not exists(x):
|
| 49 |
+
return x
|
| 50 |
+
return fn(x)
|
| 51 |
+
return inner
|
| 52 |
+
|
| 53 |
+
def once(fn):
|
| 54 |
+
called = False
|
| 55 |
+
@wraps(fn)
|
| 56 |
+
def inner(x):
|
| 57 |
+
nonlocal called
|
| 58 |
+
if called:
|
| 59 |
+
return
|
| 60 |
+
called = True
|
| 61 |
+
return fn(x)
|
| 62 |
+
return inner
|
| 63 |
+
|
| 64 |
+
print_once = once(print)
|
| 65 |
+
|
| 66 |
+
def default(val, d):
|
| 67 |
+
if exists(val):
|
| 68 |
+
return val
|
| 69 |
+
return d() if callable(d) else d
|
| 70 |
+
|
| 71 |
+
def cast_tuple(val, length = None):
|
| 72 |
+
if isinstance(val, list):
|
| 73 |
+
val = tuple(val)
|
| 74 |
+
|
| 75 |
+
output = val if isinstance(val, tuple) else ((val,) * default(length, 1))
|
| 76 |
+
|
| 77 |
+
if exists(length):
|
| 78 |
+
assert len(output) == length
|
| 79 |
+
|
| 80 |
+
return output
|
| 81 |
+
|
| 82 |
+
def compact(input_dict):
|
| 83 |
+
return {key: value for key, value in input_dict.items() if exists(value)}
|
| 84 |
+
|
| 85 |
+
def maybe_transform_dict_key(input_dict, key, fn):
|
| 86 |
+
if key not in input_dict:
|
| 87 |
+
return input_dict
|
| 88 |
+
|
| 89 |
+
copied_dict = input_dict.copy()
|
| 90 |
+
copied_dict[key] = fn(copied_dict[key])
|
| 91 |
+
return copied_dict
|
| 92 |
+
|
| 93 |
+
def cast_uint8_images_to_float(images):
|
| 94 |
+
if not images.dtype == torch.uint8:
|
| 95 |
+
return images
|
| 96 |
+
return images / 255
|
| 97 |
+
|
| 98 |
+
def module_device(module):
|
| 99 |
+
return next(module.parameters()).device
|
| 100 |
+
|
| 101 |
+
def zero_init_(m):
|
| 102 |
+
nn.init.zeros_(m.weight)
|
| 103 |
+
if exists(m.bias):
|
| 104 |
+
nn.init.zeros_(m.bias)
|
| 105 |
+
|
| 106 |
+
def eval_decorator(fn):
|
| 107 |
+
def inner(model, *args, **kwargs):
|
| 108 |
+
was_training = model.training
|
| 109 |
+
model.eval()
|
| 110 |
+
out = fn(model, *args, **kwargs)
|
| 111 |
+
model.train(was_training)
|
| 112 |
+
return out
|
| 113 |
+
return inner
|
| 114 |
+
|
| 115 |
+
def pad_tuple_to_length(t, length, fillvalue = None):
|
| 116 |
+
remain_length = length - len(t)
|
| 117 |
+
if remain_length <= 0:
|
| 118 |
+
return t
|
| 119 |
+
return (*t, *((fillvalue,) * remain_length))
|
| 120 |
+
|
| 121 |
+
# helper classes
|
| 122 |
+
|
| 123 |
+
class Identity(nn.Module):
|
| 124 |
+
def __init__(self, *args, **kwargs):
|
| 125 |
+
super().__init__()
|
| 126 |
+
|
| 127 |
+
def forward(self, x, *args, **kwargs):
|
| 128 |
+
return x
|
| 129 |
+
|
| 130 |
+
# tensor helpers
|
| 131 |
+
|
| 132 |
+
def log(t, eps: float = 1e-12):
|
| 133 |
+
return torch.log(t.clamp(min = eps))
|
| 134 |
+
|
| 135 |
+
def l2norm(t):
|
| 136 |
+
return F.normalize(t, dim = -1)
|
| 137 |
+
|
| 138 |
+
def right_pad_dims_to(x, t):
|
| 139 |
+
padding_dims = x.ndim - t.ndim
|
| 140 |
+
if padding_dims <= 0:
|
| 141 |
+
return t
|
| 142 |
+
return t.view(*t.shape, *((1,) * padding_dims))
|
| 143 |
+
|
| 144 |
+
def masked_mean(t, *, dim, mask = None):
|
| 145 |
+
if not exists(mask):
|
| 146 |
+
return t.mean(dim = dim)
|
| 147 |
+
|
| 148 |
+
denom = mask.sum(dim = dim, keepdim = True)
|
| 149 |
+
mask = rearrange(mask, 'b n -> b n 1')
|
| 150 |
+
masked_t = t.masked_fill(~mask, 0.)
|
| 151 |
+
|
| 152 |
+
return masked_t.sum(dim = dim) / denom.clamp(min = 1e-5)
|
| 153 |
+
|
| 154 |
+
def resize_image_to(
|
| 155 |
+
image,
|
| 156 |
+
target_image_size,
|
| 157 |
+
clamp_range = None,
|
| 158 |
+
mode = 'nearest'
|
| 159 |
+
):
|
| 160 |
+
orig_image_size = image.shape[-1]
|
| 161 |
+
|
| 162 |
+
if orig_image_size == target_image_size:
|
| 163 |
+
return image
|
| 164 |
+
|
| 165 |
+
out = F.interpolate(image, target_image_size, mode = mode)
|
| 166 |
+
|
| 167 |
+
if exists(clamp_range):
|
| 168 |
+
out = out.clamp(*clamp_range)
|
| 169 |
+
|
| 170 |
+
return out
|
| 171 |
+
|
| 172 |
+
def calc_all_frame_dims(
|
| 173 |
+
downsample_factors: List[int],
|
| 174 |
+
frames
|
| 175 |
+
):
|
| 176 |
+
if not exists(frames):
|
| 177 |
+
return (tuple(),) * len(downsample_factors)
|
| 178 |
+
|
| 179 |
+
all_frame_dims = []
|
| 180 |
+
|
| 181 |
+
for divisor in downsample_factors:
|
| 182 |
+
assert divisible_by(frames, divisor)
|
| 183 |
+
all_frame_dims.append((frames // divisor,))
|
| 184 |
+
|
| 185 |
+
return all_frame_dims
|
| 186 |
+
|
| 187 |
+
def safe_get_tuple_index(tup, index, default = None):
|
| 188 |
+
if len(tup) <= index:
|
| 189 |
+
return default
|
| 190 |
+
return tup[index]
|
| 191 |
+
|
| 192 |
+
# image normalization functions
|
| 193 |
+
# ddpms expect images to be in the range of -1 to 1
|
| 194 |
+
|
| 195 |
+
def normalize_neg_one_to_one(img):
|
| 196 |
+
return img * 2 - 1
|
| 197 |
+
|
| 198 |
+
def unnormalize_zero_to_one(normed_img):
|
| 199 |
+
return (normed_img + 1) * 0.5
|
| 200 |
+
|
| 201 |
+
# classifier free guidance functions
|
| 202 |
+
|
| 203 |
+
def prob_mask_like(shape, prob, device):
|
| 204 |
+
if prob == 1:
|
| 205 |
+
return torch.ones(shape, device = device, dtype = torch.bool)
|
| 206 |
+
elif prob == 0:
|
| 207 |
+
return torch.zeros(shape, device = device, dtype = torch.bool)
|
| 208 |
+
else:
|
| 209 |
+
return torch.zeros(shape, device = device).float().uniform_(0, 1) < prob
|
| 210 |
+
|
| 211 |
+
# gaussian diffusion with continuous time helper functions and classes
|
| 212 |
+
# large part of this was thanks to @crowsonkb at https://github.com/crowsonkb/v-diffusion-jax/blob/master/diffusion/utils.py
|
| 213 |
+
|
| 214 |
+
@torch.jit.script
|
| 215 |
+
def beta_linear_log_snr(t):
|
| 216 |
+
return -torch.log(expm1(1e-4 + 10 * (t ** 2)))
|
| 217 |
+
|
| 218 |
+
@torch.jit.script
|
| 219 |
+
def alpha_cosine_log_snr(t, s: float = 0.008):
|
| 220 |
+
return -log((torch.cos((t + s) / (1 + s) * math.pi * 0.5) ** -2) - 1, eps = 1e-5) # not sure if this accounts for beta being clipped to 0.999 in discrete version
|
| 221 |
+
|
| 222 |
+
def log_snr_to_alpha_sigma(log_snr):
|
| 223 |
+
return torch.sqrt(torch.sigmoid(log_snr)), torch.sqrt(torch.sigmoid(-log_snr))
|
| 224 |
+
|
| 225 |
+
class GaussianDiffusionContinuousTimes(nn.Module):
|
| 226 |
+
def __init__(self, *, noise_schedule, timesteps = 1000):
|
| 227 |
+
super().__init__()
|
| 228 |
+
|
| 229 |
+
if noise_schedule == "linear":
|
| 230 |
+
self.log_snr = beta_linear_log_snr
|
| 231 |
+
elif noise_schedule == "cosine":
|
| 232 |
+
self.log_snr = alpha_cosine_log_snr
|
| 233 |
+
else:
|
| 234 |
+
raise ValueError(f'invalid noise schedule {noise_schedule}')
|
| 235 |
+
|
| 236 |
+
self.num_timesteps = timesteps
|
| 237 |
+
|
| 238 |
+
def get_times(self, batch_size, noise_level, *, device):
|
| 239 |
+
return torch.full((batch_size,), noise_level, device = device, dtype = torch.float32)
|
| 240 |
+
|
| 241 |
+
def sample_random_times(self, batch_size, *, device):
|
| 242 |
+
return torch.zeros((batch_size,), device = device).float().uniform_(0, 1)
|
| 243 |
+
|
| 244 |
+
def get_condition(self, times):
|
| 245 |
+
return maybe(self.log_snr)(times)
|
| 246 |
+
|
| 247 |
+
def get_sampling_timesteps(self, batch, *, device):
|
| 248 |
+
times = torch.linspace(1., 0., self.num_timesteps + 1, device = device)
|
| 249 |
+
times = repeat(times, 't -> b t', b = batch)
|
| 250 |
+
times = torch.stack((times[:, :-1], times[:, 1:]), dim = 0)
|
| 251 |
+
times = times.unbind(dim = -1)
|
| 252 |
+
return times
|
| 253 |
+
|
| 254 |
+
def q_posterior(self, x_start, x_t, t, *, t_next = None):
|
| 255 |
+
t_next = default(t_next, lambda: (t - 1. / self.num_timesteps).clamp(min = 0.))
|
| 256 |
+
|
| 257 |
+
""" https://openreview.net/attachment?id=2LdBqxc1Yv&name=supplementary_material """
|
| 258 |
+
log_snr = self.log_snr(t)
|
| 259 |
+
log_snr_next = self.log_snr(t_next)
|
| 260 |
+
log_snr, log_snr_next = map(partial(right_pad_dims_to, x_t), (log_snr, log_snr_next))
|
| 261 |
+
|
| 262 |
+
alpha, sigma = log_snr_to_alpha_sigma(log_snr)
|
| 263 |
+
alpha_next, sigma_next = log_snr_to_alpha_sigma(log_snr_next)
|
| 264 |
+
|
| 265 |
+
# c - as defined near eq 33
|
| 266 |
+
c = -expm1(log_snr - log_snr_next)
|
| 267 |
+
posterior_mean = alpha_next * (x_t * (1 - c) / alpha + c * x_start)
|
| 268 |
+
|
| 269 |
+
# following (eq. 33)
|
| 270 |
+
posterior_variance = (sigma_next ** 2) * c
|
| 271 |
+
posterior_log_variance_clipped = log(posterior_variance, eps = 1e-20)
|
| 272 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
| 273 |
+
|
| 274 |
+
def q_sample(self, x_start, t, noise = None):
|
| 275 |
+
dtype = x_start.dtype
|
| 276 |
+
|
| 277 |
+
if isinstance(t, float):
|
| 278 |
+
batch = x_start.shape[0]
|
| 279 |
+
t = torch.full((batch,), t, device = x_start.device, dtype = dtype)
|
| 280 |
+
|
| 281 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 282 |
+
log_snr = self.log_snr(t).type(dtype)
|
| 283 |
+
log_snr_padded_dim = right_pad_dims_to(x_start, log_snr)
|
| 284 |
+
alpha, sigma = log_snr_to_alpha_sigma(log_snr_padded_dim)
|
| 285 |
+
|
| 286 |
+
return alpha * x_start + sigma * noise, log_snr, alpha, sigma
|
| 287 |
+
|
| 288 |
+
def q_sample_from_to(self, x_from, from_t, to_t, noise = None):
|
| 289 |
+
shape, device, dtype = x_from.shape, x_from.device, x_from.dtype
|
| 290 |
+
batch = shape[0]
|
| 291 |
+
|
| 292 |
+
if isinstance(from_t, float):
|
| 293 |
+
from_t = torch.full((batch,), from_t, device = device, dtype = dtype)
|
| 294 |
+
|
| 295 |
+
if isinstance(to_t, float):
|
| 296 |
+
to_t = torch.full((batch,), to_t, device = device, dtype = dtype)
|
| 297 |
+
|
| 298 |
+
noise = default(noise, lambda: torch.randn_like(x_from))
|
| 299 |
+
|
| 300 |
+
log_snr = self.log_snr(from_t)
|
| 301 |
+
log_snr_padded_dim = right_pad_dims_to(x_from, log_snr)
|
| 302 |
+
alpha, sigma = log_snr_to_alpha_sigma(log_snr_padded_dim)
|
| 303 |
+
|
| 304 |
+
log_snr_to = self.log_snr(to_t)
|
| 305 |
+
log_snr_padded_dim_to = right_pad_dims_to(x_from, log_snr_to)
|
| 306 |
+
alpha_to, sigma_to = log_snr_to_alpha_sigma(log_snr_padded_dim_to)
|
| 307 |
+
|
| 308 |
+
return x_from * (alpha_to / alpha) + noise * (sigma_to * alpha - sigma * alpha_to) / alpha
|
| 309 |
+
|
| 310 |
+
def predict_start_from_v(self, x_t, t, v):
|
| 311 |
+
log_snr = self.log_snr(t)
|
| 312 |
+
log_snr = right_pad_dims_to(x_t, log_snr)
|
| 313 |
+
alpha, sigma = log_snr_to_alpha_sigma(log_snr)
|
| 314 |
+
return alpha * x_t - sigma * v
|
| 315 |
+
|
| 316 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
| 317 |
+
log_snr = self.log_snr(t)
|
| 318 |
+
log_snr = right_pad_dims_to(x_t, log_snr)
|
| 319 |
+
alpha, sigma = log_snr_to_alpha_sigma(log_snr)
|
| 320 |
+
return (x_t - sigma * noise) / alpha.clamp(min = 1e-8)
|
| 321 |
+
|
| 322 |
+
# norms and residuals
|
| 323 |
+
|
| 324 |
+
class LayerNorm(nn.Module):
|
| 325 |
+
def __init__(self, feats, stable = False, dim = -1):
|
| 326 |
+
super().__init__()
|
| 327 |
+
self.stable = stable
|
| 328 |
+
self.dim = dim
|
| 329 |
+
|
| 330 |
+
self.g = nn.Parameter(torch.ones(feats, *((1,) * (-dim - 1))))
|
| 331 |
+
|
| 332 |
+
def forward(self, x):
|
| 333 |
+
dtype, dim = x.dtype, self.dim
|
| 334 |
+
|
| 335 |
+
if self.stable:
|
| 336 |
+
x = x / x.amax(dim = dim, keepdim = True).detach()
|
| 337 |
+
|
| 338 |
+
eps = 1e-5 if x.dtype == torch.float32 else 1e-3
|
| 339 |
+
var = torch.var(x, dim = dim, unbiased = False, keepdim = True)
|
| 340 |
+
mean = torch.mean(x, dim = dim, keepdim = True)
|
| 341 |
+
|
| 342 |
+
return (x - mean) * (var + eps).rsqrt().type(dtype) * self.g.type(dtype)
|
| 343 |
+
|
| 344 |
+
ChanLayerNorm = partial(LayerNorm, dim = -3)
|
| 345 |
+
|
| 346 |
+
class Always():
|
| 347 |
+
def __init__(self, val):
|
| 348 |
+
self.val = val
|
| 349 |
+
|
| 350 |
+
def __call__(self, *args, **kwargs):
|
| 351 |
+
return self.val
|
| 352 |
+
|
| 353 |
+
class Residual(nn.Module):
|
| 354 |
+
def __init__(self, fn):
|
| 355 |
+
super().__init__()
|
| 356 |
+
self.fn = fn
|
| 357 |
+
|
| 358 |
+
def forward(self, x, **kwargs):
|
| 359 |
+
return self.fn(x, **kwargs) + x
|
| 360 |
+
|
| 361 |
+
class Parallel(nn.Module):
|
| 362 |
+
def __init__(self, *fns):
|
| 363 |
+
super().__init__()
|
| 364 |
+
self.fns = nn.ModuleList(fns)
|
| 365 |
+
|
| 366 |
+
def forward(self, x):
|
| 367 |
+
outputs = [fn(x) for fn in self.fns]
|
| 368 |
+
return sum(outputs)
|
| 369 |
+
|
| 370 |
+
# attention pooling
|
| 371 |
+
|
| 372 |
+
class PerceiverAttention(nn.Module):
|
| 373 |
+
def __init__(
|
| 374 |
+
self,
|
| 375 |
+
*,
|
| 376 |
+
dim,
|
| 377 |
+
dim_head = 64,
|
| 378 |
+
heads = 8,
|
| 379 |
+
scale = 8
|
| 380 |
+
):
|
| 381 |
+
super().__init__()
|
| 382 |
+
self.scale = scale
|
| 383 |
+
|
| 384 |
+
self.heads = heads
|
| 385 |
+
inner_dim = dim_head * heads
|
| 386 |
+
|
| 387 |
+
self.norm = nn.LayerNorm(dim)
|
| 388 |
+
self.norm_latents = nn.LayerNorm(dim)
|
| 389 |
+
|
| 390 |
+
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
| 391 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
|
| 392 |
+
|
| 393 |
+
self.q_scale = nn.Parameter(torch.ones(dim_head))
|
| 394 |
+
self.k_scale = nn.Parameter(torch.ones(dim_head))
|
| 395 |
+
|
| 396 |
+
self.to_out = nn.Sequential(
|
| 397 |
+
nn.Linear(inner_dim, dim, bias = False),
|
| 398 |
+
nn.LayerNorm(dim)
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
def forward(self, x, latents, mask = None):
|
| 402 |
+
x = self.norm(x)
|
| 403 |
+
latents = self.norm_latents(latents)
|
| 404 |
+
|
| 405 |
+
b, h = x.shape[0], self.heads
|
| 406 |
+
|
| 407 |
+
q = self.to_q(latents)
|
| 408 |
+
|
| 409 |
+
# the paper differs from Perceiver in which they also concat the key / values derived from the latents to be attended to
|
| 410 |
+
kv_input = torch.cat((x, latents), dim = -2)
|
| 411 |
+
k, v = self.to_kv(kv_input).chunk(2, dim = -1)
|
| 412 |
+
|
| 413 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
|
| 414 |
+
|
| 415 |
+
# qk rmsnorm
|
| 416 |
+
|
| 417 |
+
q, k = map(l2norm, (q, k))
|
| 418 |
+
q = q * self.q_scale
|
| 419 |
+
k = k * self.k_scale
|
| 420 |
+
|
| 421 |
+
# similarities and masking
|
| 422 |
+
|
| 423 |
+
sim = einsum('... i d, ... j d -> ... i j', q, k) * self.scale
|
| 424 |
+
|
| 425 |
+
if exists(mask):
|
| 426 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 427 |
+
mask = F.pad(mask, (0, latents.shape[-2]), value = True)
|
| 428 |
+
mask = rearrange(mask, 'b j -> b 1 1 j')
|
| 429 |
+
sim = sim.masked_fill(~mask, max_neg_value)
|
| 430 |
+
|
| 431 |
+
# attention
|
| 432 |
+
|
| 433 |
+
attn = sim.softmax(dim = -1, dtype = torch.float32)
|
| 434 |
+
attn = attn.to(sim.dtype)
|
| 435 |
+
|
| 436 |
+
out = einsum('... i j, ... j d -> ... i d', attn, v)
|
| 437 |
+
out = rearrange(out, 'b h n d -> b n (h d)', h = h)
|
| 438 |
+
return self.to_out(out)
|
| 439 |
+
|
| 440 |
+
class PerceiverResampler(nn.Module):
|
| 441 |
+
def __init__(
|
| 442 |
+
self,
|
| 443 |
+
*,
|
| 444 |
+
dim,
|
| 445 |
+
depth,
|
| 446 |
+
dim_head = 64,
|
| 447 |
+
heads = 8,
|
| 448 |
+
num_latents = 64,
|
| 449 |
+
num_latents_mean_pooled = 4, # number of latents derived from mean pooled representation of the sequence
|
| 450 |
+
max_seq_len = 512,
|
| 451 |
+
ff_mult = 4
|
| 452 |
+
):
|
| 453 |
+
super().__init__()
|
| 454 |
+
self.pos_emb = nn.Embedding(max_seq_len, dim)
|
| 455 |
+
|
| 456 |
+
self.latents = nn.Parameter(torch.randn(num_latents, dim))
|
| 457 |
+
|
| 458 |
+
self.to_latents_from_mean_pooled_seq = None
|
| 459 |
+
|
| 460 |
+
if num_latents_mean_pooled > 0:
|
| 461 |
+
self.to_latents_from_mean_pooled_seq = nn.Sequential(
|
| 462 |
+
LayerNorm(dim),
|
| 463 |
+
nn.Linear(dim, dim * num_latents_mean_pooled),
|
| 464 |
+
Rearrange('b (n d) -> b n d', n = num_latents_mean_pooled)
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
self.layers = nn.ModuleList([])
|
| 468 |
+
for _ in range(depth):
|
| 469 |
+
self.layers.append(nn.ModuleList([
|
| 470 |
+
PerceiverAttention(dim = dim, dim_head = dim_head, heads = heads),
|
| 471 |
+
FeedForward(dim = dim, mult = ff_mult)
|
| 472 |
+
]))
|
| 473 |
+
|
| 474 |
+
def forward(self, x, mask = None):
|
| 475 |
+
n, device = x.shape[1], x.device
|
| 476 |
+
pos_emb = self.pos_emb(torch.arange(n, device = device))
|
| 477 |
+
|
| 478 |
+
x_with_pos = x + pos_emb
|
| 479 |
+
|
| 480 |
+
latents = repeat(self.latents, 'n d -> b n d', b = x.shape[0])
|
| 481 |
+
|
| 482 |
+
if exists(self.to_latents_from_mean_pooled_seq):
|
| 483 |
+
meanpooled_seq = masked_mean(x, dim = 1, mask = torch.ones(x.shape[:2], device = x.device, dtype = torch.bool))
|
| 484 |
+
meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
|
| 485 |
+
latents = torch.cat((meanpooled_latents, latents), dim = -2)
|
| 486 |
+
|
| 487 |
+
for attn, ff in self.layers:
|
| 488 |
+
latents = attn(x_with_pos, latents, mask = mask) + latents
|
| 489 |
+
latents = ff(latents) + latents
|
| 490 |
+
|
| 491 |
+
return latents
|
| 492 |
+
|
| 493 |
+
# attention
|
| 494 |
+
|
| 495 |
+
class Attention(nn.Module):
|
| 496 |
+
def __init__(
|
| 497 |
+
self,
|
| 498 |
+
dim,
|
| 499 |
+
*,
|
| 500 |
+
dim_head = 64,
|
| 501 |
+
heads = 8,
|
| 502 |
+
context_dim = None,
|
| 503 |
+
scale = 8
|
| 504 |
+
):
|
| 505 |
+
super().__init__()
|
| 506 |
+
self.scale = scale
|
| 507 |
+
|
| 508 |
+
self.heads = heads
|
| 509 |
+
inner_dim = dim_head * heads
|
| 510 |
+
|
| 511 |
+
self.norm = LayerNorm(dim)
|
| 512 |
+
|
| 513 |
+
self.null_kv = nn.Parameter(torch.randn(2, dim_head))
|
| 514 |
+
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
| 515 |
+
self.to_kv = nn.Linear(dim, dim_head * 2, bias = False)
|
| 516 |
+
|
| 517 |
+
self.q_scale = nn.Parameter(torch.ones(dim_head))
|
| 518 |
+
self.k_scale = nn.Parameter(torch.ones(dim_head))
|
| 519 |
+
|
| 520 |
+
self.to_context = nn.Sequential(nn.LayerNorm(context_dim), nn.Linear(context_dim, dim_head * 2)) if exists(context_dim) else None
|
| 521 |
+
|
| 522 |
+
self.to_out = nn.Sequential(
|
| 523 |
+
nn.Linear(inner_dim, dim, bias = False),
|
| 524 |
+
LayerNorm(dim)
|
| 525 |
+
)
|
| 526 |
+
|
| 527 |
+
def forward(self, x, context = None, mask = None, attn_bias = None):
|
| 528 |
+
b, n, device = *x.shape[:2], x.device
|
| 529 |
+
|
| 530 |
+
x = self.norm(x)
|
| 531 |
+
|
| 532 |
+
q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim = -1))
|
| 533 |
+
|
| 534 |
+
q = rearrange(q, 'b n (h d) -> b h n d', h = self.heads)
|
| 535 |
+
|
| 536 |
+
# add null key / value for classifier free guidance in prior net
|
| 537 |
+
|
| 538 |
+
nk, nv = map(lambda t: repeat(t, 'd -> b 1 d', b = b), self.null_kv.unbind(dim = -2))
|
| 539 |
+
k = torch.cat((nk, k), dim = -2)
|
| 540 |
+
v = torch.cat((nv, v), dim = -2)
|
| 541 |
+
|
| 542 |
+
# add text conditioning, if present
|
| 543 |
+
|
| 544 |
+
if exists(context):
|
| 545 |
+
assert exists(self.to_context)
|
| 546 |
+
ck, cv = self.to_context(context).chunk(2, dim = -1)
|
| 547 |
+
k = torch.cat((ck, k), dim = -2)
|
| 548 |
+
v = torch.cat((cv, v), dim = -2)
|
| 549 |
+
|
| 550 |
+
# qk rmsnorm
|
| 551 |
+
|
| 552 |
+
q, k = map(l2norm, (q, k))
|
| 553 |
+
q = q * self.q_scale
|
| 554 |
+
k = k * self.k_scale
|
| 555 |
+
|
| 556 |
+
# calculate query / key similarities
|
| 557 |
+
|
| 558 |
+
sim = einsum('b h i d, b j d -> b h i j', q, k) * self.scale
|
| 559 |
+
|
| 560 |
+
# relative positional encoding (T5 style)
|
| 561 |
+
|
| 562 |
+
if exists(attn_bias):
|
| 563 |
+
sim = sim + attn_bias
|
| 564 |
+
|
| 565 |
+
# masking
|
| 566 |
+
|
| 567 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 568 |
+
|
| 569 |
+
if exists(mask):
|
| 570 |
+
mask = F.pad(mask, (1, 0), value = True)
|
| 571 |
+
mask = rearrange(mask, 'b j -> b 1 1 j')
|
| 572 |
+
sim = sim.masked_fill(~mask, max_neg_value)
|
| 573 |
+
|
| 574 |
+
# attention
|
| 575 |
+
|
| 576 |
+
attn = sim.softmax(dim = -1, dtype = torch.float32)
|
| 577 |
+
attn = attn.to(sim.dtype)
|
| 578 |
+
|
| 579 |
+
# aggregate values
|
| 580 |
+
|
| 581 |
+
out = einsum('b h i j, b j d -> b h i d', attn, v)
|
| 582 |
+
|
| 583 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
| 584 |
+
return self.to_out(out)
|
| 585 |
+
|
| 586 |
+
# decoder
|
| 587 |
+
|
| 588 |
+
def Upsample(dim, dim_out = None):
|
| 589 |
+
dim_out = default(dim_out, dim)
|
| 590 |
+
|
| 591 |
+
return nn.Sequential(
|
| 592 |
+
nn.Upsample(scale_factor = 2, mode = 'nearest'),
|
| 593 |
+
nn.Conv2d(dim, dim_out, 3, padding = 1)
|
| 594 |
+
)
|
| 595 |
+
|
| 596 |
+
class PixelShuffleUpsample(nn.Module):
|
| 597 |
+
"""
|
| 598 |
+
code shared by @MalumaDev at DALLE2-pytorch for addressing checkboard artifacts
|
| 599 |
+
https://arxiv.org/ftp/arxiv/papers/1707/1707.02937.pdf
|
| 600 |
+
"""
|
| 601 |
+
def __init__(self, dim, dim_out = None):
|
| 602 |
+
super().__init__()
|
| 603 |
+
dim_out = default(dim_out, dim)
|
| 604 |
+
conv = nn.Conv2d(dim, dim_out * 4, 1)
|
| 605 |
+
|
| 606 |
+
self.net = nn.Sequential(
|
| 607 |
+
conv,
|
| 608 |
+
nn.SiLU(),
|
| 609 |
+
nn.PixelShuffle(2)
|
| 610 |
+
)
|
| 611 |
+
|
| 612 |
+
self.init_conv_(conv)
|
| 613 |
+
|
| 614 |
+
def init_conv_(self, conv):
|
| 615 |
+
o, i, h, w = conv.weight.shape
|
| 616 |
+
conv_weight = torch.empty(o // 4, i, h, w)
|
| 617 |
+
nn.init.kaiming_uniform_(conv_weight)
|
| 618 |
+
conv_weight = repeat(conv_weight, 'o ... -> (o 4) ...')
|
| 619 |
+
|
| 620 |
+
conv.weight.data.copy_(conv_weight)
|
| 621 |
+
nn.init.zeros_(conv.bias.data)
|
| 622 |
+
|
| 623 |
+
def forward(self, x):
|
| 624 |
+
return self.net(x)
|
| 625 |
+
|
| 626 |
+
def Downsample(dim, dim_out = None):
|
| 627 |
+
# https://arxiv.org/abs/2208.03641 shows this is the most optimal way to downsample
|
| 628 |
+
# named SP-conv in the paper, but basically a pixel unshuffle
|
| 629 |
+
dim_out = default(dim_out, dim)
|
| 630 |
+
return nn.Sequential(
|
| 631 |
+
Rearrange('b c (h s1) (w s2) -> b (c s1 s2) h w', s1 = 2, s2 = 2),
|
| 632 |
+
nn.Conv2d(dim * 4, dim_out, 1)
|
| 633 |
+
)
|
| 634 |
+
|
| 635 |
+
class SinusoidalPosEmb(nn.Module):
|
| 636 |
+
def __init__(self, dim):
|
| 637 |
+
super().__init__()
|
| 638 |
+
self.dim = dim
|
| 639 |
+
|
| 640 |
+
def forward(self, x):
|
| 641 |
+
half_dim = self.dim // 2
|
| 642 |
+
emb = math.log(10000) / (half_dim - 1)
|
| 643 |
+
emb = torch.exp(torch.arange(half_dim, device = x.device) * -emb)
|
| 644 |
+
emb = rearrange(x, 'i -> i 1') * rearrange(emb, 'j -> 1 j')
|
| 645 |
+
return torch.cat((emb.sin(), emb.cos()), dim = -1)
|
| 646 |
+
|
| 647 |
+
class LearnedSinusoidalPosEmb(nn.Module):
|
| 648 |
+
""" following @crowsonkb 's lead with learned sinusoidal pos emb """
|
| 649 |
+
""" https://github.com/crowsonkb/v-diffusion-jax/blob/master/diffusion/models/danbooru_128.py#L8 """
|
| 650 |
+
|
| 651 |
+
def __init__(self, dim):
|
| 652 |
+
super().__init__()
|
| 653 |
+
assert (dim % 2) == 0
|
| 654 |
+
half_dim = dim // 2
|
| 655 |
+
self.weights = nn.Parameter(torch.randn(half_dim))
|
| 656 |
+
|
| 657 |
+
def forward(self, x):
|
| 658 |
+
x = rearrange(x, 'b -> b 1')
|
| 659 |
+
freqs = x * rearrange(self.weights, 'd -> 1 d') * 2 * math.pi
|
| 660 |
+
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim = -1)
|
| 661 |
+
fouriered = torch.cat((x, fouriered), dim = -1)
|
| 662 |
+
return fouriered
|
| 663 |
+
|
| 664 |
+
class Block(nn.Module):
|
| 665 |
+
def __init__(
|
| 666 |
+
self,
|
| 667 |
+
dim,
|
| 668 |
+
dim_out,
|
| 669 |
+
groups = 8,
|
| 670 |
+
norm = True
|
| 671 |
+
):
|
| 672 |
+
super().__init__()
|
| 673 |
+
self.groupnorm = nn.GroupNorm(groups, dim) if norm else Identity()
|
| 674 |
+
self.activation = nn.SiLU()
|
| 675 |
+
self.project = nn.Conv2d(dim, dim_out, 3, padding = 1)
|
| 676 |
+
|
| 677 |
+
def forward(self, x, scale_shift = None):
|
| 678 |
+
x = self.groupnorm(x)
|
| 679 |
+
|
| 680 |
+
if exists(scale_shift):
|
| 681 |
+
scale, shift = scale_shift
|
| 682 |
+
x = x * (scale + 1) + shift
|
| 683 |
+
|
| 684 |
+
x = self.activation(x)
|
| 685 |
+
return self.project(x)
|
| 686 |
+
|
| 687 |
+
class ResnetBlock(nn.Module):
|
| 688 |
+
def __init__(
|
| 689 |
+
self,
|
| 690 |
+
dim,
|
| 691 |
+
dim_out,
|
| 692 |
+
*,
|
| 693 |
+
cond_dim = None,
|
| 694 |
+
time_cond_dim = None,
|
| 695 |
+
groups = 8,
|
| 696 |
+
linear_attn = False,
|
| 697 |
+
use_gca = False,
|
| 698 |
+
squeeze_excite = False,
|
| 699 |
+
**attn_kwargs
|
| 700 |
+
):
|
| 701 |
+
super().__init__()
|
| 702 |
+
|
| 703 |
+
self.time_mlp = None
|
| 704 |
+
|
| 705 |
+
if exists(time_cond_dim):
|
| 706 |
+
self.time_mlp = nn.Sequential(
|
| 707 |
+
nn.SiLU(),
|
| 708 |
+
nn.Linear(time_cond_dim, dim_out * 2)
|
| 709 |
+
)
|
| 710 |
+
|
| 711 |
+
self.cross_attn = None
|
| 712 |
+
|
| 713 |
+
if exists(cond_dim):
|
| 714 |
+
attn_klass = CrossAttention if not linear_attn else LinearCrossAttention
|
| 715 |
+
|
| 716 |
+
self.cross_attn = attn_klass(
|
| 717 |
+
dim = dim_out,
|
| 718 |
+
context_dim = cond_dim,
|
| 719 |
+
**attn_kwargs
|
| 720 |
+
)
|
| 721 |
+
|
| 722 |
+
self.block1 = Block(dim, dim_out, groups = groups)
|
| 723 |
+
self.block2 = Block(dim_out, dim_out, groups = groups)
|
| 724 |
+
|
| 725 |
+
self.gca = GlobalContext(dim_in = dim_out, dim_out = dim_out) if use_gca else Always(1)
|
| 726 |
+
|
| 727 |
+
self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else Identity()
|
| 728 |
+
|
| 729 |
+
|
| 730 |
+
def forward(self, x, time_emb = None, cond = None):
|
| 731 |
+
|
| 732 |
+
scale_shift = None
|
| 733 |
+
if exists(self.time_mlp) and exists(time_emb):
|
| 734 |
+
time_emb = self.time_mlp(time_emb)
|
| 735 |
+
time_emb = rearrange(time_emb, 'b c -> b c 1 1')
|
| 736 |
+
scale_shift = time_emb.chunk(2, dim = 1)
|
| 737 |
+
|
| 738 |
+
h = self.block1(x)
|
| 739 |
+
|
| 740 |
+
if exists(self.cross_attn):
|
| 741 |
+
assert exists(cond)
|
| 742 |
+
h = rearrange(h, 'b c h w -> b h w c')
|
| 743 |
+
h, ps = pack([h], 'b * c')
|
| 744 |
+
h = self.cross_attn(h, context = cond) + h
|
| 745 |
+
h, = unpack(h, ps, 'b * c')
|
| 746 |
+
h = rearrange(h, 'b h w c -> b c h w')
|
| 747 |
+
|
| 748 |
+
h = self.block2(h, scale_shift = scale_shift)
|
| 749 |
+
|
| 750 |
+
h = h * self.gca(h)
|
| 751 |
+
|
| 752 |
+
return h + self.res_conv(x)
|
| 753 |
+
|
| 754 |
+
class CrossAttention(nn.Module):
|
| 755 |
+
def __init__(
|
| 756 |
+
self,
|
| 757 |
+
dim,
|
| 758 |
+
*,
|
| 759 |
+
context_dim = None,
|
| 760 |
+
dim_head = 64,
|
| 761 |
+
heads = 8,
|
| 762 |
+
norm_context = False,
|
| 763 |
+
scale = 8
|
| 764 |
+
):
|
| 765 |
+
super().__init__()
|
| 766 |
+
self.scale = scale
|
| 767 |
+
|
| 768 |
+
self.heads = heads
|
| 769 |
+
inner_dim = dim_head * heads
|
| 770 |
+
|
| 771 |
+
context_dim = default(context_dim, dim)
|
| 772 |
+
|
| 773 |
+
self.norm = LayerNorm(dim)
|
| 774 |
+
self.norm_context = LayerNorm(context_dim) if norm_context else Identity()
|
| 775 |
+
|
| 776 |
+
self.null_kv = nn.Parameter(torch.randn(2, dim_head))
|
| 777 |
+
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
| 778 |
+
self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias = False)
|
| 779 |
+
|
| 780 |
+
self.q_scale = nn.Parameter(torch.ones(dim_head))
|
| 781 |
+
self.k_scale = nn.Parameter(torch.ones(dim_head))
|
| 782 |
+
|
| 783 |
+
self.to_out = nn.Sequential(
|
| 784 |
+
nn.Linear(inner_dim, dim, bias = False),
|
| 785 |
+
LayerNorm(dim)
|
| 786 |
+
)
|
| 787 |
+
|
| 788 |
+
def forward(self, x, context, mask = None):
|
| 789 |
+
b, n, device = *x.shape[:2], x.device
|
| 790 |
+
|
| 791 |
+
x = self.norm(x)
|
| 792 |
+
context = self.norm_context(context)
|
| 793 |
+
|
| 794 |
+
q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
|
| 795 |
+
|
| 796 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), (q, k, v))
|
| 797 |
+
|
| 798 |
+
# add null key / value for classifier free guidance in prior net
|
| 799 |
+
|
| 800 |
+
nk, nv = map(lambda t: repeat(t, 'd -> b h 1 d', h = self.heads, b = b), self.null_kv.unbind(dim = -2))
|
| 801 |
+
|
| 802 |
+
k = torch.cat((nk, k), dim = -2)
|
| 803 |
+
v = torch.cat((nv, v), dim = -2)
|
| 804 |
+
|
| 805 |
+
# cosine sim attention
|
| 806 |
+
|
| 807 |
+
q, k = map(l2norm, (q, k))
|
| 808 |
+
q = q * self.q_scale
|
| 809 |
+
k = k * self.k_scale
|
| 810 |
+
|
| 811 |
+
# similarities
|
| 812 |
+
|
| 813 |
+
sim = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
| 814 |
+
|
| 815 |
+
# masking
|
| 816 |
+
|
| 817 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 818 |
+
|
| 819 |
+
if exists(mask):
|
| 820 |
+
mask = F.pad(mask, (1, 0), value = True)
|
| 821 |
+
mask = rearrange(mask, 'b j -> b 1 1 j')
|
| 822 |
+
sim = sim.masked_fill(~mask, max_neg_value)
|
| 823 |
+
|
| 824 |
+
attn = sim.softmax(dim = -1, dtype = torch.float32)
|
| 825 |
+
attn = attn.to(sim.dtype)
|
| 826 |
+
|
| 827 |
+
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
| 828 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
| 829 |
+
return self.to_out(out)
|
| 830 |
+
|
| 831 |
+
class LinearCrossAttention(CrossAttention):
|
| 832 |
+
def forward(self, x, context, mask = None):
|
| 833 |
+
b, n, device = *x.shape[:2], x.device
|
| 834 |
+
|
| 835 |
+
x = self.norm(x)
|
| 836 |
+
context = self.norm_context(context)
|
| 837 |
+
|
| 838 |
+
q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
|
| 839 |
+
|
| 840 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = self.heads), (q, k, v))
|
| 841 |
+
|
| 842 |
+
# add null key / value for classifier free guidance in prior net
|
| 843 |
+
|
| 844 |
+
nk, nv = map(lambda t: repeat(t, 'd -> (b h) 1 d', h = self.heads, b = b), self.null_kv.unbind(dim = -2))
|
| 845 |
+
|
| 846 |
+
k = torch.cat((nk, k), dim = -2)
|
| 847 |
+
v = torch.cat((nv, v), dim = -2)
|
| 848 |
+
|
| 849 |
+
# masking
|
| 850 |
+
|
| 851 |
+
max_neg_value = -torch.finfo(x.dtype).max
|
| 852 |
+
|
| 853 |
+
if exists(mask):
|
| 854 |
+
mask = F.pad(mask, (1, 0), value = True)
|
| 855 |
+
mask = rearrange(mask, 'b n -> b n 1')
|
| 856 |
+
k = k.masked_fill(~mask, max_neg_value)
|
| 857 |
+
v = v.masked_fill(~mask, 0.)
|
| 858 |
+
|
| 859 |
+
# linear attention
|
| 860 |
+
|
| 861 |
+
q = q.softmax(dim = -1)
|
| 862 |
+
k = k.softmax(dim = -2)
|
| 863 |
+
|
| 864 |
+
q = q * self.scale
|
| 865 |
+
|
| 866 |
+
context = einsum('b n d, b n e -> b d e', k, v)
|
| 867 |
+
out = einsum('b n d, b d e -> b n e', q, context)
|
| 868 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h = self.heads)
|
| 869 |
+
return self.to_out(out)
|
| 870 |
+
|
| 871 |
+
class LinearAttention(nn.Module):
|
| 872 |
+
def __init__(
|
| 873 |
+
self,
|
| 874 |
+
dim,
|
| 875 |
+
dim_head = 32,
|
| 876 |
+
heads = 8,
|
| 877 |
+
dropout = 0.05,
|
| 878 |
+
context_dim = None,
|
| 879 |
+
**kwargs
|
| 880 |
+
):
|
| 881 |
+
super().__init__()
|
| 882 |
+
self.scale = dim_head ** -0.5
|
| 883 |
+
self.heads = heads
|
| 884 |
+
inner_dim = dim_head * heads
|
| 885 |
+
self.norm = ChanLayerNorm(dim)
|
| 886 |
+
|
| 887 |
+
self.nonlin = nn.SiLU()
|
| 888 |
+
|
| 889 |
+
self.to_q = nn.Sequential(
|
| 890 |
+
nn.Dropout(dropout),
|
| 891 |
+
nn.Conv2d(dim, inner_dim, 1, bias = False),
|
| 892 |
+
nn.Conv2d(inner_dim, inner_dim, 3, bias = False, padding = 1, groups = inner_dim)
|
| 893 |
+
)
|
| 894 |
+
|
| 895 |
+
self.to_k = nn.Sequential(
|
| 896 |
+
nn.Dropout(dropout),
|
| 897 |
+
nn.Conv2d(dim, inner_dim, 1, bias = False),
|
| 898 |
+
nn.Conv2d(inner_dim, inner_dim, 3, bias = False, padding = 1, groups = inner_dim)
|
| 899 |
+
)
|
| 900 |
+
|
| 901 |
+
self.to_v = nn.Sequential(
|
| 902 |
+
nn.Dropout(dropout),
|
| 903 |
+
nn.Conv2d(dim, inner_dim, 1, bias = False),
|
| 904 |
+
nn.Conv2d(inner_dim, inner_dim, 3, bias = False, padding = 1, groups = inner_dim)
|
| 905 |
+
)
|
| 906 |
+
|
| 907 |
+
self.to_context = nn.Sequential(nn.LayerNorm(context_dim), nn.Linear(context_dim, inner_dim * 2, bias = False)) if exists(context_dim) else None
|
| 908 |
+
|
| 909 |
+
self.to_out = nn.Sequential(
|
| 910 |
+
nn.Conv2d(inner_dim, dim, 1, bias = False),
|
| 911 |
+
ChanLayerNorm(dim)
|
| 912 |
+
)
|
| 913 |
+
|
| 914 |
+
def forward(self, fmap, context = None):
|
| 915 |
+
h, x, y = self.heads, *fmap.shape[-2:]
|
| 916 |
+
|
| 917 |
+
fmap = self.norm(fmap)
|
| 918 |
+
q, k, v = map(lambda fn: fn(fmap), (self.to_q, self.to_k, self.to_v))
|
| 919 |
+
q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> (b h) (x y) c', h = h), (q, k, v))
|
| 920 |
+
|
| 921 |
+
if exists(context):
|
| 922 |
+
assert exists(self.to_context)
|
| 923 |
+
ck, cv = self.to_context(context).chunk(2, dim = -1)
|
| 924 |
+
ck, cv = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (ck, cv))
|
| 925 |
+
k = torch.cat((k, ck), dim = -2)
|
| 926 |
+
v = torch.cat((v, cv), dim = -2)
|
| 927 |
+
|
| 928 |
+
q = q.softmax(dim = -1)
|
| 929 |
+
k = k.softmax(dim = -2)
|
| 930 |
+
|
| 931 |
+
q = q * self.scale
|
| 932 |
+
|
| 933 |
+
context = einsum('b n d, b n e -> b d e', k, v)
|
| 934 |
+
out = einsum('b n d, b d e -> b n e', q, context)
|
| 935 |
+
out = rearrange(out, '(b h) (x y) d -> b (h d) x y', h = h, x = x, y = y)
|
| 936 |
+
|
| 937 |
+
out = self.nonlin(out)
|
| 938 |
+
return self.to_out(out)
|
| 939 |
+
|
| 940 |
+
class GlobalContext(nn.Module):
|
| 941 |
+
""" basically a superior form of squeeze-excitation that is attention-esque """
|
| 942 |
+
|
| 943 |
+
def __init__(
|
| 944 |
+
self,
|
| 945 |
+
*,
|
| 946 |
+
dim_in,
|
| 947 |
+
dim_out
|
| 948 |
+
):
|
| 949 |
+
super().__init__()
|
| 950 |
+
self.to_k = nn.Conv2d(dim_in, 1, 1)
|
| 951 |
+
hidden_dim = max(3, dim_out // 2)
|
| 952 |
+
|
| 953 |
+
self.net = nn.Sequential(
|
| 954 |
+
nn.Conv2d(dim_in, hidden_dim, 1),
|
| 955 |
+
nn.SiLU(),
|
| 956 |
+
nn.Conv2d(hidden_dim, dim_out, 1),
|
| 957 |
+
nn.Sigmoid()
|
| 958 |
+
)
|
| 959 |
+
|
| 960 |
+
def forward(self, x):
|
| 961 |
+
context = self.to_k(x)
|
| 962 |
+
x, context = map(lambda t: rearrange(t, 'b n ... -> b n (...)'), (x, context))
|
| 963 |
+
out = einsum('b i n, b c n -> b c i', context.softmax(dim = -1), x)
|
| 964 |
+
out = rearrange(out, '... -> ... 1')
|
| 965 |
+
return self.net(out)
|
| 966 |
+
|
| 967 |
+
def FeedForward(dim, mult = 2):
|
| 968 |
+
hidden_dim = int(dim * mult)
|
| 969 |
+
return nn.Sequential(
|
| 970 |
+
LayerNorm(dim),
|
| 971 |
+
nn.Linear(dim, hidden_dim, bias = False),
|
| 972 |
+
nn.GELU(),
|
| 973 |
+
LayerNorm(hidden_dim),
|
| 974 |
+
nn.Linear(hidden_dim, dim, bias = False)
|
| 975 |
+
)
|
| 976 |
+
|
| 977 |
+
def ChanFeedForward(dim, mult = 2): # in paper, it seems for self attention layers they did feedforwards with twice channel width
|
| 978 |
+
hidden_dim = int(dim * mult)
|
| 979 |
+
return nn.Sequential(
|
| 980 |
+
ChanLayerNorm(dim),
|
| 981 |
+
nn.Conv2d(dim, hidden_dim, 1, bias = False),
|
| 982 |
+
nn.GELU(),
|
| 983 |
+
ChanLayerNorm(hidden_dim),
|
| 984 |
+
nn.Conv2d(hidden_dim, dim, 1, bias = False)
|
| 985 |
+
)
|
| 986 |
+
|
| 987 |
+
class TransformerBlock(nn.Module):
|
| 988 |
+
def __init__(
|
| 989 |
+
self,
|
| 990 |
+
dim,
|
| 991 |
+
*,
|
| 992 |
+
depth = 1,
|
| 993 |
+
heads = 8,
|
| 994 |
+
dim_head = 32,
|
| 995 |
+
ff_mult = 2,
|
| 996 |
+
context_dim = None
|
| 997 |
+
):
|
| 998 |
+
super().__init__()
|
| 999 |
+
self.layers = nn.ModuleList([])
|
| 1000 |
+
|
| 1001 |
+
for _ in range(depth):
|
| 1002 |
+
self.layers.append(nn.ModuleList([
|
| 1003 |
+
Attention(dim = dim, heads = heads, dim_head = dim_head, context_dim = context_dim),
|
| 1004 |
+
FeedForward(dim = dim, mult = ff_mult)
|
| 1005 |
+
]))
|
| 1006 |
+
|
| 1007 |
+
def forward(self, x, context = None):
|
| 1008 |
+
x = rearrange(x, 'b c h w -> b h w c')
|
| 1009 |
+
x, ps = pack([x], 'b * c')
|
| 1010 |
+
|
| 1011 |
+
for attn, ff in self.layers:
|
| 1012 |
+
x = attn(x, context = context) + x
|
| 1013 |
+
x = ff(x) + x
|
| 1014 |
+
|
| 1015 |
+
x, = unpack(x, ps, 'b * c')
|
| 1016 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
| 1017 |
+
return x
|
| 1018 |
+
|
| 1019 |
+
class LinearAttentionTransformerBlock(nn.Module):
|
| 1020 |
+
def __init__(
|
| 1021 |
+
self,
|
| 1022 |
+
dim,
|
| 1023 |
+
*,
|
| 1024 |
+
depth = 1,
|
| 1025 |
+
heads = 8,
|
| 1026 |
+
dim_head = 32,
|
| 1027 |
+
ff_mult = 2,
|
| 1028 |
+
context_dim = None,
|
| 1029 |
+
**kwargs
|
| 1030 |
+
):
|
| 1031 |
+
super().__init__()
|
| 1032 |
+
self.layers = nn.ModuleList([])
|
| 1033 |
+
|
| 1034 |
+
for _ in range(depth):
|
| 1035 |
+
self.layers.append(nn.ModuleList([
|
| 1036 |
+
LinearAttention(dim = dim, heads = heads, dim_head = dim_head, context_dim = context_dim),
|
| 1037 |
+
ChanFeedForward(dim = dim, mult = ff_mult)
|
| 1038 |
+
]))
|
| 1039 |
+
|
| 1040 |
+
def forward(self, x, context = None):
|
| 1041 |
+
for attn, ff in self.layers:
|
| 1042 |
+
x = attn(x, context = context) + x
|
| 1043 |
+
x = ff(x) + x
|
| 1044 |
+
return x
|
| 1045 |
+
|
| 1046 |
+
class CrossEmbedLayer(nn.Module):
|
| 1047 |
+
def __init__(
|
| 1048 |
+
self,
|
| 1049 |
+
dim_in,
|
| 1050 |
+
kernel_sizes,
|
| 1051 |
+
dim_out = None,
|
| 1052 |
+
stride = 2
|
| 1053 |
+
):
|
| 1054 |
+
super().__init__()
|
| 1055 |
+
assert all([*map(lambda t: (t % 2) == (stride % 2), kernel_sizes)])
|
| 1056 |
+
dim_out = default(dim_out, dim_in)
|
| 1057 |
+
|
| 1058 |
+
kernel_sizes = sorted(kernel_sizes)
|
| 1059 |
+
num_scales = len(kernel_sizes)
|
| 1060 |
+
|
| 1061 |
+
# calculate the dimension at each scale
|
| 1062 |
+
dim_scales = [int(dim_out / (2 ** i)) for i in range(1, num_scales)]
|
| 1063 |
+
dim_scales = [*dim_scales, dim_out - sum(dim_scales)]
|
| 1064 |
+
|
| 1065 |
+
self.convs = nn.ModuleList([])
|
| 1066 |
+
for kernel, dim_scale in zip(kernel_sizes, dim_scales):
|
| 1067 |
+
self.convs.append(nn.Conv2d(dim_in, dim_scale, kernel, stride = stride, padding = (kernel - stride) // 2))
|
| 1068 |
+
|
| 1069 |
+
def forward(self, x):
|
| 1070 |
+
fmaps = tuple(map(lambda conv: conv(x), self.convs))
|
| 1071 |
+
return torch.cat(fmaps, dim = 1)
|
| 1072 |
+
|
| 1073 |
+
class UpsampleCombiner(nn.Module):
|
| 1074 |
+
def __init__(
|
| 1075 |
+
self,
|
| 1076 |
+
dim,
|
| 1077 |
+
*,
|
| 1078 |
+
enabled = False,
|
| 1079 |
+
dim_ins = tuple(),
|
| 1080 |
+
dim_outs = tuple()
|
| 1081 |
+
):
|
| 1082 |
+
super().__init__()
|
| 1083 |
+
dim_outs = cast_tuple(dim_outs, len(dim_ins))
|
| 1084 |
+
assert len(dim_ins) == len(dim_outs)
|
| 1085 |
+
|
| 1086 |
+
self.enabled = enabled
|
| 1087 |
+
|
| 1088 |
+
if not self.enabled:
|
| 1089 |
+
self.dim_out = dim
|
| 1090 |
+
return
|
| 1091 |
+
|
| 1092 |
+
self.fmap_convs = nn.ModuleList([Block(dim_in, dim_out) for dim_in, dim_out in zip(dim_ins, dim_outs)])
|
| 1093 |
+
self.dim_out = dim + (sum(dim_outs) if len(dim_outs) > 0 else 0)
|
| 1094 |
+
|
| 1095 |
+
def forward(self, x, fmaps = None):
|
| 1096 |
+
target_size = x.shape[-1]
|
| 1097 |
+
|
| 1098 |
+
fmaps = default(fmaps, tuple())
|
| 1099 |
+
|
| 1100 |
+
if not self.enabled or len(fmaps) == 0 or len(self.fmap_convs) == 0:
|
| 1101 |
+
return x
|
| 1102 |
+
|
| 1103 |
+
fmaps = [resize_image_to(fmap, target_size) for fmap in fmaps]
|
| 1104 |
+
outs = [conv(fmap) for fmap, conv in zip(fmaps, self.fmap_convs)]
|
| 1105 |
+
return torch.cat((x, *outs), dim = 1)
|
| 1106 |
+
|
| 1107 |
+
class Unet(nn.Module):
|
| 1108 |
+
def __init__(
|
| 1109 |
+
self,
|
| 1110 |
+
*,
|
| 1111 |
+
dim,
|
| 1112 |
+
text_embed_dim = get_encoded_dim(DEFAULT_T5_NAME),
|
| 1113 |
+
num_resnet_blocks = 1,
|
| 1114 |
+
cond_dim = None,
|
| 1115 |
+
num_image_tokens = 4,
|
| 1116 |
+
num_time_tokens = 2,
|
| 1117 |
+
learned_sinu_pos_emb_dim = 16,
|
| 1118 |
+
out_dim = None,
|
| 1119 |
+
dim_mults=(1, 2, 4, 8),
|
| 1120 |
+
cond_images_channels = 0,
|
| 1121 |
+
channels = 3,
|
| 1122 |
+
channels_out = None,
|
| 1123 |
+
attn_dim_head = 64,
|
| 1124 |
+
attn_heads = 8,
|
| 1125 |
+
ff_mult = 2.,
|
| 1126 |
+
lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/
|
| 1127 |
+
layer_attns = True,
|
| 1128 |
+
layer_attns_depth = 1,
|
| 1129 |
+
layer_mid_attns_depth = 1,
|
| 1130 |
+
layer_attns_add_text_cond = True, # whether to condition the self-attention blocks with the text embeddings, as described in Appendix D.3.1
|
| 1131 |
+
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
|
| 1132 |
+
layer_cross_attns = True,
|
| 1133 |
+
use_linear_attn = False,
|
| 1134 |
+
use_linear_cross_attn = False,
|
| 1135 |
+
cond_on_text = True,
|
| 1136 |
+
max_text_len = 256,
|
| 1137 |
+
init_dim = None,
|
| 1138 |
+
resnet_groups = 8,
|
| 1139 |
+
init_conv_kernel_size = 7, # kernel size of initial conv, if not using cross embed
|
| 1140 |
+
init_cross_embed = True,
|
| 1141 |
+
init_cross_embed_kernel_sizes = (3, 7, 15),
|
| 1142 |
+
cross_embed_downsample = False,
|
| 1143 |
+
cross_embed_downsample_kernel_sizes = (2, 4),
|
| 1144 |
+
attn_pool_text = True,
|
| 1145 |
+
attn_pool_num_latents = 32,
|
| 1146 |
+
dropout = 0.,
|
| 1147 |
+
memory_efficient = False,
|
| 1148 |
+
init_conv_to_final_conv_residual = False,
|
| 1149 |
+
use_global_context_attn = True,
|
| 1150 |
+
scale_skip_connection = True,
|
| 1151 |
+
final_resnet_block = True,
|
| 1152 |
+
final_conv_kernel_size = 3,
|
| 1153 |
+
self_cond = False,
|
| 1154 |
+
resize_mode = 'nearest',
|
| 1155 |
+
combine_upsample_fmaps = False, # combine feature maps from all upsample blocks, used in unet squared successfully
|
| 1156 |
+
pixel_shuffle_upsample = True, # may address checkboard artifacts
|
| 1157 |
+
):
|
| 1158 |
+
super().__init__()
|
| 1159 |
+
|
| 1160 |
+
# guide researchers
|
| 1161 |
+
|
| 1162 |
+
assert attn_heads > 1, 'you need to have more than 1 attention head, ideally at least 4 or 8'
|
| 1163 |
+
|
| 1164 |
+
if dim < 128:
|
| 1165 |
+
print_once('The base dimension of your u-net should ideally be no smaller than 128, as recommended by a professional DDPM trainer https://nonint.com/2022/05/04/friends-dont-let-friends-train-small-diffusion-models/')
|
| 1166 |
+
|
| 1167 |
+
# save locals to take care of some hyperparameters for cascading DDPM
|
| 1168 |
+
|
| 1169 |
+
self._locals = locals()
|
| 1170 |
+
self._locals.pop('self', None)
|
| 1171 |
+
self._locals.pop('__class__', None)
|
| 1172 |
+
|
| 1173 |
+
# determine dimensions
|
| 1174 |
+
|
| 1175 |
+
self.channels = channels
|
| 1176 |
+
self.channels_out = default(channels_out, channels)
|
| 1177 |
+
|
| 1178 |
+
# (1) in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis
|
| 1179 |
+
# (2) in self conditioning, one appends the predict x0 (x_start)
|
| 1180 |
+
init_channels = channels * (1 + int(lowres_cond) + int(self_cond))
|
| 1181 |
+
init_dim = default(init_dim, dim)
|
| 1182 |
+
|
| 1183 |
+
self.self_cond = self_cond
|
| 1184 |
+
|
| 1185 |
+
# optional image conditioning
|
| 1186 |
+
|
| 1187 |
+
self.has_cond_image = cond_images_channels > 0
|
| 1188 |
+
self.cond_images_channels = cond_images_channels
|
| 1189 |
+
|
| 1190 |
+
init_channels += cond_images_channels
|
| 1191 |
+
|
| 1192 |
+
# initial convolution
|
| 1193 |
+
|
| 1194 |
+
self.init_conv = CrossEmbedLayer(init_channels, dim_out = init_dim, kernel_sizes = init_cross_embed_kernel_sizes, stride = 1) if init_cross_embed else nn.Conv2d(init_channels, init_dim, init_conv_kernel_size, padding = init_conv_kernel_size // 2)
|
| 1195 |
+
|
| 1196 |
+
dims = [init_dim, *map(lambda m: dim * m, dim_mults)]
|
| 1197 |
+
in_out = list(zip(dims[:-1], dims[1:]))
|
| 1198 |
+
|
| 1199 |
+
# time conditioning
|
| 1200 |
+
|
| 1201 |
+
cond_dim = default(cond_dim, dim)
|
| 1202 |
+
time_cond_dim = dim * 4 * (2 if lowres_cond else 1)
|
| 1203 |
+
|
| 1204 |
+
# embedding time for log(snr) noise from continuous version
|
| 1205 |
+
|
| 1206 |
+
sinu_pos_emb = LearnedSinusoidalPosEmb(learned_sinu_pos_emb_dim)
|
| 1207 |
+
sinu_pos_emb_input_dim = learned_sinu_pos_emb_dim + 1
|
| 1208 |
+
|
| 1209 |
+
self.to_time_hiddens = nn.Sequential(
|
| 1210 |
+
sinu_pos_emb,
|
| 1211 |
+
nn.Linear(sinu_pos_emb_input_dim, time_cond_dim),
|
| 1212 |
+
nn.SiLU()
|
| 1213 |
+
)
|
| 1214 |
+
|
| 1215 |
+
self.to_time_cond = nn.Sequential(
|
| 1216 |
+
nn.Linear(time_cond_dim, time_cond_dim)
|
| 1217 |
+
)
|
| 1218 |
+
|
| 1219 |
+
# project to time tokens as well as time hiddens
|
| 1220 |
+
|
| 1221 |
+
self.to_time_tokens = nn.Sequential(
|
| 1222 |
+
nn.Linear(time_cond_dim, cond_dim * num_time_tokens),
|
| 1223 |
+
Rearrange('b (r d) -> b r d', r = num_time_tokens)
|
| 1224 |
+
)
|
| 1225 |
+
|
| 1226 |
+
# low res aug noise conditioning
|
| 1227 |
+
|
| 1228 |
+
self.lowres_cond = lowres_cond
|
| 1229 |
+
|
| 1230 |
+
if lowres_cond:
|
| 1231 |
+
self.to_lowres_time_hiddens = nn.Sequential(
|
| 1232 |
+
LearnedSinusoidalPosEmb(learned_sinu_pos_emb_dim),
|
| 1233 |
+
nn.Linear(learned_sinu_pos_emb_dim + 1, time_cond_dim),
|
| 1234 |
+
nn.SiLU()
|
| 1235 |
+
)
|
| 1236 |
+
|
| 1237 |
+
self.to_lowres_time_cond = nn.Sequential(
|
| 1238 |
+
nn.Linear(time_cond_dim, time_cond_dim)
|
| 1239 |
+
)
|
| 1240 |
+
|
| 1241 |
+
self.to_lowres_time_tokens = nn.Sequential(
|
| 1242 |
+
nn.Linear(time_cond_dim, cond_dim * num_time_tokens),
|
| 1243 |
+
Rearrange('b (r d) -> b r d', r = num_time_tokens)
|
| 1244 |
+
)
|
| 1245 |
+
|
| 1246 |
+
# normalizations
|
| 1247 |
+
|
| 1248 |
+
self.norm_cond = nn.LayerNorm(cond_dim)
|
| 1249 |
+
|
| 1250 |
+
# text encoding conditioning (optional)
|
| 1251 |
+
|
| 1252 |
+
self.text_to_cond = None
|
| 1253 |
+
|
| 1254 |
+
if cond_on_text:
|
| 1255 |
+
assert exists(text_embed_dim), 'text_embed_dim must be given to the unet if cond_on_text is True'
|
| 1256 |
+
self.text_to_cond = nn.Linear(text_embed_dim, cond_dim)
|
| 1257 |
+
|
| 1258 |
+
# finer control over whether to condition on text encodings
|
| 1259 |
+
|
| 1260 |
+
self.cond_on_text = cond_on_text
|
| 1261 |
+
|
| 1262 |
+
# attention pooling
|
| 1263 |
+
|
| 1264 |
+
self.attn_pool = PerceiverResampler(dim = cond_dim, depth = 2, dim_head = attn_dim_head, heads = attn_heads, num_latents = attn_pool_num_latents) if attn_pool_text else None
|
| 1265 |
+
|
| 1266 |
+
# for classifier free guidance
|
| 1267 |
+
|
| 1268 |
+
self.max_text_len = max_text_len
|
| 1269 |
+
|
| 1270 |
+
self.null_text_embed = nn.Parameter(torch.randn(1, max_text_len, cond_dim))
|
| 1271 |
+
self.null_text_hidden = nn.Parameter(torch.randn(1, time_cond_dim))
|
| 1272 |
+
|
| 1273 |
+
# for non-attention based text conditioning at all points in the network where time is also conditioned
|
| 1274 |
+
|
| 1275 |
+
self.to_text_non_attn_cond = None
|
| 1276 |
+
|
| 1277 |
+
if cond_on_text:
|
| 1278 |
+
self.to_text_non_attn_cond = nn.Sequential(
|
| 1279 |
+
nn.LayerNorm(cond_dim),
|
| 1280 |
+
nn.Linear(cond_dim, time_cond_dim),
|
| 1281 |
+
nn.SiLU(),
|
| 1282 |
+
nn.Linear(time_cond_dim, time_cond_dim)
|
| 1283 |
+
)
|
| 1284 |
+
|
| 1285 |
+
# attention related params
|
| 1286 |
+
|
| 1287 |
+
attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head)
|
| 1288 |
+
|
| 1289 |
+
num_layers = len(in_out)
|
| 1290 |
+
|
| 1291 |
+
# resnet block klass
|
| 1292 |
+
|
| 1293 |
+
num_resnet_blocks = cast_tuple(num_resnet_blocks, num_layers)
|
| 1294 |
+
resnet_groups = cast_tuple(resnet_groups, num_layers)
|
| 1295 |
+
|
| 1296 |
+
resnet_klass = partial(ResnetBlock, **attn_kwargs)
|
| 1297 |
+
|
| 1298 |
+
layer_attns = cast_tuple(layer_attns, num_layers)
|
| 1299 |
+
layer_attns_depth = cast_tuple(layer_attns_depth, num_layers)
|
| 1300 |
+
layer_cross_attns = cast_tuple(layer_cross_attns, num_layers)
|
| 1301 |
+
|
| 1302 |
+
use_linear_attn = cast_tuple(use_linear_attn, num_layers)
|
| 1303 |
+
use_linear_cross_attn = cast_tuple(use_linear_cross_attn, num_layers)
|
| 1304 |
+
|
| 1305 |
+
assert all([layers == num_layers for layers in list(map(len, (resnet_groups, layer_attns, layer_cross_attns)))])
|
| 1306 |
+
|
| 1307 |
+
# downsample klass
|
| 1308 |
+
|
| 1309 |
+
downsample_klass = Downsample
|
| 1310 |
+
|
| 1311 |
+
if cross_embed_downsample:
|
| 1312 |
+
downsample_klass = partial(CrossEmbedLayer, kernel_sizes = cross_embed_downsample_kernel_sizes)
|
| 1313 |
+
|
| 1314 |
+
# initial resnet block (for memory efficient unet)
|
| 1315 |
+
|
| 1316 |
+
self.init_resnet_block = resnet_klass(init_dim, init_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[0], use_gca = use_global_context_attn) if memory_efficient else None
|
| 1317 |
+
|
| 1318 |
+
# scale for resnet skip connections
|
| 1319 |
+
|
| 1320 |
+
self.skip_connect_scale = 1. if not scale_skip_connection else (2 ** -0.5)
|
| 1321 |
+
|
| 1322 |
+
# layers
|
| 1323 |
+
|
| 1324 |
+
self.downs = nn.ModuleList([])
|
| 1325 |
+
self.ups = nn.ModuleList([])
|
| 1326 |
+
num_resolutions = len(in_out)
|
| 1327 |
+
|
| 1328 |
+
layer_params = [num_resnet_blocks, resnet_groups, layer_attns, layer_attns_depth, layer_cross_attns, use_linear_attn, use_linear_cross_attn]
|
| 1329 |
+
reversed_layer_params = list(map(reversed, layer_params))
|
| 1330 |
+
|
| 1331 |
+
# downsampling layers
|
| 1332 |
+
|
| 1333 |
+
skip_connect_dims = [] # keep track of skip connection dimensions
|
| 1334 |
+
|
| 1335 |
+
for ind, ((dim_in, dim_out), layer_num_resnet_blocks, groups, layer_attn, layer_attn_depth, layer_cross_attn, layer_use_linear_attn, layer_use_linear_cross_attn) in enumerate(zip(in_out, *layer_params)):
|
| 1336 |
+
is_last = ind >= (num_resolutions - 1)
|
| 1337 |
+
|
| 1338 |
+
layer_cond_dim = cond_dim if layer_cross_attn or layer_use_linear_cross_attn else None
|
| 1339 |
+
|
| 1340 |
+
if layer_attn:
|
| 1341 |
+
transformer_block_klass = TransformerBlock
|
| 1342 |
+
elif layer_use_linear_attn:
|
| 1343 |
+
transformer_block_klass = LinearAttentionTransformerBlock
|
| 1344 |
+
else:
|
| 1345 |
+
transformer_block_klass = Identity
|
| 1346 |
+
|
| 1347 |
+
current_dim = dim_in
|
| 1348 |
+
|
| 1349 |
+
# whether to pre-downsample, from memory efficient unet
|
| 1350 |
+
|
| 1351 |
+
pre_downsample = None
|
| 1352 |
+
|
| 1353 |
+
if memory_efficient:
|
| 1354 |
+
pre_downsample = downsample_klass(dim_in, dim_out)
|
| 1355 |
+
current_dim = dim_out
|
| 1356 |
+
|
| 1357 |
+
skip_connect_dims.append(current_dim)
|
| 1358 |
+
|
| 1359 |
+
# whether to do post-downsample, for non-memory efficient unet
|
| 1360 |
+
|
| 1361 |
+
post_downsample = None
|
| 1362 |
+
if not memory_efficient:
|
| 1363 |
+
post_downsample = downsample_klass(current_dim, dim_out) if not is_last else Parallel(nn.Conv2d(dim_in, dim_out, 3, padding = 1), nn.Conv2d(dim_in, dim_out, 1))
|
| 1364 |
+
|
| 1365 |
+
self.downs.append(nn.ModuleList([
|
| 1366 |
+
pre_downsample,
|
| 1367 |
+
resnet_klass(current_dim, current_dim, cond_dim = layer_cond_dim, linear_attn = layer_use_linear_cross_attn, time_cond_dim = time_cond_dim, groups = groups),
|
| 1368 |
+
nn.ModuleList([ResnetBlock(current_dim, current_dim, time_cond_dim = time_cond_dim, groups = groups, use_gca = use_global_context_attn) for _ in range(layer_num_resnet_blocks)]),
|
| 1369 |
+
transformer_block_klass(dim = current_dim, depth = layer_attn_depth, ff_mult = ff_mult, context_dim = cond_dim, **attn_kwargs),
|
| 1370 |
+
post_downsample
|
| 1371 |
+
]))
|
| 1372 |
+
|
| 1373 |
+
# middle layers
|
| 1374 |
+
|
| 1375 |
+
mid_dim = dims[-1]
|
| 1376 |
+
|
| 1377 |
+
self.mid_block1 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
| 1378 |
+
self.mid_attn = TransformerBlock(mid_dim, depth = layer_mid_attns_depth, **attn_kwargs) if attend_at_middle else None
|
| 1379 |
+
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
| 1380 |
+
|
| 1381 |
+
# upsample klass
|
| 1382 |
+
|
| 1383 |
+
upsample_klass = Upsample if not pixel_shuffle_upsample else PixelShuffleUpsample
|
| 1384 |
+
|
| 1385 |
+
# upsampling layers
|
| 1386 |
+
|
| 1387 |
+
upsample_fmap_dims = []
|
| 1388 |
+
|
| 1389 |
+
for ind, ((dim_in, dim_out), layer_num_resnet_blocks, groups, layer_attn, layer_attn_depth, layer_cross_attn, layer_use_linear_attn, layer_use_linear_cross_attn) in enumerate(zip(reversed(in_out), *reversed_layer_params)):
|
| 1390 |
+
is_last = ind == (len(in_out) - 1)
|
| 1391 |
+
|
| 1392 |
+
layer_cond_dim = cond_dim if layer_cross_attn or layer_use_linear_cross_attn else None
|
| 1393 |
+
|
| 1394 |
+
if layer_attn:
|
| 1395 |
+
transformer_block_klass = TransformerBlock
|
| 1396 |
+
elif layer_use_linear_attn:
|
| 1397 |
+
transformer_block_klass = LinearAttentionTransformerBlock
|
| 1398 |
+
else:
|
| 1399 |
+
transformer_block_klass = Identity
|
| 1400 |
+
|
| 1401 |
+
skip_connect_dim = skip_connect_dims.pop()
|
| 1402 |
+
|
| 1403 |
+
upsample_fmap_dims.append(dim_out)
|
| 1404 |
+
|
| 1405 |
+
self.ups.append(nn.ModuleList([
|
| 1406 |
+
resnet_klass(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, linear_attn = layer_use_linear_cross_attn, time_cond_dim = time_cond_dim, groups = groups),
|
| 1407 |
+
nn.ModuleList([ResnetBlock(dim_out + skip_connect_dim, dim_out, time_cond_dim = time_cond_dim, groups = groups, use_gca = use_global_context_attn) for _ in range(layer_num_resnet_blocks)]),
|
| 1408 |
+
transformer_block_klass(dim = dim_out, depth = layer_attn_depth, ff_mult = ff_mult, context_dim = cond_dim, **attn_kwargs),
|
| 1409 |
+
upsample_klass(dim_out, dim_in) if not is_last or memory_efficient else Identity()
|
| 1410 |
+
]))
|
| 1411 |
+
|
| 1412 |
+
# whether to combine feature maps from all upsample blocks before final resnet block out
|
| 1413 |
+
|
| 1414 |
+
self.upsample_combiner = UpsampleCombiner(
|
| 1415 |
+
dim = dim,
|
| 1416 |
+
enabled = combine_upsample_fmaps,
|
| 1417 |
+
dim_ins = upsample_fmap_dims,
|
| 1418 |
+
dim_outs = dim
|
| 1419 |
+
)
|
| 1420 |
+
|
| 1421 |
+
# whether to do a final residual from initial conv to the final resnet block out
|
| 1422 |
+
|
| 1423 |
+
self.init_conv_to_final_conv_residual = init_conv_to_final_conv_residual
|
| 1424 |
+
final_conv_dim = self.upsample_combiner.dim_out + (dim if init_conv_to_final_conv_residual else 0)
|
| 1425 |
+
|
| 1426 |
+
# final optional resnet block and convolution out
|
| 1427 |
+
|
| 1428 |
+
self.final_res_block = ResnetBlock(final_conv_dim, dim, time_cond_dim = time_cond_dim, groups = resnet_groups[0], use_gca = True) if final_resnet_block else None
|
| 1429 |
+
|
| 1430 |
+
final_conv_dim_in = dim if final_resnet_block else final_conv_dim
|
| 1431 |
+
final_conv_dim_in += (channels if lowres_cond else 0)
|
| 1432 |
+
|
| 1433 |
+
self.final_conv = nn.Conv2d(final_conv_dim_in, self.channels_out, final_conv_kernel_size, padding = final_conv_kernel_size // 2)
|
| 1434 |
+
|
| 1435 |
+
zero_init_(self.final_conv)
|
| 1436 |
+
|
| 1437 |
+
# resize mode
|
| 1438 |
+
|
| 1439 |
+
self.resize_mode = resize_mode
|
| 1440 |
+
|
| 1441 |
+
# if the current settings for the unet are not correct
|
| 1442 |
+
# for cascading DDPM, then reinit the unet with the right settings
|
| 1443 |
+
def cast_model_parameters(
|
| 1444 |
+
self,
|
| 1445 |
+
*,
|
| 1446 |
+
lowres_cond,
|
| 1447 |
+
text_embed_dim,
|
| 1448 |
+
channels,
|
| 1449 |
+
channels_out,
|
| 1450 |
+
cond_on_text
|
| 1451 |
+
):
|
| 1452 |
+
if lowres_cond == self.lowres_cond and \
|
| 1453 |
+
channels == self.channels and \
|
| 1454 |
+
cond_on_text == self.cond_on_text and \
|
| 1455 |
+
text_embed_dim == self._locals['text_embed_dim'] and \
|
| 1456 |
+
channels_out == self.channels_out:
|
| 1457 |
+
return self
|
| 1458 |
+
|
| 1459 |
+
updated_kwargs = dict(
|
| 1460 |
+
lowres_cond = lowres_cond,
|
| 1461 |
+
text_embed_dim = text_embed_dim,
|
| 1462 |
+
channels = channels,
|
| 1463 |
+
channels_out = channels_out,
|
| 1464 |
+
cond_on_text = cond_on_text
|
| 1465 |
+
)
|
| 1466 |
+
|
| 1467 |
+
return self.__class__(**{**self._locals, **updated_kwargs})
|
| 1468 |
+
|
| 1469 |
+
# methods for returning the full unet config as well as its parameter state
|
| 1470 |
+
|
| 1471 |
+
def to_config_and_state_dict(self):
|
| 1472 |
+
return self._locals, self.state_dict()
|
| 1473 |
+
|
| 1474 |
+
# class method for rehydrating the unet from its config and state dict
|
| 1475 |
+
|
| 1476 |
+
@classmethod
|
| 1477 |
+
def from_config_and_state_dict(klass, config, state_dict):
|
| 1478 |
+
unet = klass(**config)
|
| 1479 |
+
unet.load_state_dict(state_dict)
|
| 1480 |
+
return unet
|
| 1481 |
+
|
| 1482 |
+
# methods for persisting unet to disk
|
| 1483 |
+
|
| 1484 |
+
def persist_to_file(self, path):
|
| 1485 |
+
path = Path(path)
|
| 1486 |
+
path.parents[0].mkdir(exist_ok = True, parents = True)
|
| 1487 |
+
|
| 1488 |
+
config, state_dict = self.to_config_and_state_dict()
|
| 1489 |
+
pkg = dict(config = config, state_dict = state_dict)
|
| 1490 |
+
torch.save(pkg, str(path))
|
| 1491 |
+
|
| 1492 |
+
# class method for rehydrating the unet from file saved with `persist_to_file`
|
| 1493 |
+
|
| 1494 |
+
@classmethod
|
| 1495 |
+
def hydrate_from_file(klass, path):
|
| 1496 |
+
path = Path(path)
|
| 1497 |
+
assert path.exists()
|
| 1498 |
+
pkg = torch.load(str(path))
|
| 1499 |
+
|
| 1500 |
+
assert 'config' in pkg and 'state_dict' in pkg
|
| 1501 |
+
config, state_dict = pkg['config'], pkg['state_dict']
|
| 1502 |
+
|
| 1503 |
+
return Unet.from_config_and_state_dict(config, state_dict)
|
| 1504 |
+
|
| 1505 |
+
# forward with classifier free guidance
|
| 1506 |
+
|
| 1507 |
+
def forward_with_cond_scale(
|
| 1508 |
+
self,
|
| 1509 |
+
*args,
|
| 1510 |
+
cond_scale = 1.,
|
| 1511 |
+
**kwargs
|
| 1512 |
+
):
|
| 1513 |
+
logits = self.forward(*args, **kwargs)
|
| 1514 |
+
|
| 1515 |
+
if cond_scale == 1:
|
| 1516 |
+
return logits
|
| 1517 |
+
|
| 1518 |
+
null_logits = self.forward(*args, cond_drop_prob = 1., **kwargs)
|
| 1519 |
+
return null_logits + (logits - null_logits) * cond_scale
|
| 1520 |
+
|
| 1521 |
+
def forward(
|
| 1522 |
+
self,
|
| 1523 |
+
x,
|
| 1524 |
+
time,
|
| 1525 |
+
*,
|
| 1526 |
+
lowres_cond_img = None,
|
| 1527 |
+
lowres_noise_times = None,
|
| 1528 |
+
text_embeds = None,
|
| 1529 |
+
text_mask = None,
|
| 1530 |
+
cond_images = None,
|
| 1531 |
+
self_cond = None,
|
| 1532 |
+
cond_drop_prob = 0.
|
| 1533 |
+
):
|
| 1534 |
+
batch_size, device = x.shape[0], x.device
|
| 1535 |
+
|
| 1536 |
+
# condition on self
|
| 1537 |
+
|
| 1538 |
+
if self.self_cond:
|
| 1539 |
+
self_cond = default(self_cond, lambda: torch.zeros_like(x))
|
| 1540 |
+
x = torch.cat((x, self_cond), dim = 1)
|
| 1541 |
+
|
| 1542 |
+
# add low resolution conditioning, if present
|
| 1543 |
+
|
| 1544 |
+
assert not (self.lowres_cond and not exists(lowres_cond_img)), 'low resolution conditioning image must be present'
|
| 1545 |
+
assert not (self.lowres_cond and not exists(lowres_noise_times)), 'low resolution conditioning noise time must be present'
|
| 1546 |
+
|
| 1547 |
+
if exists(lowres_cond_img):
|
| 1548 |
+
x = torch.cat((x, lowres_cond_img), dim = 1)
|
| 1549 |
+
|
| 1550 |
+
# condition on input image
|
| 1551 |
+
|
| 1552 |
+
assert not (self.has_cond_image ^ exists(cond_images)), 'you either requested to condition on an image on the unet, but the conditioning image is not supplied, or vice versa'
|
| 1553 |
+
|
| 1554 |
+
if exists(cond_images):
|
| 1555 |
+
assert cond_images.shape[1] == self.cond_images_channels, 'the number of channels on the conditioning image you are passing in does not match what you specified on initialiation of the unet'
|
| 1556 |
+
cond_images = resize_image_to(cond_images, x.shape[-1], mode = self.resize_mode)
|
| 1557 |
+
x = torch.cat((cond_images, x), dim = 1)
|
| 1558 |
+
|
| 1559 |
+
# initial convolution
|
| 1560 |
+
|
| 1561 |
+
x = self.init_conv(x)
|
| 1562 |
+
|
| 1563 |
+
# init conv residual
|
| 1564 |
+
|
| 1565 |
+
if self.init_conv_to_final_conv_residual:
|
| 1566 |
+
init_conv_residual = x.clone()
|
| 1567 |
+
|
| 1568 |
+
# time conditioning
|
| 1569 |
+
|
| 1570 |
+
time_hiddens = self.to_time_hiddens(time)
|
| 1571 |
+
|
| 1572 |
+
# derive time tokens
|
| 1573 |
+
|
| 1574 |
+
time_tokens = self.to_time_tokens(time_hiddens)
|
| 1575 |
+
t = self.to_time_cond(time_hiddens)
|
| 1576 |
+
|
| 1577 |
+
# add lowres time conditioning to time hiddens
|
| 1578 |
+
# and add lowres time tokens along sequence dimension for attention
|
| 1579 |
+
|
| 1580 |
+
if self.lowres_cond:
|
| 1581 |
+
lowres_time_hiddens = self.to_lowres_time_hiddens(lowres_noise_times)
|
| 1582 |
+
lowres_time_tokens = self.to_lowres_time_tokens(lowres_time_hiddens)
|
| 1583 |
+
lowres_t = self.to_lowres_time_cond(lowres_time_hiddens)
|
| 1584 |
+
|
| 1585 |
+
t = t + lowres_t
|
| 1586 |
+
time_tokens = torch.cat((time_tokens, lowres_time_tokens), dim = -2)
|
| 1587 |
+
|
| 1588 |
+
# text conditioning
|
| 1589 |
+
|
| 1590 |
+
text_tokens = None
|
| 1591 |
+
|
| 1592 |
+
if exists(text_embeds) and self.cond_on_text:
|
| 1593 |
+
|
| 1594 |
+
# conditional dropout
|
| 1595 |
+
|
| 1596 |
+
text_keep_mask = prob_mask_like((batch_size,), 1 - cond_drop_prob, device = device)
|
| 1597 |
+
|
| 1598 |
+
text_keep_mask_embed = rearrange(text_keep_mask, 'b -> b 1 1')
|
| 1599 |
+
text_keep_mask_hidden = rearrange(text_keep_mask, 'b -> b 1')
|
| 1600 |
+
|
| 1601 |
+
# calculate text embeds
|
| 1602 |
+
|
| 1603 |
+
text_tokens = self.text_to_cond(text_embeds)
|
| 1604 |
+
|
| 1605 |
+
text_tokens = text_tokens[:, :self.max_text_len]
|
| 1606 |
+
|
| 1607 |
+
if exists(text_mask):
|
| 1608 |
+
text_mask = text_mask[:, :self.max_text_len]
|
| 1609 |
+
|
| 1610 |
+
text_tokens_len = text_tokens.shape[1]
|
| 1611 |
+
remainder = self.max_text_len - text_tokens_len
|
| 1612 |
+
|
| 1613 |
+
if remainder > 0:
|
| 1614 |
+
text_tokens = F.pad(text_tokens, (0, 0, 0, remainder))
|
| 1615 |
+
|
| 1616 |
+
if exists(text_mask):
|
| 1617 |
+
if remainder > 0:
|
| 1618 |
+
text_mask = F.pad(text_mask, (0, remainder), value = False)
|
| 1619 |
+
|
| 1620 |
+
text_mask = rearrange(text_mask, 'b n -> b n 1')
|
| 1621 |
+
text_keep_mask_embed = text_mask & text_keep_mask_embed
|
| 1622 |
+
|
| 1623 |
+
null_text_embed = self.null_text_embed.to(text_tokens.dtype) # for some reason pytorch AMP not working
|
| 1624 |
+
|
| 1625 |
+
text_tokens = torch.where(
|
| 1626 |
+
text_keep_mask_embed,
|
| 1627 |
+
text_tokens,
|
| 1628 |
+
null_text_embed
|
| 1629 |
+
)
|
| 1630 |
+
|
| 1631 |
+
if exists(self.attn_pool):
|
| 1632 |
+
text_tokens = self.attn_pool(text_tokens)
|
| 1633 |
+
|
| 1634 |
+
# extra non-attention conditioning by projecting and then summing text embeddings to time
|
| 1635 |
+
# termed as text hiddens
|
| 1636 |
+
|
| 1637 |
+
mean_pooled_text_tokens = text_tokens.mean(dim = -2)
|
| 1638 |
+
|
| 1639 |
+
text_hiddens = self.to_text_non_attn_cond(mean_pooled_text_tokens)
|
| 1640 |
+
|
| 1641 |
+
null_text_hidden = self.null_text_hidden.to(t.dtype)
|
| 1642 |
+
|
| 1643 |
+
text_hiddens = torch.where(
|
| 1644 |
+
text_keep_mask_hidden,
|
| 1645 |
+
text_hiddens,
|
| 1646 |
+
null_text_hidden
|
| 1647 |
+
)
|
| 1648 |
+
|
| 1649 |
+
t = t + text_hiddens
|
| 1650 |
+
|
| 1651 |
+
# main conditioning tokens (c)
|
| 1652 |
+
|
| 1653 |
+
c = time_tokens if not exists(text_tokens) else torch.cat((time_tokens, text_tokens), dim = -2)
|
| 1654 |
+
|
| 1655 |
+
# normalize conditioning tokens
|
| 1656 |
+
|
| 1657 |
+
c = self.norm_cond(c)
|
| 1658 |
+
|
| 1659 |
+
# initial resnet block (for memory efficient unet)
|
| 1660 |
+
|
| 1661 |
+
if exists(self.init_resnet_block):
|
| 1662 |
+
x = self.init_resnet_block(x, t)
|
| 1663 |
+
|
| 1664 |
+
# go through the layers of the unet, down and up
|
| 1665 |
+
|
| 1666 |
+
hiddens = []
|
| 1667 |
+
|
| 1668 |
+
for pre_downsample, init_block, resnet_blocks, attn_block, post_downsample in self.downs:
|
| 1669 |
+
if exists(pre_downsample):
|
| 1670 |
+
x = pre_downsample(x)
|
| 1671 |
+
|
| 1672 |
+
x = init_block(x, t, c)
|
| 1673 |
+
|
| 1674 |
+
for resnet_block in resnet_blocks:
|
| 1675 |
+
x = resnet_block(x, t)
|
| 1676 |
+
hiddens.append(x)
|
| 1677 |
+
|
| 1678 |
+
x = attn_block(x, c)
|
| 1679 |
+
hiddens.append(x)
|
| 1680 |
+
|
| 1681 |
+
if exists(post_downsample):
|
| 1682 |
+
x = post_downsample(x)
|
| 1683 |
+
|
| 1684 |
+
x = self.mid_block1(x, t, c)
|
| 1685 |
+
|
| 1686 |
+
if exists(self.mid_attn):
|
| 1687 |
+
x = self.mid_attn(x)
|
| 1688 |
+
|
| 1689 |
+
x = self.mid_block2(x, t, c)
|
| 1690 |
+
|
| 1691 |
+
add_skip_connection = lambda x: torch.cat((x, hiddens.pop() * self.skip_connect_scale), dim = 1)
|
| 1692 |
+
|
| 1693 |
+
up_hiddens = []
|
| 1694 |
+
|
| 1695 |
+
for init_block, resnet_blocks, attn_block, upsample in self.ups:
|
| 1696 |
+
x = add_skip_connection(x)
|
| 1697 |
+
x = init_block(x, t, c)
|
| 1698 |
+
|
| 1699 |
+
for resnet_block in resnet_blocks:
|
| 1700 |
+
x = add_skip_connection(x)
|
| 1701 |
+
x = resnet_block(x, t)
|
| 1702 |
+
|
| 1703 |
+
x = attn_block(x, c)
|
| 1704 |
+
up_hiddens.append(x.contiguous())
|
| 1705 |
+
x = upsample(x)
|
| 1706 |
+
|
| 1707 |
+
# whether to combine all feature maps from upsample blocks
|
| 1708 |
+
|
| 1709 |
+
x = self.upsample_combiner(x, up_hiddens)
|
| 1710 |
+
|
| 1711 |
+
# final top-most residual if needed
|
| 1712 |
+
|
| 1713 |
+
if self.init_conv_to_final_conv_residual:
|
| 1714 |
+
x = torch.cat((x, init_conv_residual), dim = 1)
|
| 1715 |
+
|
| 1716 |
+
if exists(self.final_res_block):
|
| 1717 |
+
x = self.final_res_block(x, t)
|
| 1718 |
+
|
| 1719 |
+
if exists(lowres_cond_img):
|
| 1720 |
+
x = torch.cat((x, lowres_cond_img), dim = 1)
|
| 1721 |
+
|
| 1722 |
+
return self.final_conv(x)
|
| 1723 |
+
|
| 1724 |
+
# null unet
|
| 1725 |
+
|
| 1726 |
+
class NullUnet(nn.Module):
|
| 1727 |
+
def __init__(self, *args, **kwargs):
|
| 1728 |
+
super().__init__()
|
| 1729 |
+
self.lowres_cond = False
|
| 1730 |
+
self.dummy_parameter = nn.Parameter(torch.tensor([0.]))
|
| 1731 |
+
|
| 1732 |
+
def cast_model_parameters(self, *args, **kwargs):
|
| 1733 |
+
return self
|
| 1734 |
+
|
| 1735 |
+
def forward(self, x, *args, **kwargs):
|
| 1736 |
+
return x
|
| 1737 |
+
|
| 1738 |
+
# predefined unets, with configs lining up with hyperparameters in appendix of paper
|
| 1739 |
+
|
| 1740 |
+
class BaseUnet64(Unet):
|
| 1741 |
+
def __init__(self, *args, **kwargs):
|
| 1742 |
+
default_kwargs = dict(
|
| 1743 |
+
dim = 512,
|
| 1744 |
+
dim_mults = (1, 2, 3, 4),
|
| 1745 |
+
num_resnet_blocks = 3,
|
| 1746 |
+
layer_attns = (False, True, True, True),
|
| 1747 |
+
layer_cross_attns = (False, True, True, True),
|
| 1748 |
+
attn_heads = 8,
|
| 1749 |
+
ff_mult = 2.,
|
| 1750 |
+
memory_efficient = False
|
| 1751 |
+
)
|
| 1752 |
+
super().__init__(*args, **{**default_kwargs, **kwargs})
|
| 1753 |
+
|
| 1754 |
+
class SRUnet256(Unet):
|
| 1755 |
+
def __init__(self, *args, **kwargs):
|
| 1756 |
+
default_kwargs = dict(
|
| 1757 |
+
dim = 128,
|
| 1758 |
+
dim_mults = (1, 2, 4, 8),
|
| 1759 |
+
num_resnet_blocks = (2, 4, 8, 8),
|
| 1760 |
+
layer_attns = (False, False, False, True),
|
| 1761 |
+
layer_cross_attns = (False, False, False, True),
|
| 1762 |
+
attn_heads = 8,
|
| 1763 |
+
ff_mult = 2.,
|
| 1764 |
+
memory_efficient = True
|
| 1765 |
+
)
|
| 1766 |
+
super().__init__(*args, **{**default_kwargs, **kwargs})
|
| 1767 |
+
|
| 1768 |
+
class SRUnet1024(Unet):
|
| 1769 |
+
def __init__(self, *args, **kwargs):
|
| 1770 |
+
default_kwargs = dict(
|
| 1771 |
+
dim = 128,
|
| 1772 |
+
dim_mults = (1, 2, 4, 8),
|
| 1773 |
+
num_resnet_blocks = (2, 4, 8, 8),
|
| 1774 |
+
layer_attns = False,
|
| 1775 |
+
layer_cross_attns = (False, False, False, True),
|
| 1776 |
+
attn_heads = 8,
|
| 1777 |
+
ff_mult = 2.,
|
| 1778 |
+
memory_efficient = True
|
| 1779 |
+
)
|
| 1780 |
+
super().__init__(*args, **{**default_kwargs, **kwargs})
|
| 1781 |
+
|
| 1782 |
+
# main imagen ddpm class, which is a cascading DDPM from Ho et al.
|
| 1783 |
+
|
| 1784 |
+
class Imagen(nn.Module):
|
| 1785 |
+
def __init__(
|
| 1786 |
+
self,
|
| 1787 |
+
unets,
|
| 1788 |
+
*,
|
| 1789 |
+
image_sizes, # for cascading ddpm, image size at each stage
|
| 1790 |
+
text_encoder_name = DEFAULT_T5_NAME,
|
| 1791 |
+
text_embed_dim = None,
|
| 1792 |
+
channels = 3,
|
| 1793 |
+
timesteps = 1000,
|
| 1794 |
+
cond_drop_prob = 0.1,
|
| 1795 |
+
loss_type = 'l2',
|
| 1796 |
+
noise_schedules = 'cosine',
|
| 1797 |
+
pred_objectives = 'noise',
|
| 1798 |
+
random_crop_sizes = None,
|
| 1799 |
+
lowres_noise_schedule = 'linear',
|
| 1800 |
+
lowres_sample_noise_level = 0.2, # in the paper, they present a new trick where they noise the lowres conditioning image, and at sample time, fix it to a certain level (0.1 or 0.3) - the unets are also made to be conditioned on this noise level
|
| 1801 |
+
per_sample_random_aug_noise_level = False, # unclear when conditioning on augmentation noise level, whether each batch element receives a random aug noise value - turning off due to @marunine's find
|
| 1802 |
+
condition_on_text = True,
|
| 1803 |
+
auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader
|
| 1804 |
+
dynamic_thresholding = True,
|
| 1805 |
+
dynamic_thresholding_percentile = 0.95, # unsure what this was based on perusal of paper
|
| 1806 |
+
only_train_unet_number = None,
|
| 1807 |
+
temporal_downsample_factor = 1,
|
| 1808 |
+
resize_cond_video_frames = True,
|
| 1809 |
+
resize_mode = 'nearest',
|
| 1810 |
+
min_snr_loss_weight = True, # https://arxiv.org/abs/2303.09556
|
| 1811 |
+
min_snr_gamma = 5
|
| 1812 |
+
):
|
| 1813 |
+
super().__init__()
|
| 1814 |
+
|
| 1815 |
+
# loss
|
| 1816 |
+
|
| 1817 |
+
if loss_type == 'l1':
|
| 1818 |
+
loss_fn = F.l1_loss
|
| 1819 |
+
elif loss_type == 'l2':
|
| 1820 |
+
loss_fn = F.mse_loss
|
| 1821 |
+
elif loss_type == 'huber':
|
| 1822 |
+
loss_fn = F.smooth_l1_loss
|
| 1823 |
+
else:
|
| 1824 |
+
raise NotImplementedError()
|
| 1825 |
+
|
| 1826 |
+
self.loss_type = loss_type
|
| 1827 |
+
self.loss_fn = loss_fn
|
| 1828 |
+
|
| 1829 |
+
# conditioning hparams
|
| 1830 |
+
|
| 1831 |
+
self.condition_on_text = condition_on_text
|
| 1832 |
+
self.unconditional = not condition_on_text
|
| 1833 |
+
|
| 1834 |
+
# channels
|
| 1835 |
+
|
| 1836 |
+
self.channels = channels
|
| 1837 |
+
|
| 1838 |
+
# automatically take care of ensuring that first unet is unconditional
|
| 1839 |
+
# while the rest of the unets are conditioned on the low resolution image produced by previous unet
|
| 1840 |
+
|
| 1841 |
+
unets = cast_tuple(unets)
|
| 1842 |
+
num_unets = len(unets)
|
| 1843 |
+
|
| 1844 |
+
# determine noise schedules per unet
|
| 1845 |
+
|
| 1846 |
+
timesteps = cast_tuple(timesteps, num_unets)
|
| 1847 |
+
|
| 1848 |
+
# make sure noise schedule defaults to 'cosine', 'cosine', and then 'linear' for rest of super-resoluting unets
|
| 1849 |
+
|
| 1850 |
+
noise_schedules = cast_tuple(noise_schedules)
|
| 1851 |
+
noise_schedules = pad_tuple_to_length(noise_schedules, 2, 'cosine')
|
| 1852 |
+
noise_schedules = pad_tuple_to_length(noise_schedules, num_unets, 'linear')
|
| 1853 |
+
|
| 1854 |
+
# construct noise schedulers
|
| 1855 |
+
|
| 1856 |
+
noise_scheduler_klass = GaussianDiffusionContinuousTimes
|
| 1857 |
+
self.noise_schedulers = nn.ModuleList([])
|
| 1858 |
+
|
| 1859 |
+
for timestep, noise_schedule in zip(timesteps, noise_schedules):
|
| 1860 |
+
noise_scheduler = noise_scheduler_klass(noise_schedule = noise_schedule, timesteps = timestep)
|
| 1861 |
+
self.noise_schedulers.append(noise_scheduler)
|
| 1862 |
+
|
| 1863 |
+
# randomly cropping for upsampler training
|
| 1864 |
+
|
| 1865 |
+
self.random_crop_sizes = cast_tuple(random_crop_sizes, num_unets)
|
| 1866 |
+
assert not exists(first(self.random_crop_sizes)), 'you should not need to randomly crop image during training for base unet, only for upsamplers - so pass in `random_crop_sizes = (None, 128, 256)` as example'
|
| 1867 |
+
|
| 1868 |
+
# lowres augmentation noise schedule
|
| 1869 |
+
|
| 1870 |
+
self.lowres_noise_schedule = GaussianDiffusionContinuousTimes(noise_schedule = lowres_noise_schedule)
|
| 1871 |
+
|
| 1872 |
+
# ddpm objectives - predicting noise by default
|
| 1873 |
+
|
| 1874 |
+
self.pred_objectives = cast_tuple(pred_objectives, num_unets)
|
| 1875 |
+
|
| 1876 |
+
# get text encoder
|
| 1877 |
+
|
| 1878 |
+
self.text_encoder_name = text_encoder_name
|
| 1879 |
+
self.text_embed_dim = default(text_embed_dim, lambda: get_encoded_dim(text_encoder_name))
|
| 1880 |
+
|
| 1881 |
+
self.encode_text = partial(t5_encode_text, name = text_encoder_name)
|
| 1882 |
+
|
| 1883 |
+
# construct unets
|
| 1884 |
+
|
| 1885 |
+
self.unets = nn.ModuleList([])
|
| 1886 |
+
|
| 1887 |
+
self.unet_being_trained_index = -1 # keeps track of which unet is being trained at the moment
|
| 1888 |
+
self.only_train_unet_number = only_train_unet_number
|
| 1889 |
+
|
| 1890 |
+
for ind, one_unet in enumerate(unets):
|
| 1891 |
+
assert isinstance(one_unet, (Unet, Unet3D, NullUnet))
|
| 1892 |
+
is_first = ind == 0
|
| 1893 |
+
|
| 1894 |
+
one_unet = one_unet.cast_model_parameters(
|
| 1895 |
+
lowres_cond = not is_first,
|
| 1896 |
+
cond_on_text = self.condition_on_text,
|
| 1897 |
+
text_embed_dim = self.text_embed_dim if self.condition_on_text else None,
|
| 1898 |
+
channels = self.channels,
|
| 1899 |
+
channels_out = self.channels
|
| 1900 |
+
)
|
| 1901 |
+
|
| 1902 |
+
self.unets.append(one_unet)
|
| 1903 |
+
|
| 1904 |
+
# unet image sizes
|
| 1905 |
+
|
| 1906 |
+
image_sizes = cast_tuple(image_sizes)
|
| 1907 |
+
self.image_sizes = image_sizes
|
| 1908 |
+
|
| 1909 |
+
assert num_unets == len(image_sizes), f'you did not supply the correct number of u-nets ({len(unets)}) for resolutions {image_sizes}'
|
| 1910 |
+
|
| 1911 |
+
self.sample_channels = cast_tuple(self.channels, num_unets)
|
| 1912 |
+
|
| 1913 |
+
# determine whether we are training on images or video
|
| 1914 |
+
|
| 1915 |
+
is_video = any([isinstance(unet, Unet3D) for unet in self.unets])
|
| 1916 |
+
self.is_video = is_video
|
| 1917 |
+
|
| 1918 |
+
self.right_pad_dims_to_datatype = partial(rearrange, pattern = ('b -> b 1 1 1' if not is_video else 'b -> b 1 1 1 1'))
|
| 1919 |
+
|
| 1920 |
+
self.resize_to = resize_video_to if is_video else resize_image_to
|
| 1921 |
+
self.resize_to = partial(self.resize_to, mode = resize_mode)
|
| 1922 |
+
|
| 1923 |
+
# temporal interpolation
|
| 1924 |
+
|
| 1925 |
+
temporal_downsample_factor = cast_tuple(temporal_downsample_factor, num_unets)
|
| 1926 |
+
self.temporal_downsample_factor = temporal_downsample_factor
|
| 1927 |
+
|
| 1928 |
+
self.resize_cond_video_frames = resize_cond_video_frames
|
| 1929 |
+
self.temporal_downsample_divisor = temporal_downsample_factor[0]
|
| 1930 |
+
|
| 1931 |
+
assert temporal_downsample_factor[-1] == 1, 'downsample factor of last stage must be 1'
|
| 1932 |
+
assert tuple(sorted(temporal_downsample_factor, reverse = True)) == temporal_downsample_factor, 'temporal downsample factor must be in order of descending'
|
| 1933 |
+
|
| 1934 |
+
# cascading ddpm related stuff
|
| 1935 |
+
|
| 1936 |
+
lowres_conditions = tuple(map(lambda t: t.lowres_cond, self.unets))
|
| 1937 |
+
assert lowres_conditions == (False, *((True,) * (num_unets - 1))), 'the first unet must be unconditioned (by low resolution image), and the rest of the unets must have `lowres_cond` set to True'
|
| 1938 |
+
|
| 1939 |
+
self.lowres_sample_noise_level = lowres_sample_noise_level
|
| 1940 |
+
self.per_sample_random_aug_noise_level = per_sample_random_aug_noise_level
|
| 1941 |
+
|
| 1942 |
+
# classifier free guidance
|
| 1943 |
+
|
| 1944 |
+
self.cond_drop_prob = cond_drop_prob
|
| 1945 |
+
self.can_classifier_guidance = cond_drop_prob > 0.
|
| 1946 |
+
|
| 1947 |
+
# normalize and unnormalize image functions
|
| 1948 |
+
|
| 1949 |
+
self.normalize_img = normalize_neg_one_to_one if auto_normalize_img else identity
|
| 1950 |
+
self.unnormalize_img = unnormalize_zero_to_one if auto_normalize_img else identity
|
| 1951 |
+
self.input_image_range = (0. if auto_normalize_img else -1., 1.)
|
| 1952 |
+
|
| 1953 |
+
# dynamic thresholding
|
| 1954 |
+
|
| 1955 |
+
self.dynamic_thresholding = cast_tuple(dynamic_thresholding, num_unets)
|
| 1956 |
+
self.dynamic_thresholding_percentile = dynamic_thresholding_percentile
|
| 1957 |
+
|
| 1958 |
+
# min snr loss weight
|
| 1959 |
+
|
| 1960 |
+
min_snr_loss_weight = cast_tuple(min_snr_loss_weight, num_unets)
|
| 1961 |
+
min_snr_gamma = cast_tuple(min_snr_gamma, num_unets)
|
| 1962 |
+
|
| 1963 |
+
assert len(min_snr_loss_weight) == len(min_snr_gamma) == num_unets
|
| 1964 |
+
self.min_snr_gamma = tuple((gamma if use_min_snr else None) for use_min_snr, gamma in zip(min_snr_loss_weight, min_snr_gamma))
|
| 1965 |
+
|
| 1966 |
+
# one temp parameter for keeping track of device
|
| 1967 |
+
|
| 1968 |
+
self.register_buffer('_temp', torch.tensor([0.]), persistent = False)
|
| 1969 |
+
|
| 1970 |
+
# default to device of unets passed in
|
| 1971 |
+
|
| 1972 |
+
self.to(next(self.unets.parameters()).device)
|
| 1973 |
+
|
| 1974 |
+
def force_unconditional_(self):
|
| 1975 |
+
self.condition_on_text = False
|
| 1976 |
+
self.unconditional = True
|
| 1977 |
+
|
| 1978 |
+
for unet in self.unets:
|
| 1979 |
+
unet.cond_on_text = False
|
| 1980 |
+
|
| 1981 |
+
@property
|
| 1982 |
+
def device(self):
|
| 1983 |
+
return self._temp.device
|
| 1984 |
+
|
| 1985 |
+
def get_unet(self, unet_number):
|
| 1986 |
+
assert 0 < unet_number <= len(self.unets)
|
| 1987 |
+
index = unet_number - 1
|
| 1988 |
+
|
| 1989 |
+
if isinstance(self.unets, nn.ModuleList):
|
| 1990 |
+
unets_list = [unet for unet in self.unets]
|
| 1991 |
+
delattr(self, 'unets')
|
| 1992 |
+
self.unets = unets_list
|
| 1993 |
+
|
| 1994 |
+
if index != self.unet_being_trained_index:
|
| 1995 |
+
for unet_index, unet in enumerate(self.unets):
|
| 1996 |
+
unet.to(self.device if unet_index == index else 'cpu')
|
| 1997 |
+
|
| 1998 |
+
self.unet_being_trained_index = index
|
| 1999 |
+
return self.unets[index]
|
| 2000 |
+
|
| 2001 |
+
def reset_unets_all_one_device(self, device = None):
|
| 2002 |
+
device = default(device, self.device)
|
| 2003 |
+
self.unets = nn.ModuleList([*self.unets])
|
| 2004 |
+
self.unets.to(device)
|
| 2005 |
+
|
| 2006 |
+
self.unet_being_trained_index = -1
|
| 2007 |
+
|
| 2008 |
+
@contextmanager
|
| 2009 |
+
def one_unet_in_gpu(self, unet_number = None, unet = None):
|
| 2010 |
+
assert exists(unet_number) ^ exists(unet)
|
| 2011 |
+
|
| 2012 |
+
if exists(unet_number):
|
| 2013 |
+
unet = self.unets[unet_number - 1]
|
| 2014 |
+
|
| 2015 |
+
cpu = torch.device('cpu')
|
| 2016 |
+
|
| 2017 |
+
devices = [module_device(unet) for unet in self.unets]
|
| 2018 |
+
|
| 2019 |
+
self.unets.to(cpu)
|
| 2020 |
+
unet.to(self.device)
|
| 2021 |
+
|
| 2022 |
+
yield
|
| 2023 |
+
|
| 2024 |
+
for unet, device in zip(self.unets, devices):
|
| 2025 |
+
unet.to(device)
|
| 2026 |
+
|
| 2027 |
+
# overriding state dict functions
|
| 2028 |
+
|
| 2029 |
+
def state_dict(self, *args, **kwargs):
|
| 2030 |
+
self.reset_unets_all_one_device()
|
| 2031 |
+
return super().state_dict(*args, **kwargs)
|
| 2032 |
+
|
| 2033 |
+
def load_state_dict(self, *args, **kwargs):
|
| 2034 |
+
self.reset_unets_all_one_device()
|
| 2035 |
+
return super().load_state_dict(*args, **kwargs)
|
| 2036 |
+
|
| 2037 |
+
# gaussian diffusion methods
|
| 2038 |
+
|
| 2039 |
+
def p_mean_variance(
|
| 2040 |
+
self,
|
| 2041 |
+
unet,
|
| 2042 |
+
x,
|
| 2043 |
+
t,
|
| 2044 |
+
*,
|
| 2045 |
+
noise_scheduler,
|
| 2046 |
+
text_embeds = None,
|
| 2047 |
+
text_mask = None,
|
| 2048 |
+
cond_images = None,
|
| 2049 |
+
cond_video_frames = None,
|
| 2050 |
+
post_cond_video_frames = None,
|
| 2051 |
+
lowres_cond_img = None,
|
| 2052 |
+
self_cond = None,
|
| 2053 |
+
lowres_noise_times = None,
|
| 2054 |
+
cond_scale = 1.,
|
| 2055 |
+
model_output = None,
|
| 2056 |
+
t_next = None,
|
| 2057 |
+
pred_objective = 'noise',
|
| 2058 |
+
dynamic_threshold = True
|
| 2059 |
+
):
|
| 2060 |
+
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'imagen was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
|
| 2061 |
+
|
| 2062 |
+
video_kwargs = dict()
|
| 2063 |
+
if self.is_video:
|
| 2064 |
+
video_kwargs = dict(
|
| 2065 |
+
cond_video_frames = cond_video_frames,
|
| 2066 |
+
post_cond_video_frames = post_cond_video_frames,
|
| 2067 |
+
)
|
| 2068 |
+
|
| 2069 |
+
pred = default(model_output, lambda: unet.forward_with_cond_scale(
|
| 2070 |
+
x,
|
| 2071 |
+
noise_scheduler.get_condition(t),
|
| 2072 |
+
text_embeds = text_embeds,
|
| 2073 |
+
text_mask = text_mask,
|
| 2074 |
+
cond_images = cond_images,
|
| 2075 |
+
cond_scale = cond_scale,
|
| 2076 |
+
lowres_cond_img = lowres_cond_img,
|
| 2077 |
+
self_cond = self_cond,
|
| 2078 |
+
lowres_noise_times = self.lowres_noise_schedule.get_condition(lowres_noise_times),
|
| 2079 |
+
**video_kwargs
|
| 2080 |
+
))
|
| 2081 |
+
|
| 2082 |
+
if pred_objective == 'noise':
|
| 2083 |
+
x_start = noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
|
| 2084 |
+
elif pred_objective == 'x_start':
|
| 2085 |
+
x_start = pred
|
| 2086 |
+
elif pred_objective == 'v':
|
| 2087 |
+
x_start = noise_scheduler.predict_start_from_v(x, t = t, v = pred)
|
| 2088 |
+
else:
|
| 2089 |
+
raise ValueError(f'unknown objective {pred_objective}')
|
| 2090 |
+
|
| 2091 |
+
if dynamic_threshold:
|
| 2092 |
+
# following pseudocode in appendix
|
| 2093 |
+
# s is the dynamic threshold, determined by percentile of absolute values of reconstructed sample per batch element
|
| 2094 |
+
s = torch.quantile(
|
| 2095 |
+
rearrange(x_start, 'b ... -> b (...)').abs(),
|
| 2096 |
+
self.dynamic_thresholding_percentile,
|
| 2097 |
+
dim = -1
|
| 2098 |
+
)
|
| 2099 |
+
|
| 2100 |
+
s.clamp_(min = 1.)
|
| 2101 |
+
s = right_pad_dims_to(x_start, s)
|
| 2102 |
+
x_start = x_start.clamp(-s, s) / s
|
| 2103 |
+
else:
|
| 2104 |
+
x_start.clamp_(-1., 1.)
|
| 2105 |
+
|
| 2106 |
+
mean_and_variance = noise_scheduler.q_posterior(x_start = x_start, x_t = x, t = t, t_next = t_next)
|
| 2107 |
+
return mean_and_variance, x_start
|
| 2108 |
+
|
| 2109 |
+
@torch.no_grad()
|
| 2110 |
+
def p_sample(
|
| 2111 |
+
self,
|
| 2112 |
+
unet,
|
| 2113 |
+
x,
|
| 2114 |
+
t,
|
| 2115 |
+
*,
|
| 2116 |
+
noise_scheduler,
|
| 2117 |
+
t_next = None,
|
| 2118 |
+
text_embeds = None,
|
| 2119 |
+
text_mask = None,
|
| 2120 |
+
cond_images = None,
|
| 2121 |
+
cond_video_frames = None,
|
| 2122 |
+
post_cond_video_frames = None,
|
| 2123 |
+
cond_scale = 1.,
|
| 2124 |
+
self_cond = None,
|
| 2125 |
+
lowres_cond_img = None,
|
| 2126 |
+
lowres_noise_times = None,
|
| 2127 |
+
pred_objective = 'noise',
|
| 2128 |
+
dynamic_threshold = True
|
| 2129 |
+
):
|
| 2130 |
+
b, *_, device = *x.shape, x.device
|
| 2131 |
+
|
| 2132 |
+
video_kwargs = dict()
|
| 2133 |
+
if self.is_video:
|
| 2134 |
+
video_kwargs = dict(
|
| 2135 |
+
cond_video_frames = cond_video_frames,
|
| 2136 |
+
post_cond_video_frames = post_cond_video_frames,
|
| 2137 |
+
)
|
| 2138 |
+
|
| 2139 |
+
(model_mean, _, model_log_variance), x_start = self.p_mean_variance(
|
| 2140 |
+
unet,
|
| 2141 |
+
x = x,
|
| 2142 |
+
t = t,
|
| 2143 |
+
t_next = t_next,
|
| 2144 |
+
noise_scheduler = noise_scheduler,
|
| 2145 |
+
text_embeds = text_embeds,
|
| 2146 |
+
text_mask = text_mask,
|
| 2147 |
+
cond_images = cond_images,
|
| 2148 |
+
cond_scale = cond_scale,
|
| 2149 |
+
lowres_cond_img = lowres_cond_img,
|
| 2150 |
+
self_cond = self_cond,
|
| 2151 |
+
lowres_noise_times = lowres_noise_times,
|
| 2152 |
+
pred_objective = pred_objective,
|
| 2153 |
+
dynamic_threshold = dynamic_threshold,
|
| 2154 |
+
**video_kwargs
|
| 2155 |
+
)
|
| 2156 |
+
|
| 2157 |
+
noise = torch.randn_like(x)
|
| 2158 |
+
# no noise when t == 0
|
| 2159 |
+
is_last_sampling_timestep = (t_next == 0) if isinstance(noise_scheduler, GaussianDiffusionContinuousTimes) else (t == 0)
|
| 2160 |
+
nonzero_mask = (1 - is_last_sampling_timestep.float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
| 2161 |
+
pred = model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
| 2162 |
+
return pred, x_start
|
| 2163 |
+
|
| 2164 |
+
@torch.no_grad()
|
| 2165 |
+
def p_sample_loop(
|
| 2166 |
+
self,
|
| 2167 |
+
unet,
|
| 2168 |
+
shape,
|
| 2169 |
+
*,
|
| 2170 |
+
noise_scheduler,
|
| 2171 |
+
lowres_cond_img = None,
|
| 2172 |
+
lowres_noise_times = None,
|
| 2173 |
+
text_embeds = None,
|
| 2174 |
+
text_mask = None,
|
| 2175 |
+
cond_images = None,
|
| 2176 |
+
cond_video_frames = None,
|
| 2177 |
+
post_cond_video_frames = None,
|
| 2178 |
+
inpaint_images = None,
|
| 2179 |
+
inpaint_videos = None,
|
| 2180 |
+
inpaint_masks = None,
|
| 2181 |
+
inpaint_resample_times = 5,
|
| 2182 |
+
init_images = None,
|
| 2183 |
+
skip_steps = None,
|
| 2184 |
+
cond_scale = 1,
|
| 2185 |
+
pred_objective = 'noise',
|
| 2186 |
+
dynamic_threshold = True,
|
| 2187 |
+
use_tqdm = True
|
| 2188 |
+
):
|
| 2189 |
+
device = self.device
|
| 2190 |
+
|
| 2191 |
+
batch = shape[0]
|
| 2192 |
+
img = torch.randn(shape, device = device)
|
| 2193 |
+
|
| 2194 |
+
# video
|
| 2195 |
+
|
| 2196 |
+
is_video = len(shape) == 5
|
| 2197 |
+
frames = shape[-3] if is_video else None
|
| 2198 |
+
resize_kwargs = dict(target_frames = frames) if exists(frames) else dict()
|
| 2199 |
+
|
| 2200 |
+
# for initialization with an image or video
|
| 2201 |
+
|
| 2202 |
+
if exists(init_images):
|
| 2203 |
+
img += init_images
|
| 2204 |
+
|
| 2205 |
+
# keep track of x0, for self conditioning
|
| 2206 |
+
|
| 2207 |
+
x_start = None
|
| 2208 |
+
|
| 2209 |
+
# prepare inpainting
|
| 2210 |
+
|
| 2211 |
+
inpaint_images = default(inpaint_videos, inpaint_images)
|
| 2212 |
+
|
| 2213 |
+
has_inpainting = exists(inpaint_images) and exists(inpaint_masks)
|
| 2214 |
+
resample_times = inpaint_resample_times if has_inpainting else 1
|
| 2215 |
+
|
| 2216 |
+
if has_inpainting:
|
| 2217 |
+
inpaint_images = self.normalize_img(inpaint_images)
|
| 2218 |
+
inpaint_images = self.resize_to(inpaint_images, shape[-1], **resize_kwargs)
|
| 2219 |
+
inpaint_masks = self.resize_to(rearrange(inpaint_masks, 'b ... -> b 1 ...').float(), shape[-1], **resize_kwargs).bool()
|
| 2220 |
+
|
| 2221 |
+
# time
|
| 2222 |
+
|
| 2223 |
+
timesteps = noise_scheduler.get_sampling_timesteps(batch, device = device)
|
| 2224 |
+
|
| 2225 |
+
# whether to skip any steps
|
| 2226 |
+
|
| 2227 |
+
skip_steps = default(skip_steps, 0)
|
| 2228 |
+
timesteps = timesteps[skip_steps:]
|
| 2229 |
+
|
| 2230 |
+
# video conditioning kwargs
|
| 2231 |
+
|
| 2232 |
+
video_kwargs = dict()
|
| 2233 |
+
if self.is_video:
|
| 2234 |
+
video_kwargs = dict(
|
| 2235 |
+
cond_video_frames = cond_video_frames,
|
| 2236 |
+
post_cond_video_frames = post_cond_video_frames,
|
| 2237 |
+
)
|
| 2238 |
+
|
| 2239 |
+
for times, times_next in tqdm(timesteps, desc = 'sampling loop time step', total = len(timesteps), disable = not use_tqdm):
|
| 2240 |
+
is_last_timestep = times_next == 0
|
| 2241 |
+
|
| 2242 |
+
for r in reversed(range(resample_times)):
|
| 2243 |
+
is_last_resample_step = r == 0
|
| 2244 |
+
|
| 2245 |
+
if has_inpainting:
|
| 2246 |
+
noised_inpaint_images, *_ = noise_scheduler.q_sample(inpaint_images, t = times)
|
| 2247 |
+
img = img * ~inpaint_masks + noised_inpaint_images * inpaint_masks
|
| 2248 |
+
|
| 2249 |
+
self_cond = x_start if unet.self_cond else None
|
| 2250 |
+
|
| 2251 |
+
img, x_start = self.p_sample(
|
| 2252 |
+
unet,
|
| 2253 |
+
img,
|
| 2254 |
+
times,
|
| 2255 |
+
t_next = times_next,
|
| 2256 |
+
text_embeds = text_embeds,
|
| 2257 |
+
text_mask = text_mask,
|
| 2258 |
+
cond_images = cond_images,
|
| 2259 |
+
cond_scale = cond_scale,
|
| 2260 |
+
self_cond = self_cond,
|
| 2261 |
+
lowres_cond_img = lowres_cond_img,
|
| 2262 |
+
lowres_noise_times = lowres_noise_times,
|
| 2263 |
+
noise_scheduler = noise_scheduler,
|
| 2264 |
+
pred_objective = pred_objective,
|
| 2265 |
+
dynamic_threshold = dynamic_threshold,
|
| 2266 |
+
**video_kwargs
|
| 2267 |
+
)
|
| 2268 |
+
|
| 2269 |
+
if has_inpainting and not (is_last_resample_step or torch.all(is_last_timestep)):
|
| 2270 |
+
renoised_img = noise_scheduler.q_sample_from_to(img, times_next, times)
|
| 2271 |
+
|
| 2272 |
+
img = torch.where(
|
| 2273 |
+
self.right_pad_dims_to_datatype(is_last_timestep),
|
| 2274 |
+
img,
|
| 2275 |
+
renoised_img
|
| 2276 |
+
)
|
| 2277 |
+
|
| 2278 |
+
img.clamp_(-1., 1.)
|
| 2279 |
+
|
| 2280 |
+
# final inpainting
|
| 2281 |
+
|
| 2282 |
+
if has_inpainting:
|
| 2283 |
+
img = img * ~inpaint_masks + inpaint_images * inpaint_masks
|
| 2284 |
+
|
| 2285 |
+
unnormalize_img = self.unnormalize_img(img)
|
| 2286 |
+
return unnormalize_img
|
| 2287 |
+
|
| 2288 |
+
@torch.no_grad()
|
| 2289 |
+
@eval_decorator
|
| 2290 |
+
@beartype
|
| 2291 |
+
def sample(
|
| 2292 |
+
self,
|
| 2293 |
+
texts: List[str] = None,
|
| 2294 |
+
text_masks = None,
|
| 2295 |
+
text_embeds = None,
|
| 2296 |
+
video_frames = None,
|
| 2297 |
+
cond_images = None,
|
| 2298 |
+
cond_video_frames = None,
|
| 2299 |
+
post_cond_video_frames = None,
|
| 2300 |
+
inpaint_videos = None,
|
| 2301 |
+
inpaint_images = None,
|
| 2302 |
+
inpaint_masks = None,
|
| 2303 |
+
inpaint_resample_times = 5,
|
| 2304 |
+
init_images = None,
|
| 2305 |
+
skip_steps = None,
|
| 2306 |
+
batch_size = 1,
|
| 2307 |
+
cond_scale = 1.,
|
| 2308 |
+
lowres_sample_noise_level = None,
|
| 2309 |
+
start_at_unet_number = 1,
|
| 2310 |
+
start_image_or_video = None,
|
| 2311 |
+
stop_at_unet_number = None,
|
| 2312 |
+
return_all_unet_outputs = False,
|
| 2313 |
+
return_pil_images = False,
|
| 2314 |
+
device = None,
|
| 2315 |
+
use_tqdm = True,
|
| 2316 |
+
use_one_unet_in_gpu = True
|
| 2317 |
+
):
|
| 2318 |
+
device = default(device, self.device)
|
| 2319 |
+
self.reset_unets_all_one_device(device = device)
|
| 2320 |
+
|
| 2321 |
+
cond_images = maybe(cast_uint8_images_to_float)(cond_images)
|
| 2322 |
+
|
| 2323 |
+
if exists(texts) and not exists(text_embeds) and not self.unconditional:
|
| 2324 |
+
assert all([*map(len, texts)]), 'text cannot be empty'
|
| 2325 |
+
|
| 2326 |
+
with autocast(enabled = False):
|
| 2327 |
+
text_embeds, text_masks = self.encode_text(texts, return_attn_mask = True)
|
| 2328 |
+
|
| 2329 |
+
text_embeds, text_masks = map(lambda t: t.to(device), (text_embeds, text_masks))
|
| 2330 |
+
|
| 2331 |
+
if not self.unconditional:
|
| 2332 |
+
assert exists(text_embeds), 'text must be passed in if the network was not trained without text `condition_on_text` must be set to `False` when training'
|
| 2333 |
+
|
| 2334 |
+
text_masks = default(text_masks, lambda: torch.any(text_embeds != 0., dim = -1))
|
| 2335 |
+
batch_size = text_embeds.shape[0]
|
| 2336 |
+
|
| 2337 |
+
# inpainting
|
| 2338 |
+
|
| 2339 |
+
inpaint_images = default(inpaint_videos, inpaint_images)
|
| 2340 |
+
|
| 2341 |
+
if exists(inpaint_images):
|
| 2342 |
+
if self.unconditional:
|
| 2343 |
+
if batch_size == 1: # assume researcher wants to broadcast along inpainted images
|
| 2344 |
+
batch_size = inpaint_images.shape[0]
|
| 2345 |
+
|
| 2346 |
+
assert inpaint_images.shape[0] == batch_size, 'number of inpainting images must be equal to the specified batch size on sample `sample(batch_size=<int>)``'
|
| 2347 |
+
assert not (self.condition_on_text and inpaint_images.shape[0] != text_embeds.shape[0]), 'number of inpainting images must be equal to the number of text to be conditioned on'
|
| 2348 |
+
|
| 2349 |
+
assert not (self.condition_on_text and not exists(text_embeds)), 'text or text encodings must be passed into imagen if specified'
|
| 2350 |
+
assert not (not self.condition_on_text and exists(text_embeds)), 'imagen specified not to be conditioned on text, yet it is presented'
|
| 2351 |
+
assert not (exists(text_embeds) and text_embeds.shape[-1] != self.text_embed_dim), f'invalid text embedding dimension being passed in (should be {self.text_embed_dim})'
|
| 2352 |
+
|
| 2353 |
+
assert not (exists(inpaint_images) ^ exists(inpaint_masks)), 'inpaint images and masks must be both passed in to do inpainting'
|
| 2354 |
+
|
| 2355 |
+
outputs = []
|
| 2356 |
+
|
| 2357 |
+
is_cuda = next(self.parameters()).is_cuda
|
| 2358 |
+
device = next(self.parameters()).device
|
| 2359 |
+
|
| 2360 |
+
lowres_sample_noise_level = default(lowres_sample_noise_level, self.lowres_sample_noise_level)
|
| 2361 |
+
|
| 2362 |
+
num_unets = len(self.unets)
|
| 2363 |
+
|
| 2364 |
+
# condition scaling
|
| 2365 |
+
|
| 2366 |
+
cond_scale = cast_tuple(cond_scale, num_unets)
|
| 2367 |
+
|
| 2368 |
+
# add frame dimension for video
|
| 2369 |
+
|
| 2370 |
+
if self.is_video and exists(inpaint_images):
|
| 2371 |
+
video_frames = inpaint_images.shape[2]
|
| 2372 |
+
|
| 2373 |
+
if inpaint_masks.ndim == 3:
|
| 2374 |
+
inpaint_masks = repeat(inpaint_masks, 'b h w -> b f h w', f = video_frames)
|
| 2375 |
+
|
| 2376 |
+
assert inpaint_masks.shape[1] == video_frames
|
| 2377 |
+
|
| 2378 |
+
assert not (self.is_video and not exists(video_frames)), 'video_frames must be passed in on sample time if training on video'
|
| 2379 |
+
|
| 2380 |
+
all_frame_dims = calc_all_frame_dims(self.temporal_downsample_factor, video_frames)
|
| 2381 |
+
|
| 2382 |
+
frames_to_resize_kwargs = lambda frames: dict(target_frames = frames) if exists(frames) else dict()
|
| 2383 |
+
|
| 2384 |
+
# for initial image and skipping steps
|
| 2385 |
+
|
| 2386 |
+
init_images = cast_tuple(init_images, num_unets)
|
| 2387 |
+
init_images = [maybe(self.normalize_img)(init_image) for init_image in init_images]
|
| 2388 |
+
|
| 2389 |
+
skip_steps = cast_tuple(skip_steps, num_unets)
|
| 2390 |
+
|
| 2391 |
+
# handle starting at a unet greater than 1, for training only-upscaler training
|
| 2392 |
+
|
| 2393 |
+
if start_at_unet_number > 1:
|
| 2394 |
+
assert start_at_unet_number <= num_unets, 'must start a unet that is less than the total number of unets'
|
| 2395 |
+
assert not exists(stop_at_unet_number) or start_at_unet_number <= stop_at_unet_number
|
| 2396 |
+
assert exists(start_image_or_video), 'starting image or video must be supplied if only doing upscaling'
|
| 2397 |
+
|
| 2398 |
+
prev_image_size = self.image_sizes[start_at_unet_number - 2]
|
| 2399 |
+
prev_frame_size = all_frame_dims[start_at_unet_number - 2][0] if self.is_video else None
|
| 2400 |
+
img = self.resize_to(start_image_or_video, prev_image_size, **frames_to_resize_kwargs(prev_frame_size))
|
| 2401 |
+
|
| 2402 |
+
|
| 2403 |
+
# go through each unet in cascade
|
| 2404 |
+
|
| 2405 |
+
for unet_number, unet, channel, image_size, frame_dims, noise_scheduler, pred_objective, dynamic_threshold, unet_cond_scale, unet_init_images, unet_skip_steps in tqdm(zip(range(1, num_unets + 1), self.unets, self.sample_channels, self.image_sizes, all_frame_dims, self.noise_schedulers, self.pred_objectives, self.dynamic_thresholding, cond_scale, init_images, skip_steps), disable = not use_tqdm):
|
| 2406 |
+
|
| 2407 |
+
if unet_number < start_at_unet_number:
|
| 2408 |
+
continue
|
| 2409 |
+
|
| 2410 |
+
assert not isinstance(unet, NullUnet), 'one cannot sample from null / placeholder unets'
|
| 2411 |
+
|
| 2412 |
+
context = self.one_unet_in_gpu(unet = unet) if is_cuda and use_one_unet_in_gpu else nullcontext()
|
| 2413 |
+
|
| 2414 |
+
with context:
|
| 2415 |
+
# video kwargs
|
| 2416 |
+
|
| 2417 |
+
video_kwargs = dict()
|
| 2418 |
+
if self.is_video:
|
| 2419 |
+
video_kwargs = dict(
|
| 2420 |
+
cond_video_frames = cond_video_frames,
|
| 2421 |
+
post_cond_video_frames = post_cond_video_frames,
|
| 2422 |
+
)
|
| 2423 |
+
|
| 2424 |
+
video_kwargs = compact(video_kwargs)
|
| 2425 |
+
|
| 2426 |
+
if self.is_video and self.resize_cond_video_frames:
|
| 2427 |
+
downsample_scale = self.temporal_downsample_factor[unet_number - 1]
|
| 2428 |
+
temporal_downsample_fn = partial(scale_video_time, downsample_scale = downsample_scale)
|
| 2429 |
+
|
| 2430 |
+
video_kwargs = maybe_transform_dict_key(video_kwargs, 'cond_video_frames', temporal_downsample_fn)
|
| 2431 |
+
video_kwargs = maybe_transform_dict_key(video_kwargs, 'post_cond_video_frames', temporal_downsample_fn)
|
| 2432 |
+
|
| 2433 |
+
# low resolution conditioning
|
| 2434 |
+
|
| 2435 |
+
lowres_cond_img = lowres_noise_times = None
|
| 2436 |
+
shape = (batch_size, channel, *frame_dims, image_size, image_size)
|
| 2437 |
+
|
| 2438 |
+
resize_kwargs = dict(target_frames = frame_dims[0]) if self.is_video else dict()
|
| 2439 |
+
|
| 2440 |
+
if unet.lowres_cond:
|
| 2441 |
+
lowres_noise_times = self.lowres_noise_schedule.get_times(batch_size, lowres_sample_noise_level, device = device)
|
| 2442 |
+
|
| 2443 |
+
lowres_cond_img = self.resize_to(img, image_size, **resize_kwargs)
|
| 2444 |
+
|
| 2445 |
+
lowres_cond_img = self.normalize_img(lowres_cond_img)
|
| 2446 |
+
lowres_cond_img, *_ = self.lowres_noise_schedule.q_sample(x_start = lowres_cond_img, t = lowres_noise_times, noise = torch.randn_like(lowres_cond_img))
|
| 2447 |
+
|
| 2448 |
+
# init images or video
|
| 2449 |
+
|
| 2450 |
+
if exists(unet_init_images):
|
| 2451 |
+
unet_init_images = self.resize_to(unet_init_images, image_size, **resize_kwargs)
|
| 2452 |
+
|
| 2453 |
+
# shape of stage
|
| 2454 |
+
|
| 2455 |
+
shape = (batch_size, self.channels, *frame_dims, image_size, image_size)
|
| 2456 |
+
|
| 2457 |
+
img = self.p_sample_loop(
|
| 2458 |
+
unet,
|
| 2459 |
+
shape,
|
| 2460 |
+
text_embeds = text_embeds,
|
| 2461 |
+
text_mask = text_masks,
|
| 2462 |
+
cond_images = cond_images,
|
| 2463 |
+
inpaint_images = inpaint_images,
|
| 2464 |
+
inpaint_masks = inpaint_masks,
|
| 2465 |
+
inpaint_resample_times = inpaint_resample_times,
|
| 2466 |
+
init_images = unet_init_images,
|
| 2467 |
+
skip_steps = unet_skip_steps,
|
| 2468 |
+
cond_scale = unet_cond_scale,
|
| 2469 |
+
lowres_cond_img = lowres_cond_img,
|
| 2470 |
+
lowres_noise_times = lowres_noise_times,
|
| 2471 |
+
noise_scheduler = noise_scheduler,
|
| 2472 |
+
pred_objective = pred_objective,
|
| 2473 |
+
dynamic_threshold = dynamic_threshold,
|
| 2474 |
+
use_tqdm = use_tqdm,
|
| 2475 |
+
**video_kwargs
|
| 2476 |
+
)
|
| 2477 |
+
|
| 2478 |
+
outputs.append(img)
|
| 2479 |
+
|
| 2480 |
+
if exists(stop_at_unet_number) and stop_at_unet_number == unet_number:
|
| 2481 |
+
break
|
| 2482 |
+
|
| 2483 |
+
output_index = -1 if not return_all_unet_outputs else slice(None) # either return last unet output or all unet outputs
|
| 2484 |
+
|
| 2485 |
+
if not return_pil_images:
|
| 2486 |
+
return outputs[output_index]
|
| 2487 |
+
|
| 2488 |
+
if not return_all_unet_outputs:
|
| 2489 |
+
outputs = outputs[-1:]
|
| 2490 |
+
|
| 2491 |
+
assert not self.is_video, 'converting sampled video tensor to video file is not supported yet'
|
| 2492 |
+
|
| 2493 |
+
pil_images = list(map(lambda img: list(map(T.ToPILImage(), img.unbind(dim = 0))), outputs))
|
| 2494 |
+
|
| 2495 |
+
return pil_images[output_index] # now you have a bunch of pillow images you can just .save(/where/ever/you/want.png)
|
| 2496 |
+
|
| 2497 |
+
@beartype
|
| 2498 |
+
def p_losses(
|
| 2499 |
+
self,
|
| 2500 |
+
unet: Union[Unet, Unet3D, NullUnet, DistributedDataParallel],
|
| 2501 |
+
x_start,
|
| 2502 |
+
times,
|
| 2503 |
+
*,
|
| 2504 |
+
noise_scheduler,
|
| 2505 |
+
lowres_cond_img = None,
|
| 2506 |
+
lowres_aug_times = None,
|
| 2507 |
+
text_embeds = None,
|
| 2508 |
+
text_mask = None,
|
| 2509 |
+
cond_images = None,
|
| 2510 |
+
noise = None,
|
| 2511 |
+
times_next = None,
|
| 2512 |
+
pred_objective = 'noise',
|
| 2513 |
+
min_snr_gamma = None,
|
| 2514 |
+
random_crop_size = None,
|
| 2515 |
+
**kwargs
|
| 2516 |
+
):
|
| 2517 |
+
is_video = x_start.ndim == 5
|
| 2518 |
+
|
| 2519 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 2520 |
+
|
| 2521 |
+
# normalize to [-1, 1]
|
| 2522 |
+
|
| 2523 |
+
x_start = self.normalize_img(x_start)
|
| 2524 |
+
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
|
| 2525 |
+
|
| 2526 |
+
# random cropping during training
|
| 2527 |
+
# for upsamplers
|
| 2528 |
+
|
| 2529 |
+
if exists(random_crop_size):
|
| 2530 |
+
if is_video:
|
| 2531 |
+
frames = x_start.shape[2]
|
| 2532 |
+
x_start, lowres_cond_img, noise = map(lambda t: rearrange(t, 'b c f h w -> (b f) c h w'), (x_start, lowres_cond_img, noise))
|
| 2533 |
+
|
| 2534 |
+
aug = K.RandomCrop((random_crop_size, random_crop_size), p = 1.)
|
| 2535 |
+
|
| 2536 |
+
# make sure low res conditioner and image both get augmented the same way
|
| 2537 |
+
# detailed https://kornia.readthedocs.io/en/latest/augmentation.module.html?highlight=randomcrop#kornia.augmentation.RandomCrop
|
| 2538 |
+
x_start = aug(x_start)
|
| 2539 |
+
lowres_cond_img = aug(lowres_cond_img, params = aug._params)
|
| 2540 |
+
noise = aug(noise, params = aug._params)
|
| 2541 |
+
|
| 2542 |
+
if is_video:
|
| 2543 |
+
x_start, lowres_cond_img, noise = map(lambda t: rearrange(t, '(b f) c h w -> b c f h w', f = frames), (x_start, lowres_cond_img, noise))
|
| 2544 |
+
|
| 2545 |
+
# get x_t
|
| 2546 |
+
|
| 2547 |
+
x_noisy, log_snr, alpha, sigma = noise_scheduler.q_sample(x_start = x_start, t = times, noise = noise)
|
| 2548 |
+
|
| 2549 |
+
# also noise the lowres conditioning image
|
| 2550 |
+
# at sample time, they then fix the noise level of 0.1 - 0.3
|
| 2551 |
+
|
| 2552 |
+
lowres_cond_img_noisy = None
|
| 2553 |
+
if exists(lowres_cond_img):
|
| 2554 |
+
lowres_aug_times = default(lowres_aug_times, times)
|
| 2555 |
+
lowres_cond_img_noisy, *_ = self.lowres_noise_schedule.q_sample(x_start = lowres_cond_img, t = lowres_aug_times, noise = torch.randn_like(lowres_cond_img))
|
| 2556 |
+
|
| 2557 |
+
# time condition
|
| 2558 |
+
|
| 2559 |
+
noise_cond = noise_scheduler.get_condition(times)
|
| 2560 |
+
|
| 2561 |
+
# unet kwargs
|
| 2562 |
+
|
| 2563 |
+
unet_kwargs = dict(
|
| 2564 |
+
text_embeds = text_embeds,
|
| 2565 |
+
text_mask = text_mask,
|
| 2566 |
+
cond_images = cond_images,
|
| 2567 |
+
lowres_noise_times = self.lowres_noise_schedule.get_condition(lowres_aug_times),
|
| 2568 |
+
lowres_cond_img = lowres_cond_img_noisy,
|
| 2569 |
+
cond_drop_prob = self.cond_drop_prob,
|
| 2570 |
+
**kwargs
|
| 2571 |
+
)
|
| 2572 |
+
|
| 2573 |
+
# self condition if needed
|
| 2574 |
+
|
| 2575 |
+
# Because 'unet' can be an instance of DistributedDataParallel coming from the
|
| 2576 |
+
# ImagenTrainer.unet_being_trained when invoking ImagenTrainer.forward(), we need to
|
| 2577 |
+
# access the member 'module' of the wrapped unet instance.
|
| 2578 |
+
self_cond = unet.module.self_cond if isinstance(unet, DistributedDataParallel) else unet.self_cond
|
| 2579 |
+
|
| 2580 |
+
if self_cond and random() < 0.5:
|
| 2581 |
+
with torch.no_grad():
|
| 2582 |
+
pred = unet.forward(
|
| 2583 |
+
x_noisy,
|
| 2584 |
+
noise_cond,
|
| 2585 |
+
**unet_kwargs
|
| 2586 |
+
).detach()
|
| 2587 |
+
|
| 2588 |
+
x_start = noise_scheduler.predict_start_from_noise(x_noisy, t = times, noise = pred) if pred_objective == 'noise' else pred
|
| 2589 |
+
|
| 2590 |
+
unet_kwargs = {**unet_kwargs, 'self_cond': x_start}
|
| 2591 |
+
|
| 2592 |
+
# get prediction
|
| 2593 |
+
|
| 2594 |
+
pred = unet.forward(
|
| 2595 |
+
x_noisy,
|
| 2596 |
+
noise_cond,
|
| 2597 |
+
**unet_kwargs
|
| 2598 |
+
)
|
| 2599 |
+
|
| 2600 |
+
# prediction objective
|
| 2601 |
+
|
| 2602 |
+
if pred_objective == 'noise':
|
| 2603 |
+
target = noise
|
| 2604 |
+
elif pred_objective == 'x_start':
|
| 2605 |
+
target = x_start
|
| 2606 |
+
elif pred_objective == 'v':
|
| 2607 |
+
# derivation detailed in Appendix D of Progressive Distillation paper
|
| 2608 |
+
# https://arxiv.org/abs/2202.00512
|
| 2609 |
+
# this makes distillation viable as well as solve an issue with color shifting in upresoluting unets, noted in imagen-video
|
| 2610 |
+
target = alpha * noise - sigma * x_start
|
| 2611 |
+
else:
|
| 2612 |
+
raise ValueError(f'unknown objective {pred_objective}')
|
| 2613 |
+
|
| 2614 |
+
# losses
|
| 2615 |
+
|
| 2616 |
+
losses = self.loss_fn(pred, target, reduction = 'none')
|
| 2617 |
+
losses = reduce(losses, 'b ... -> b', 'mean')
|
| 2618 |
+
|
| 2619 |
+
# min snr loss reweighting
|
| 2620 |
+
|
| 2621 |
+
snr = log_snr.exp()
|
| 2622 |
+
maybe_clipped_snr = snr.clone()
|
| 2623 |
+
|
| 2624 |
+
if exists(min_snr_gamma):
|
| 2625 |
+
maybe_clipped_snr.clamp_(max = min_snr_gamma)
|
| 2626 |
+
|
| 2627 |
+
if pred_objective == 'noise':
|
| 2628 |
+
loss_weight = maybe_clipped_snr / snr
|
| 2629 |
+
elif pred_objective == 'x_start':
|
| 2630 |
+
loss_weight = maybe_clipped_snr
|
| 2631 |
+
elif pred_objective == 'v':
|
| 2632 |
+
loss_weight = maybe_clipped_snr / (snr + 1)
|
| 2633 |
+
|
| 2634 |
+
losses = losses * loss_weight
|
| 2635 |
+
return losses.mean()
|
| 2636 |
+
|
| 2637 |
+
@beartype
|
| 2638 |
+
def forward(
|
| 2639 |
+
self,
|
| 2640 |
+
images, # rename to images or video
|
| 2641 |
+
unet: Union[Unet, Unet3D, NullUnet, DistributedDataParallel] = None,
|
| 2642 |
+
texts: List[str] = None,
|
| 2643 |
+
text_embeds = None,
|
| 2644 |
+
text_masks = None,
|
| 2645 |
+
unet_number = None,
|
| 2646 |
+
cond_images = None,
|
| 2647 |
+
**kwargs
|
| 2648 |
+
):
|
| 2649 |
+
if self.is_video and images.ndim == 4:
|
| 2650 |
+
images = rearrange(images, 'b c h w -> b c 1 h w')
|
| 2651 |
+
kwargs.update(ignore_time = True)
|
| 2652 |
+
|
| 2653 |
+
assert images.shape[-1] == images.shape[-2], f'the images you pass in must be a square, but received dimensions of {images.shape[2]}, {images.shape[-1]}'
|
| 2654 |
+
assert not (len(self.unets) > 1 and not exists(unet_number)), f'you must specify which unet you want trained, from a range of 1 to {len(self.unets)}, if you are training cascading DDPM (multiple unets)'
|
| 2655 |
+
unet_number = default(unet_number, 1)
|
| 2656 |
+
assert not exists(self.only_train_unet_number) or self.only_train_unet_number == unet_number, 'you can only train on unet #{self.only_train_unet_number}'
|
| 2657 |
+
|
| 2658 |
+
images = cast_uint8_images_to_float(images)
|
| 2659 |
+
cond_images = maybe(cast_uint8_images_to_float)(cond_images)
|
| 2660 |
+
|
| 2661 |
+
assert images.dtype == torch.float or images.dtype == torch.half, f'images tensor needs to be floats but {images.dtype} dtype found instead'
|
| 2662 |
+
|
| 2663 |
+
unet_index = unet_number - 1
|
| 2664 |
+
|
| 2665 |
+
unet = default(unet, lambda: self.get_unet(unet_number))
|
| 2666 |
+
|
| 2667 |
+
assert not isinstance(unet, NullUnet), 'null unet cannot and should not be trained'
|
| 2668 |
+
|
| 2669 |
+
noise_scheduler = self.noise_schedulers[unet_index]
|
| 2670 |
+
min_snr_gamma = self.min_snr_gamma[unet_index]
|
| 2671 |
+
pred_objective = self.pred_objectives[unet_index]
|
| 2672 |
+
target_image_size = self.image_sizes[unet_index]
|
| 2673 |
+
random_crop_size = self.random_crop_sizes[unet_index]
|
| 2674 |
+
prev_image_size = self.image_sizes[unet_index - 1] if unet_index > 0 else None
|
| 2675 |
+
|
| 2676 |
+
b, c, *_, h, w, device, is_video = *images.shape, images.device, images.ndim == 5
|
| 2677 |
+
|
| 2678 |
+
assert images.shape[1] == self.channels
|
| 2679 |
+
assert h >= target_image_size and w >= target_image_size
|
| 2680 |
+
|
| 2681 |
+
frames = images.shape[2] if is_video else None
|
| 2682 |
+
all_frame_dims = tuple(safe_get_tuple_index(el, 0) for el in calc_all_frame_dims(self.temporal_downsample_factor, frames))
|
| 2683 |
+
ignore_time = kwargs.get('ignore_time', False)
|
| 2684 |
+
|
| 2685 |
+
target_frame_size = all_frame_dims[unet_index] if is_video and not ignore_time else None
|
| 2686 |
+
prev_frame_size = all_frame_dims[unet_index - 1] if is_video and not ignore_time and unet_index > 0 else None
|
| 2687 |
+
frames_to_resize_kwargs = lambda frames: dict(target_frames = frames) if exists(frames) else dict()
|
| 2688 |
+
|
| 2689 |
+
times = noise_scheduler.sample_random_times(b, device = device)
|
| 2690 |
+
|
| 2691 |
+
if exists(texts) and not exists(text_embeds) and not self.unconditional:
|
| 2692 |
+
assert all([*map(len, texts)]), 'text cannot be empty'
|
| 2693 |
+
assert len(texts) == len(images), 'number of text captions does not match up with the number of images given'
|
| 2694 |
+
|
| 2695 |
+
with autocast(enabled = False):
|
| 2696 |
+
text_embeds, text_masks = self.encode_text(texts, return_attn_mask = True)
|
| 2697 |
+
|
| 2698 |
+
text_embeds, text_masks = map(lambda t: t.to(images.device), (text_embeds, text_masks))
|
| 2699 |
+
|
| 2700 |
+
if not self.unconditional:
|
| 2701 |
+
text_masks = default(text_masks, lambda: torch.any(text_embeds != 0., dim = -1))
|
| 2702 |
+
|
| 2703 |
+
assert not (self.condition_on_text and not exists(text_embeds)), 'text or text encodings must be passed into decoder if specified'
|
| 2704 |
+
assert not (not self.condition_on_text and exists(text_embeds)), 'decoder specified not to be conditioned on text, yet it is presented'
|
| 2705 |
+
|
| 2706 |
+
assert not (exists(text_embeds) and text_embeds.shape[-1] != self.text_embed_dim), f'invalid text embedding dimension being passed in (should be {self.text_embed_dim})'
|
| 2707 |
+
|
| 2708 |
+
# handle video frame conditioning
|
| 2709 |
+
|
| 2710 |
+
if self.is_video and self.resize_cond_video_frames:
|
| 2711 |
+
downsample_scale = self.temporal_downsample_factor[unet_index]
|
| 2712 |
+
temporal_downsample_fn = partial(scale_video_time, downsample_scale = downsample_scale)
|
| 2713 |
+
kwargs = maybe_transform_dict_key(kwargs, 'cond_video_frames', temporal_downsample_fn)
|
| 2714 |
+
kwargs = maybe_transform_dict_key(kwargs, 'post_cond_video_frames', temporal_downsample_fn)
|
| 2715 |
+
|
| 2716 |
+
# handle low resolution conditioning
|
| 2717 |
+
|
| 2718 |
+
lowres_cond_img = lowres_aug_times = None
|
| 2719 |
+
if exists(prev_image_size):
|
| 2720 |
+
lowres_cond_img = self.resize_to(images, prev_image_size, **frames_to_resize_kwargs(prev_frame_size), clamp_range = self.input_image_range)
|
| 2721 |
+
lowres_cond_img = self.resize_to(lowres_cond_img, target_image_size, **frames_to_resize_kwargs(target_frame_size), clamp_range = self.input_image_range)
|
| 2722 |
+
|
| 2723 |
+
if self.per_sample_random_aug_noise_level:
|
| 2724 |
+
lowres_aug_times = self.lowres_noise_schedule.sample_random_times(b, device = device)
|
| 2725 |
+
else:
|
| 2726 |
+
lowres_aug_time = self.lowres_noise_schedule.sample_random_times(1, device = device)
|
| 2727 |
+
lowres_aug_times = repeat(lowres_aug_time, '1 -> b', b = b)
|
| 2728 |
+
|
| 2729 |
+
images = self.resize_to(images, target_image_size, **frames_to_resize_kwargs(target_frame_size))
|
| 2730 |
+
|
| 2731 |
+
return self.p_losses(unet, images, times, text_embeds = text_embeds, text_mask = text_masks, cond_images = cond_images, noise_scheduler = noise_scheduler, lowres_cond_img = lowres_cond_img, lowres_aug_times = lowres_aug_times, pred_objective = pred_objective, min_snr_gamma = min_snr_gamma, random_crop_size = random_crop_size, **kwargs)
|
imagen_video.py
ADDED
|
@@ -0,0 +1,1935 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import copy
|
| 3 |
+
import operator
|
| 4 |
+
import functools
|
| 5 |
+
from typing import List
|
| 6 |
+
from tqdm.auto import tqdm
|
| 7 |
+
from functools import partial, wraps
|
| 8 |
+
from contextlib import contextmanager, nullcontext
|
| 9 |
+
from collections import namedtuple
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
from torch import nn, einsum
|
| 15 |
+
|
| 16 |
+
from einops import rearrange, repeat, reduce, pack, unpack
|
| 17 |
+
from einops.layers.torch import Rearrange, Reduce
|
| 18 |
+
from einops_exts.torch import EinopsToAndFrom
|
| 19 |
+
|
| 20 |
+
from imagen_pytorch.t5 import t5_encode_text, get_encoded_dim, DEFAULT_T5_NAME
|
| 21 |
+
|
| 22 |
+
# helper functions
|
| 23 |
+
|
| 24 |
+
def exists(val):
|
| 25 |
+
return val is not None
|
| 26 |
+
|
| 27 |
+
def identity(t, *args, **kwargs):
|
| 28 |
+
return t
|
| 29 |
+
|
| 30 |
+
def first(arr, d = None):
|
| 31 |
+
if len(arr) == 0:
|
| 32 |
+
return d
|
| 33 |
+
return arr[0]
|
| 34 |
+
|
| 35 |
+
def divisible_by(numer, denom):
|
| 36 |
+
return (numer % denom) == 0
|
| 37 |
+
|
| 38 |
+
def maybe(fn):
|
| 39 |
+
@wraps(fn)
|
| 40 |
+
def inner(x):
|
| 41 |
+
if not exists(x):
|
| 42 |
+
return x
|
| 43 |
+
return fn(x)
|
| 44 |
+
return inner
|
| 45 |
+
|
| 46 |
+
def once(fn):
|
| 47 |
+
called = False
|
| 48 |
+
@wraps(fn)
|
| 49 |
+
def inner(x):
|
| 50 |
+
nonlocal called
|
| 51 |
+
if called:
|
| 52 |
+
return
|
| 53 |
+
called = True
|
| 54 |
+
return fn(x)
|
| 55 |
+
return inner
|
| 56 |
+
|
| 57 |
+
print_once = once(print)
|
| 58 |
+
|
| 59 |
+
def default(val, d):
|
| 60 |
+
if exists(val):
|
| 61 |
+
return val
|
| 62 |
+
return d() if callable(d) else d
|
| 63 |
+
|
| 64 |
+
def cast_tuple(val, length = None):
|
| 65 |
+
if isinstance(val, list):
|
| 66 |
+
val = tuple(val)
|
| 67 |
+
|
| 68 |
+
output = val if isinstance(val, tuple) else ((val,) * default(length, 1))
|
| 69 |
+
|
| 70 |
+
if exists(length):
|
| 71 |
+
assert len(output) == length
|
| 72 |
+
|
| 73 |
+
return output
|
| 74 |
+
|
| 75 |
+
def cast_uint8_images_to_float(images):
|
| 76 |
+
if not images.dtype == torch.uint8:
|
| 77 |
+
return images
|
| 78 |
+
return images / 255
|
| 79 |
+
|
| 80 |
+
def module_device(module):
|
| 81 |
+
return next(module.parameters()).device
|
| 82 |
+
|
| 83 |
+
def zero_init_(m):
|
| 84 |
+
nn.init.zeros_(m.weight)
|
| 85 |
+
if exists(m.bias):
|
| 86 |
+
nn.init.zeros_(m.bias)
|
| 87 |
+
|
| 88 |
+
def eval_decorator(fn):
|
| 89 |
+
def inner(model, *args, **kwargs):
|
| 90 |
+
was_training = model.training
|
| 91 |
+
model.eval()
|
| 92 |
+
out = fn(model, *args, **kwargs)
|
| 93 |
+
model.train(was_training)
|
| 94 |
+
return out
|
| 95 |
+
return inner
|
| 96 |
+
|
| 97 |
+
def pad_tuple_to_length(t, length, fillvalue = None):
|
| 98 |
+
remain_length = length - len(t)
|
| 99 |
+
if remain_length <= 0:
|
| 100 |
+
return t
|
| 101 |
+
return (*t, *((fillvalue,) * remain_length))
|
| 102 |
+
|
| 103 |
+
# helper classes
|
| 104 |
+
|
| 105 |
+
class Identity(nn.Module):
|
| 106 |
+
def __init__(self, *args, **kwargs):
|
| 107 |
+
super().__init__()
|
| 108 |
+
|
| 109 |
+
def forward(self, x, *args, **kwargs):
|
| 110 |
+
return x
|
| 111 |
+
|
| 112 |
+
def Sequential(*modules):
|
| 113 |
+
return nn.Sequential(*filter(exists, modules))
|
| 114 |
+
|
| 115 |
+
# tensor helpers
|
| 116 |
+
|
| 117 |
+
def log(t, eps: float = 1e-12):
|
| 118 |
+
return torch.log(t.clamp(min = eps))
|
| 119 |
+
|
| 120 |
+
def l2norm(t):
|
| 121 |
+
return F.normalize(t, dim = -1)
|
| 122 |
+
|
| 123 |
+
def right_pad_dims_to(x, t):
|
| 124 |
+
padding_dims = x.ndim - t.ndim
|
| 125 |
+
if padding_dims <= 0:
|
| 126 |
+
return t
|
| 127 |
+
return t.view(*t.shape, *((1,) * padding_dims))
|
| 128 |
+
|
| 129 |
+
def masked_mean(t, *, dim, mask = None):
|
| 130 |
+
if not exists(mask):
|
| 131 |
+
return t.mean(dim = dim)
|
| 132 |
+
|
| 133 |
+
denom = mask.sum(dim = dim, keepdim = True)
|
| 134 |
+
mask = rearrange(mask, 'b n -> b n 1')
|
| 135 |
+
masked_t = t.masked_fill(~mask, 0.)
|
| 136 |
+
|
| 137 |
+
return masked_t.sum(dim = dim) / denom.clamp(min = 1e-5)
|
| 138 |
+
|
| 139 |
+
def resize_video_to(
|
| 140 |
+
video,
|
| 141 |
+
target_image_size,
|
| 142 |
+
target_frames = None,
|
| 143 |
+
clamp_range = None,
|
| 144 |
+
mode = 'nearest'
|
| 145 |
+
):
|
| 146 |
+
orig_video_size = video.shape[-1]
|
| 147 |
+
|
| 148 |
+
frames = video.shape[2]
|
| 149 |
+
target_frames = default(target_frames, frames)
|
| 150 |
+
|
| 151 |
+
target_shape = (target_frames, target_image_size, target_image_size)
|
| 152 |
+
|
| 153 |
+
if tuple(video.shape[-3:]) == target_shape:
|
| 154 |
+
return video
|
| 155 |
+
|
| 156 |
+
out = F.interpolate(video, target_shape, mode = mode)
|
| 157 |
+
|
| 158 |
+
if exists(clamp_range):
|
| 159 |
+
out = out.clamp(*clamp_range)
|
| 160 |
+
|
| 161 |
+
return out
|
| 162 |
+
|
| 163 |
+
def scale_video_time(
|
| 164 |
+
video,
|
| 165 |
+
downsample_scale = 1,
|
| 166 |
+
mode = 'nearest'
|
| 167 |
+
):
|
| 168 |
+
if downsample_scale == 1:
|
| 169 |
+
return video
|
| 170 |
+
|
| 171 |
+
image_size, frames = video.shape[-1], video.shape[-3]
|
| 172 |
+
assert divisible_by(frames, downsample_scale), f'trying to temporally downsample a conditioning video frames of length {frames} by {downsample_scale}, however it is not neatly divisible'
|
| 173 |
+
|
| 174 |
+
target_frames = frames // downsample_scale
|
| 175 |
+
|
| 176 |
+
resized_video = resize_video_to(
|
| 177 |
+
video,
|
| 178 |
+
image_size,
|
| 179 |
+
target_frames = target_frames,
|
| 180 |
+
mode = mode
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
return resized_video
|
| 184 |
+
|
| 185 |
+
# classifier free guidance functions
|
| 186 |
+
|
| 187 |
+
def prob_mask_like(shape, prob, device):
|
| 188 |
+
if prob == 1:
|
| 189 |
+
return torch.ones(shape, device = device, dtype = torch.bool)
|
| 190 |
+
elif prob == 0:
|
| 191 |
+
return torch.zeros(shape, device = device, dtype = torch.bool)
|
| 192 |
+
else:
|
| 193 |
+
return torch.zeros(shape, device = device).float().uniform_(0, 1) < prob
|
| 194 |
+
|
| 195 |
+
# norms and residuals
|
| 196 |
+
|
| 197 |
+
class LayerNorm(nn.Module):
|
| 198 |
+
def __init__(self, dim, stable = False):
|
| 199 |
+
super().__init__()
|
| 200 |
+
self.stable = stable
|
| 201 |
+
self.g = nn.Parameter(torch.ones(dim))
|
| 202 |
+
|
| 203 |
+
def forward(self, x):
|
| 204 |
+
if self.stable:
|
| 205 |
+
x = x / x.amax(dim = -1, keepdim = True).detach()
|
| 206 |
+
|
| 207 |
+
eps = 1e-5 if x.dtype == torch.float32 else 1e-3
|
| 208 |
+
var = torch.var(x, dim = -1, unbiased = False, keepdim = True)
|
| 209 |
+
mean = torch.mean(x, dim = -1, keepdim = True)
|
| 210 |
+
return (x - mean) * (var + eps).rsqrt() * self.g
|
| 211 |
+
|
| 212 |
+
class ChanLayerNorm(nn.Module):
|
| 213 |
+
def __init__(self, dim, stable = False):
|
| 214 |
+
super().__init__()
|
| 215 |
+
self.stable = stable
|
| 216 |
+
self.g = nn.Parameter(torch.ones(1, dim, 1, 1, 1))
|
| 217 |
+
|
| 218 |
+
def forward(self, x):
|
| 219 |
+
if self.stable:
|
| 220 |
+
x = x / x.amax(dim = 1, keepdim = True).detach()
|
| 221 |
+
|
| 222 |
+
eps = 1e-5 if x.dtype == torch.float32 else 1e-3
|
| 223 |
+
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
|
| 224 |
+
mean = torch.mean(x, dim = 1, keepdim = True)
|
| 225 |
+
return (x - mean) * (var + eps).rsqrt() * self.g
|
| 226 |
+
|
| 227 |
+
class Always():
|
| 228 |
+
def __init__(self, val):
|
| 229 |
+
self.val = val
|
| 230 |
+
|
| 231 |
+
def __call__(self, *args, **kwargs):
|
| 232 |
+
return self.val
|
| 233 |
+
|
| 234 |
+
class Residual(nn.Module):
|
| 235 |
+
def __init__(self, fn):
|
| 236 |
+
super().__init__()
|
| 237 |
+
self.fn = fn
|
| 238 |
+
|
| 239 |
+
def forward(self, x, **kwargs):
|
| 240 |
+
return self.fn(x, **kwargs) + x
|
| 241 |
+
|
| 242 |
+
class Parallel(nn.Module):
|
| 243 |
+
def __init__(self, *fns):
|
| 244 |
+
super().__init__()
|
| 245 |
+
self.fns = nn.ModuleList(fns)
|
| 246 |
+
|
| 247 |
+
def forward(self, x):
|
| 248 |
+
outputs = [fn(x) for fn in self.fns]
|
| 249 |
+
return sum(outputs)
|
| 250 |
+
|
| 251 |
+
# rearranging
|
| 252 |
+
|
| 253 |
+
class RearrangeTimeCentric(nn.Module):
|
| 254 |
+
def __init__(self, fn):
|
| 255 |
+
super().__init__()
|
| 256 |
+
self.fn = fn
|
| 257 |
+
|
| 258 |
+
def forward(self, x):
|
| 259 |
+
x = rearrange(x, 'b c f ... -> b ... f c')
|
| 260 |
+
x, ps = pack([x], '* f c')
|
| 261 |
+
|
| 262 |
+
x = self.fn(x)
|
| 263 |
+
|
| 264 |
+
x, = unpack(x, ps, '* f c')
|
| 265 |
+
x = rearrange(x, 'b ... f c -> b c f ...')
|
| 266 |
+
return x
|
| 267 |
+
|
| 268 |
+
# attention pooling
|
| 269 |
+
|
| 270 |
+
class PerceiverAttention(nn.Module):
|
| 271 |
+
def __init__(
|
| 272 |
+
self,
|
| 273 |
+
*,
|
| 274 |
+
dim,
|
| 275 |
+
dim_head = 64,
|
| 276 |
+
heads = 8,
|
| 277 |
+
scale = 8
|
| 278 |
+
):
|
| 279 |
+
super().__init__()
|
| 280 |
+
self.scale = scale
|
| 281 |
+
|
| 282 |
+
self.heads = heads
|
| 283 |
+
inner_dim = dim_head * heads
|
| 284 |
+
|
| 285 |
+
self.norm = nn.LayerNorm(dim)
|
| 286 |
+
self.norm_latents = nn.LayerNorm(dim)
|
| 287 |
+
|
| 288 |
+
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
| 289 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
|
| 290 |
+
|
| 291 |
+
self.q_scale = nn.Parameter(torch.ones(dim_head))
|
| 292 |
+
self.k_scale = nn.Parameter(torch.ones(dim_head))
|
| 293 |
+
|
| 294 |
+
self.to_out = nn.Sequential(
|
| 295 |
+
nn.Linear(inner_dim, dim, bias = False),
|
| 296 |
+
nn.LayerNorm(dim)
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
def forward(self, x, latents, mask = None):
|
| 300 |
+
x = self.norm(x)
|
| 301 |
+
latents = self.norm_latents(latents)
|
| 302 |
+
|
| 303 |
+
b, h = x.shape[0], self.heads
|
| 304 |
+
|
| 305 |
+
q = self.to_q(latents)
|
| 306 |
+
|
| 307 |
+
# the paper differs from Perceiver in which they also concat the key / values derived from the latents to be attended to
|
| 308 |
+
kv_input = torch.cat((x, latents), dim = -2)
|
| 309 |
+
k, v = self.to_kv(kv_input).chunk(2, dim = -1)
|
| 310 |
+
|
| 311 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
|
| 312 |
+
|
| 313 |
+
# qk rmsnorm
|
| 314 |
+
|
| 315 |
+
q, k = map(l2norm, (q, k))
|
| 316 |
+
q = q * self.q_scale
|
| 317 |
+
k = k * self.k_scale
|
| 318 |
+
|
| 319 |
+
# similarities and masking
|
| 320 |
+
|
| 321 |
+
sim = einsum('... i d, ... j d -> ... i j', q, k) * self.scale
|
| 322 |
+
|
| 323 |
+
if exists(mask):
|
| 324 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 325 |
+
mask = F.pad(mask, (0, latents.shape[-2]), value = True)
|
| 326 |
+
mask = rearrange(mask, 'b j -> b 1 1 j')
|
| 327 |
+
sim = sim.masked_fill(~mask, max_neg_value)
|
| 328 |
+
|
| 329 |
+
# attention
|
| 330 |
+
|
| 331 |
+
attn = sim.softmax(dim = -1)
|
| 332 |
+
|
| 333 |
+
out = einsum('... i j, ... j d -> ... i d', attn, v)
|
| 334 |
+
out = rearrange(out, 'b h n d -> b n (h d)', h = h)
|
| 335 |
+
return self.to_out(out)
|
| 336 |
+
|
| 337 |
+
class PerceiverResampler(nn.Module):
|
| 338 |
+
def __init__(
|
| 339 |
+
self,
|
| 340 |
+
*,
|
| 341 |
+
dim,
|
| 342 |
+
depth,
|
| 343 |
+
dim_head = 64,
|
| 344 |
+
heads = 8,
|
| 345 |
+
num_latents = 64,
|
| 346 |
+
num_latents_mean_pooled = 4, # number of latents derived from mean pooled representation of the sequence
|
| 347 |
+
max_seq_len = 512,
|
| 348 |
+
ff_mult = 4
|
| 349 |
+
):
|
| 350 |
+
super().__init__()
|
| 351 |
+
self.pos_emb = nn.Embedding(max_seq_len, dim)
|
| 352 |
+
|
| 353 |
+
self.latents = nn.Parameter(torch.randn(num_latents, dim))
|
| 354 |
+
|
| 355 |
+
self.to_latents_from_mean_pooled_seq = None
|
| 356 |
+
|
| 357 |
+
if num_latents_mean_pooled > 0:
|
| 358 |
+
self.to_latents_from_mean_pooled_seq = nn.Sequential(
|
| 359 |
+
LayerNorm(dim),
|
| 360 |
+
nn.Linear(dim, dim * num_latents_mean_pooled),
|
| 361 |
+
Rearrange('b (n d) -> b n d', n = num_latents_mean_pooled)
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
self.layers = nn.ModuleList([])
|
| 365 |
+
for _ in range(depth):
|
| 366 |
+
self.layers.append(nn.ModuleList([
|
| 367 |
+
PerceiverAttention(dim = dim, dim_head = dim_head, heads = heads),
|
| 368 |
+
FeedForward(dim = dim, mult = ff_mult)
|
| 369 |
+
]))
|
| 370 |
+
|
| 371 |
+
def forward(self, x, mask = None):
|
| 372 |
+
n, device = x.shape[1], x.device
|
| 373 |
+
pos_emb = self.pos_emb(torch.arange(n, device = device))
|
| 374 |
+
|
| 375 |
+
x_with_pos = x + pos_emb
|
| 376 |
+
|
| 377 |
+
latents = repeat(self.latents, 'n d -> b n d', b = x.shape[0])
|
| 378 |
+
|
| 379 |
+
if exists(self.to_latents_from_mean_pooled_seq):
|
| 380 |
+
meanpooled_seq = masked_mean(x, dim = 1, mask = torch.ones(x.shape[:2], device = x.device, dtype = torch.bool))
|
| 381 |
+
meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
|
| 382 |
+
latents = torch.cat((meanpooled_latents, latents), dim = -2)
|
| 383 |
+
|
| 384 |
+
for attn, ff in self.layers:
|
| 385 |
+
latents = attn(x_with_pos, latents, mask = mask) + latents
|
| 386 |
+
latents = ff(latents) + latents
|
| 387 |
+
|
| 388 |
+
return latents
|
| 389 |
+
|
| 390 |
+
# main contribution from make-a-video - pseudo conv3d
|
| 391 |
+
# axial space-time convolutions, but made causal to keep in line with the design decisions of imagen-video paper
|
| 392 |
+
|
| 393 |
+
class Conv3d(nn.Module):
|
| 394 |
+
def __init__(
|
| 395 |
+
self,
|
| 396 |
+
dim,
|
| 397 |
+
dim_out = None,
|
| 398 |
+
kernel_size = 3,
|
| 399 |
+
*,
|
| 400 |
+
temporal_kernel_size = None,
|
| 401 |
+
**kwargs
|
| 402 |
+
):
|
| 403 |
+
super().__init__()
|
| 404 |
+
dim_out = default(dim_out, dim)
|
| 405 |
+
temporal_kernel_size = default(temporal_kernel_size, kernel_size)
|
| 406 |
+
|
| 407 |
+
self.spatial_conv = nn.Conv2d(dim, dim_out, kernel_size = kernel_size, padding = kernel_size // 2)
|
| 408 |
+
self.temporal_conv = nn.Conv1d(dim_out, dim_out, kernel_size = temporal_kernel_size) if kernel_size > 1 else None
|
| 409 |
+
self.kernel_size = kernel_size
|
| 410 |
+
|
| 411 |
+
if exists(self.temporal_conv):
|
| 412 |
+
nn.init.dirac_(self.temporal_conv.weight.data) # initialized to be identity
|
| 413 |
+
nn.init.zeros_(self.temporal_conv.bias.data)
|
| 414 |
+
|
| 415 |
+
def forward(
|
| 416 |
+
self,
|
| 417 |
+
x,
|
| 418 |
+
ignore_time = False
|
| 419 |
+
):
|
| 420 |
+
b, c, *_, h, w = x.shape
|
| 421 |
+
|
| 422 |
+
is_video = x.ndim == 5
|
| 423 |
+
ignore_time &= is_video
|
| 424 |
+
|
| 425 |
+
if is_video:
|
| 426 |
+
x = rearrange(x, 'b c f h w -> (b f) c h w')
|
| 427 |
+
|
| 428 |
+
x = self.spatial_conv(x)
|
| 429 |
+
|
| 430 |
+
if is_video:
|
| 431 |
+
x = rearrange(x, '(b f) c h w -> b c f h w', b = b)
|
| 432 |
+
|
| 433 |
+
if ignore_time or not exists(self.temporal_conv):
|
| 434 |
+
return x
|
| 435 |
+
|
| 436 |
+
x = rearrange(x, 'b c f h w -> (b h w) c f')
|
| 437 |
+
|
| 438 |
+
# causal temporal convolution - time is causal in imagen-video
|
| 439 |
+
|
| 440 |
+
if self.kernel_size > 1:
|
| 441 |
+
x = F.pad(x, (self.kernel_size - 1, 0))
|
| 442 |
+
|
| 443 |
+
x = self.temporal_conv(x)
|
| 444 |
+
|
| 445 |
+
x = rearrange(x, '(b h w) c f -> b c f h w', h = h, w = w)
|
| 446 |
+
|
| 447 |
+
return x
|
| 448 |
+
|
| 449 |
+
# attention
|
| 450 |
+
|
| 451 |
+
class Attention(nn.Module):
|
| 452 |
+
def __init__(
|
| 453 |
+
self,
|
| 454 |
+
dim,
|
| 455 |
+
*,
|
| 456 |
+
dim_head = 64,
|
| 457 |
+
heads = 8,
|
| 458 |
+
causal = False,
|
| 459 |
+
context_dim = None,
|
| 460 |
+
rel_pos_bias = False,
|
| 461 |
+
rel_pos_bias_mlp_depth = 2,
|
| 462 |
+
init_zero = False,
|
| 463 |
+
scale = 8
|
| 464 |
+
):
|
| 465 |
+
super().__init__()
|
| 466 |
+
self.scale = scale
|
| 467 |
+
self.causal = causal
|
| 468 |
+
|
| 469 |
+
self.rel_pos_bias = DynamicPositionBias(dim = dim, heads = heads, depth = rel_pos_bias_mlp_depth) if rel_pos_bias else None
|
| 470 |
+
|
| 471 |
+
self.heads = heads
|
| 472 |
+
inner_dim = dim_head * heads
|
| 473 |
+
|
| 474 |
+
self.norm = LayerNorm(dim)
|
| 475 |
+
|
| 476 |
+
self.null_attn_bias = nn.Parameter(torch.randn(heads))
|
| 477 |
+
|
| 478 |
+
self.null_kv = nn.Parameter(torch.randn(2, dim_head))
|
| 479 |
+
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
| 480 |
+
self.to_kv = nn.Linear(dim, dim_head * 2, bias = False)
|
| 481 |
+
|
| 482 |
+
self.q_scale = nn.Parameter(torch.ones(dim_head))
|
| 483 |
+
self.k_scale = nn.Parameter(torch.ones(dim_head))
|
| 484 |
+
|
| 485 |
+
self.to_context = nn.Sequential(nn.LayerNorm(context_dim), nn.Linear(context_dim, dim_head * 2)) if exists(context_dim) else None
|
| 486 |
+
|
| 487 |
+
self.to_out = nn.Sequential(
|
| 488 |
+
nn.Linear(inner_dim, dim, bias = False),
|
| 489 |
+
LayerNorm(dim)
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
if init_zero:
|
| 493 |
+
nn.init.zeros_(self.to_out[-1].g)
|
| 494 |
+
|
| 495 |
+
def forward(
|
| 496 |
+
self,
|
| 497 |
+
x,
|
| 498 |
+
context = None,
|
| 499 |
+
mask = None,
|
| 500 |
+
attn_bias = None
|
| 501 |
+
):
|
| 502 |
+
b, n, device = *x.shape[:2], x.device
|
| 503 |
+
|
| 504 |
+
x = self.norm(x)
|
| 505 |
+
q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim = -1))
|
| 506 |
+
|
| 507 |
+
q = rearrange(q, 'b n (h d) -> b h n d', h = self.heads)
|
| 508 |
+
|
| 509 |
+
# add null key / value for classifier free guidance in prior net
|
| 510 |
+
|
| 511 |
+
nk, nv = map(lambda t: repeat(t, 'd -> b 1 d', b = b), self.null_kv.unbind(dim = -2))
|
| 512 |
+
k = torch.cat((nk, k), dim = -2)
|
| 513 |
+
v = torch.cat((nv, v), dim = -2)
|
| 514 |
+
|
| 515 |
+
# add text conditioning, if present
|
| 516 |
+
|
| 517 |
+
if exists(context):
|
| 518 |
+
assert exists(self.to_context)
|
| 519 |
+
ck, cv = self.to_context(context).chunk(2, dim = -1)
|
| 520 |
+
k = torch.cat((ck, k), dim = -2)
|
| 521 |
+
v = torch.cat((cv, v), dim = -2)
|
| 522 |
+
|
| 523 |
+
# qk rmsnorm
|
| 524 |
+
|
| 525 |
+
q, k = map(l2norm, (q, k))
|
| 526 |
+
q = q * self.q_scale
|
| 527 |
+
k = k * self.k_scale
|
| 528 |
+
|
| 529 |
+
# calculate query / key similarities
|
| 530 |
+
|
| 531 |
+
sim = einsum('b h i d, b j d -> b h i j', q, k) * self.scale
|
| 532 |
+
|
| 533 |
+
# relative positional encoding (T5 style)
|
| 534 |
+
|
| 535 |
+
if not exists(attn_bias) and exists(self.rel_pos_bias):
|
| 536 |
+
attn_bias = self.rel_pos_bias(n, device = device, dtype = q.dtype)
|
| 537 |
+
|
| 538 |
+
if exists(attn_bias):
|
| 539 |
+
null_attn_bias = repeat(self.null_attn_bias, 'h -> h n 1', n = n)
|
| 540 |
+
attn_bias = torch.cat((null_attn_bias, attn_bias), dim = -1)
|
| 541 |
+
sim = sim + attn_bias
|
| 542 |
+
|
| 543 |
+
# masking
|
| 544 |
+
|
| 545 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 546 |
+
|
| 547 |
+
if self.causal:
|
| 548 |
+
i, j = sim.shape[-2:]
|
| 549 |
+
causal_mask = torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1)
|
| 550 |
+
sim = sim.masked_fill(causal_mask, max_neg_value)
|
| 551 |
+
|
| 552 |
+
if exists(mask):
|
| 553 |
+
mask = F.pad(mask, (1, 0), value = True)
|
| 554 |
+
mask = rearrange(mask, 'b j -> b 1 1 j')
|
| 555 |
+
sim = sim.masked_fill(~mask, max_neg_value)
|
| 556 |
+
|
| 557 |
+
# attention
|
| 558 |
+
|
| 559 |
+
attn = sim.softmax(dim = -1)
|
| 560 |
+
|
| 561 |
+
# aggregate values
|
| 562 |
+
|
| 563 |
+
out = einsum('b h i j, b j d -> b h i d', attn, v)
|
| 564 |
+
|
| 565 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
| 566 |
+
return self.to_out(out)
|
| 567 |
+
|
| 568 |
+
# pseudo conv2d that uses conv3d but with kernel size of 1 across frames dimension
|
| 569 |
+
|
| 570 |
+
def Conv2d(dim_in, dim_out, kernel, stride = 1, padding = 0, **kwargs):
|
| 571 |
+
kernel = cast_tuple(kernel, 2)
|
| 572 |
+
stride = cast_tuple(stride, 2)
|
| 573 |
+
padding = cast_tuple(padding, 2)
|
| 574 |
+
|
| 575 |
+
if len(kernel) == 2:
|
| 576 |
+
kernel = (1, *kernel)
|
| 577 |
+
|
| 578 |
+
if len(stride) == 2:
|
| 579 |
+
stride = (1, *stride)
|
| 580 |
+
|
| 581 |
+
if len(padding) == 2:
|
| 582 |
+
padding = (0, *padding)
|
| 583 |
+
|
| 584 |
+
return nn.Conv3d(dim_in, dim_out, kernel, stride = stride, padding = padding, **kwargs)
|
| 585 |
+
|
| 586 |
+
class Pad(nn.Module):
|
| 587 |
+
def __init__(self, padding, value = 0.):
|
| 588 |
+
super().__init__()
|
| 589 |
+
self.padding = padding
|
| 590 |
+
self.value = value
|
| 591 |
+
|
| 592 |
+
def forward(self, x):
|
| 593 |
+
return F.pad(x, self.padding, value = self.value)
|
| 594 |
+
|
| 595 |
+
# decoder
|
| 596 |
+
|
| 597 |
+
def Upsample(dim, dim_out = None):
|
| 598 |
+
dim_out = default(dim_out, dim)
|
| 599 |
+
|
| 600 |
+
return nn.Sequential(
|
| 601 |
+
nn.Upsample(scale_factor = 2, mode = 'nearest'),
|
| 602 |
+
Conv2d(dim, dim_out, 3, padding = 1)
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
class PixelShuffleUpsample(nn.Module):
|
| 606 |
+
def __init__(self, dim, dim_out = None):
|
| 607 |
+
super().__init__()
|
| 608 |
+
dim_out = default(dim_out, dim)
|
| 609 |
+
conv = Conv2d(dim, dim_out * 4, 1)
|
| 610 |
+
|
| 611 |
+
self.net = nn.Sequential(
|
| 612 |
+
conv,
|
| 613 |
+
nn.SiLU()
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
self.pixel_shuffle = nn.PixelShuffle(2)
|
| 617 |
+
|
| 618 |
+
self.init_conv_(conv)
|
| 619 |
+
|
| 620 |
+
def init_conv_(self, conv):
|
| 621 |
+
o, i, f, h, w = conv.weight.shape
|
| 622 |
+
conv_weight = torch.empty(o // 4, i, f, h, w)
|
| 623 |
+
nn.init.kaiming_uniform_(conv_weight)
|
| 624 |
+
conv_weight = repeat(conv_weight, 'o ... -> (o 4) ...')
|
| 625 |
+
|
| 626 |
+
conv.weight.data.copy_(conv_weight)
|
| 627 |
+
nn.init.zeros_(conv.bias.data)
|
| 628 |
+
|
| 629 |
+
def forward(self, x):
|
| 630 |
+
out = self.net(x)
|
| 631 |
+
frames = x.shape[2]
|
| 632 |
+
out = rearrange(out, 'b c f h w -> (b f) c h w')
|
| 633 |
+
out = self.pixel_shuffle(out)
|
| 634 |
+
return rearrange(out, '(b f) c h w -> b c f h w', f = frames)
|
| 635 |
+
|
| 636 |
+
def Downsample(dim, dim_out = None):
|
| 637 |
+
dim_out = default(dim_out, dim)
|
| 638 |
+
return nn.Sequential(
|
| 639 |
+
Rearrange('b c f (h p1) (w p2) -> b (c p1 p2) f h w', p1 = 2, p2 = 2),
|
| 640 |
+
Conv2d(dim * 4, dim_out, 1)
|
| 641 |
+
)
|
| 642 |
+
|
| 643 |
+
# temporal up and downsamples
|
| 644 |
+
|
| 645 |
+
class TemporalPixelShuffleUpsample(nn.Module):
|
| 646 |
+
def __init__(self, dim, dim_out = None, stride = 2):
|
| 647 |
+
super().__init__()
|
| 648 |
+
self.stride = stride
|
| 649 |
+
dim_out = default(dim_out, dim)
|
| 650 |
+
conv = nn.Conv1d(dim, dim_out * stride, 1)
|
| 651 |
+
|
| 652 |
+
self.net = nn.Sequential(
|
| 653 |
+
conv,
|
| 654 |
+
nn.SiLU()
|
| 655 |
+
)
|
| 656 |
+
|
| 657 |
+
self.pixel_shuffle = Rearrange('b (c r) n -> b c (n r)', r = stride)
|
| 658 |
+
|
| 659 |
+
self.init_conv_(conv)
|
| 660 |
+
|
| 661 |
+
def init_conv_(self, conv):
|
| 662 |
+
o, i, f = conv.weight.shape
|
| 663 |
+
conv_weight = torch.empty(o // self.stride, i, f)
|
| 664 |
+
nn.init.kaiming_uniform_(conv_weight)
|
| 665 |
+
conv_weight = repeat(conv_weight, 'o ... -> (o r) ...', r = self.stride)
|
| 666 |
+
|
| 667 |
+
conv.weight.data.copy_(conv_weight)
|
| 668 |
+
nn.init.zeros_(conv.bias.data)
|
| 669 |
+
|
| 670 |
+
def forward(self, x):
|
| 671 |
+
b, c, f, h, w = x.shape
|
| 672 |
+
x = rearrange(x, 'b c f h w -> (b h w) c f')
|
| 673 |
+
out = self.net(x)
|
| 674 |
+
out = self.pixel_shuffle(out)
|
| 675 |
+
return rearrange(out, '(b h w) c f -> b c f h w', h = h, w = w)
|
| 676 |
+
|
| 677 |
+
def TemporalDownsample(dim, dim_out = None, stride = 2):
|
| 678 |
+
dim_out = default(dim_out, dim)
|
| 679 |
+
return nn.Sequential(
|
| 680 |
+
Rearrange('b c (f p) h w -> b (c p) f h w', p = stride),
|
| 681 |
+
Conv2d(dim * stride, dim_out, 1)
|
| 682 |
+
)
|
| 683 |
+
|
| 684 |
+
# positional embedding
|
| 685 |
+
|
| 686 |
+
class SinusoidalPosEmb(nn.Module):
|
| 687 |
+
def __init__(self, dim):
|
| 688 |
+
super().__init__()
|
| 689 |
+
self.dim = dim
|
| 690 |
+
|
| 691 |
+
def forward(self, x):
|
| 692 |
+
half_dim = self.dim // 2
|
| 693 |
+
emb = math.log(10000) / (half_dim - 1)
|
| 694 |
+
emb = torch.exp(torch.arange(half_dim, device = x.device) * -emb)
|
| 695 |
+
emb = rearrange(x, 'i -> i 1') * rearrange(emb, 'j -> 1 j')
|
| 696 |
+
return torch.cat((emb.sin(), emb.cos()), dim = -1)
|
| 697 |
+
|
| 698 |
+
class LearnedSinusoidalPosEmb(nn.Module):
|
| 699 |
+
def __init__(self, dim):
|
| 700 |
+
super().__init__()
|
| 701 |
+
assert (dim % 2) == 0
|
| 702 |
+
half_dim = dim // 2
|
| 703 |
+
self.weights = nn.Parameter(torch.randn(half_dim))
|
| 704 |
+
|
| 705 |
+
def forward(self, x):
|
| 706 |
+
x = rearrange(x, 'b -> b 1')
|
| 707 |
+
freqs = x * rearrange(self.weights, 'd -> 1 d') * 2 * math.pi
|
| 708 |
+
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim = -1)
|
| 709 |
+
fouriered = torch.cat((x, fouriered), dim = -1)
|
| 710 |
+
return fouriered
|
| 711 |
+
|
| 712 |
+
class Block(nn.Module):
|
| 713 |
+
def __init__(
|
| 714 |
+
self,
|
| 715 |
+
dim,
|
| 716 |
+
dim_out,
|
| 717 |
+
groups = 8,
|
| 718 |
+
norm = True
|
| 719 |
+
):
|
| 720 |
+
super().__init__()
|
| 721 |
+
self.groupnorm = nn.GroupNorm(groups, dim) if norm else Identity()
|
| 722 |
+
self.activation = nn.SiLU()
|
| 723 |
+
self.project = Conv3d(dim, dim_out, 3, padding = 1)
|
| 724 |
+
|
| 725 |
+
def forward(
|
| 726 |
+
self,
|
| 727 |
+
x,
|
| 728 |
+
scale_shift = None,
|
| 729 |
+
ignore_time = False
|
| 730 |
+
):
|
| 731 |
+
x = self.groupnorm(x)
|
| 732 |
+
|
| 733 |
+
if exists(scale_shift):
|
| 734 |
+
scale, shift = scale_shift
|
| 735 |
+
x = x * (scale + 1) + shift
|
| 736 |
+
|
| 737 |
+
x = self.activation(x)
|
| 738 |
+
return self.project(x, ignore_time = ignore_time)
|
| 739 |
+
|
| 740 |
+
class ResnetBlock(nn.Module):
|
| 741 |
+
def __init__(
|
| 742 |
+
self,
|
| 743 |
+
dim,
|
| 744 |
+
dim_out,
|
| 745 |
+
*,
|
| 746 |
+
cond_dim = None,
|
| 747 |
+
time_cond_dim = None,
|
| 748 |
+
groups = 8,
|
| 749 |
+
linear_attn = False,
|
| 750 |
+
use_gca = False,
|
| 751 |
+
squeeze_excite = False,
|
| 752 |
+
**attn_kwargs
|
| 753 |
+
):
|
| 754 |
+
super().__init__()
|
| 755 |
+
|
| 756 |
+
self.time_mlp = None
|
| 757 |
+
|
| 758 |
+
if exists(time_cond_dim):
|
| 759 |
+
self.time_mlp = nn.Sequential(
|
| 760 |
+
nn.SiLU(),
|
| 761 |
+
nn.Linear(time_cond_dim, dim_out * 2)
|
| 762 |
+
)
|
| 763 |
+
|
| 764 |
+
self.cross_attn = None
|
| 765 |
+
|
| 766 |
+
if exists(cond_dim):
|
| 767 |
+
attn_klass = CrossAttention if not linear_attn else LinearCrossAttention
|
| 768 |
+
|
| 769 |
+
self.cross_attn = attn_klass(
|
| 770 |
+
dim = dim_out,
|
| 771 |
+
context_dim = cond_dim,
|
| 772 |
+
**attn_kwargs
|
| 773 |
+
)
|
| 774 |
+
|
| 775 |
+
self.block1 = Block(dim, dim_out, groups = groups)
|
| 776 |
+
self.block2 = Block(dim_out, dim_out, groups = groups)
|
| 777 |
+
|
| 778 |
+
self.gca = GlobalContext(dim_in = dim_out, dim_out = dim_out) if use_gca else Always(1)
|
| 779 |
+
|
| 780 |
+
self.res_conv = Conv2d(dim, dim_out, 1) if dim != dim_out else Identity()
|
| 781 |
+
|
| 782 |
+
|
| 783 |
+
def forward(
|
| 784 |
+
self,
|
| 785 |
+
x,
|
| 786 |
+
time_emb = None,
|
| 787 |
+
cond = None,
|
| 788 |
+
ignore_time = False
|
| 789 |
+
):
|
| 790 |
+
|
| 791 |
+
scale_shift = None
|
| 792 |
+
if exists(self.time_mlp) and exists(time_emb):
|
| 793 |
+
time_emb = self.time_mlp(time_emb)
|
| 794 |
+
time_emb = rearrange(time_emb, 'b c -> b c 1 1 1')
|
| 795 |
+
scale_shift = time_emb.chunk(2, dim = 1)
|
| 796 |
+
|
| 797 |
+
h = self.block1(x, ignore_time = ignore_time)
|
| 798 |
+
|
| 799 |
+
if exists(self.cross_attn):
|
| 800 |
+
assert exists(cond)
|
| 801 |
+
h = rearrange(h, 'b c ... -> b ... c')
|
| 802 |
+
h, ps = pack([h], 'b * c')
|
| 803 |
+
|
| 804 |
+
h = self.cross_attn(h, context = cond) + h
|
| 805 |
+
|
| 806 |
+
h, = unpack(h, ps, 'b * c')
|
| 807 |
+
h = rearrange(h, 'b ... c -> b c ...')
|
| 808 |
+
|
| 809 |
+
h = self.block2(h, scale_shift = scale_shift, ignore_time = ignore_time)
|
| 810 |
+
|
| 811 |
+
h = h * self.gca(h)
|
| 812 |
+
|
| 813 |
+
return h + self.res_conv(x)
|
| 814 |
+
|
| 815 |
+
class CrossAttention(nn.Module):
|
| 816 |
+
def __init__(
|
| 817 |
+
self,
|
| 818 |
+
dim,
|
| 819 |
+
*,
|
| 820 |
+
context_dim = None,
|
| 821 |
+
dim_head = 64,
|
| 822 |
+
heads = 8,
|
| 823 |
+
norm_context = False,
|
| 824 |
+
scale = 8
|
| 825 |
+
):
|
| 826 |
+
super().__init__()
|
| 827 |
+
self.scale = scale
|
| 828 |
+
|
| 829 |
+
self.heads = heads
|
| 830 |
+
inner_dim = dim_head * heads
|
| 831 |
+
|
| 832 |
+
context_dim = default(context_dim, dim)
|
| 833 |
+
|
| 834 |
+
self.norm = LayerNorm(dim)
|
| 835 |
+
self.norm_context = LayerNorm(context_dim) if norm_context else Identity()
|
| 836 |
+
|
| 837 |
+
self.null_kv = nn.Parameter(torch.randn(2, dim_head))
|
| 838 |
+
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
| 839 |
+
self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias = False)
|
| 840 |
+
|
| 841 |
+
self.q_scale = nn.Parameter(torch.ones(dim_head))
|
| 842 |
+
self.k_scale = nn.Parameter(torch.ones(dim_head))
|
| 843 |
+
|
| 844 |
+
self.to_out = nn.Sequential(
|
| 845 |
+
nn.Linear(inner_dim, dim, bias = False),
|
| 846 |
+
LayerNorm(dim)
|
| 847 |
+
)
|
| 848 |
+
|
| 849 |
+
def forward(self, x, context, mask = None):
|
| 850 |
+
b, n, device = *x.shape[:2], x.device
|
| 851 |
+
|
| 852 |
+
x = self.norm(x)
|
| 853 |
+
context = self.norm_context(context)
|
| 854 |
+
|
| 855 |
+
q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
|
| 856 |
+
|
| 857 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), (q, k, v))
|
| 858 |
+
|
| 859 |
+
# add null key / value for classifier free guidance in prior net
|
| 860 |
+
|
| 861 |
+
nk, nv = map(lambda t: repeat(t, 'd -> b h 1 d', h = self.heads, b = b), self.null_kv.unbind(dim = -2))
|
| 862 |
+
|
| 863 |
+
k = torch.cat((nk, k), dim = -2)
|
| 864 |
+
v = torch.cat((nv, v), dim = -2)
|
| 865 |
+
|
| 866 |
+
# qk rmsnorm
|
| 867 |
+
|
| 868 |
+
q, k = map(l2norm, (q, k))
|
| 869 |
+
q = q * self.q_scale
|
| 870 |
+
k = k * self.k_scale
|
| 871 |
+
|
| 872 |
+
# similarities
|
| 873 |
+
|
| 874 |
+
sim = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
| 875 |
+
|
| 876 |
+
# masking
|
| 877 |
+
|
| 878 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 879 |
+
|
| 880 |
+
if exists(mask):
|
| 881 |
+
mask = F.pad(mask, (1, 0), value = True)
|
| 882 |
+
mask = rearrange(mask, 'b j -> b 1 1 j')
|
| 883 |
+
sim = sim.masked_fill(~mask, max_neg_value)
|
| 884 |
+
|
| 885 |
+
attn = sim.softmax(dim = -1, dtype = torch.float32)
|
| 886 |
+
|
| 887 |
+
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
| 888 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
| 889 |
+
return self.to_out(out)
|
| 890 |
+
|
| 891 |
+
class LinearCrossAttention(CrossAttention):
|
| 892 |
+
def forward(self, x, context, mask = None):
|
| 893 |
+
b, n, device = *x.shape[:2], x.device
|
| 894 |
+
|
| 895 |
+
x = self.norm(x)
|
| 896 |
+
context = self.norm_context(context)
|
| 897 |
+
|
| 898 |
+
q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
|
| 899 |
+
|
| 900 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = self.heads), (q, k, v))
|
| 901 |
+
|
| 902 |
+
# add null key / value for classifier free guidance in prior net
|
| 903 |
+
|
| 904 |
+
nk, nv = map(lambda t: repeat(t, 'd -> (b h) 1 d', h = self.heads, b = b), self.null_kv.unbind(dim = -2))
|
| 905 |
+
|
| 906 |
+
k = torch.cat((nk, k), dim = -2)
|
| 907 |
+
v = torch.cat((nv, v), dim = -2)
|
| 908 |
+
|
| 909 |
+
# masking
|
| 910 |
+
|
| 911 |
+
max_neg_value = -torch.finfo(x.dtype).max
|
| 912 |
+
|
| 913 |
+
if exists(mask):
|
| 914 |
+
mask = F.pad(mask, (1, 0), value = True)
|
| 915 |
+
mask = rearrange(mask, 'b n -> b n 1')
|
| 916 |
+
k = k.masked_fill(~mask, max_neg_value)
|
| 917 |
+
v = v.masked_fill(~mask, 0.)
|
| 918 |
+
|
| 919 |
+
# linear attention
|
| 920 |
+
|
| 921 |
+
q = q.softmax(dim = -1)
|
| 922 |
+
k = k.softmax(dim = -2)
|
| 923 |
+
|
| 924 |
+
q = q * self.scale
|
| 925 |
+
|
| 926 |
+
context = einsum('b n d, b n e -> b d e', k, v)
|
| 927 |
+
out = einsum('b n d, b d e -> b n e', q, context)
|
| 928 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h = self.heads)
|
| 929 |
+
return self.to_out(out)
|
| 930 |
+
|
| 931 |
+
class LinearAttention(nn.Module):
|
| 932 |
+
def __init__(
|
| 933 |
+
self,
|
| 934 |
+
dim,
|
| 935 |
+
dim_head = 32,
|
| 936 |
+
heads = 8,
|
| 937 |
+
dropout = 0.05,
|
| 938 |
+
context_dim = None,
|
| 939 |
+
**kwargs
|
| 940 |
+
):
|
| 941 |
+
super().__init__()
|
| 942 |
+
self.scale = dim_head ** -0.5
|
| 943 |
+
self.heads = heads
|
| 944 |
+
inner_dim = dim_head * heads
|
| 945 |
+
self.norm = ChanLayerNorm(dim)
|
| 946 |
+
|
| 947 |
+
self.nonlin = nn.SiLU()
|
| 948 |
+
|
| 949 |
+
self.to_q = nn.Sequential(
|
| 950 |
+
nn.Dropout(dropout),
|
| 951 |
+
Conv2d(dim, inner_dim, 1, bias = False),
|
| 952 |
+
Conv2d(inner_dim, inner_dim, 3, bias = False, padding = 1, groups = inner_dim)
|
| 953 |
+
)
|
| 954 |
+
|
| 955 |
+
self.to_k = nn.Sequential(
|
| 956 |
+
nn.Dropout(dropout),
|
| 957 |
+
Conv2d(dim, inner_dim, 1, bias = False),
|
| 958 |
+
Conv2d(inner_dim, inner_dim, 3, bias = False, padding = 1, groups = inner_dim)
|
| 959 |
+
)
|
| 960 |
+
|
| 961 |
+
self.to_v = nn.Sequential(
|
| 962 |
+
nn.Dropout(dropout),
|
| 963 |
+
Conv2d(dim, inner_dim, 1, bias = False),
|
| 964 |
+
Conv2d(inner_dim, inner_dim, 3, bias = False, padding = 1, groups = inner_dim)
|
| 965 |
+
)
|
| 966 |
+
|
| 967 |
+
self.to_context = nn.Sequential(nn.LayerNorm(context_dim), nn.Linear(context_dim, inner_dim * 2, bias = False)) if exists(context_dim) else None
|
| 968 |
+
|
| 969 |
+
self.to_out = nn.Sequential(
|
| 970 |
+
Conv2d(inner_dim, dim, 1, bias = False),
|
| 971 |
+
ChanLayerNorm(dim)
|
| 972 |
+
)
|
| 973 |
+
|
| 974 |
+
def forward(self, fmap, context = None):
|
| 975 |
+
h, x, y = self.heads, *fmap.shape[-2:]
|
| 976 |
+
|
| 977 |
+
fmap = self.norm(fmap)
|
| 978 |
+
q, k, v = map(lambda fn: fn(fmap), (self.to_q, self.to_k, self.to_v))
|
| 979 |
+
q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> (b h) (x y) c', h = h), (q, k, v))
|
| 980 |
+
|
| 981 |
+
if exists(context):
|
| 982 |
+
assert exists(self.to_context)
|
| 983 |
+
ck, cv = self.to_context(context).chunk(2, dim = -1)
|
| 984 |
+
ck, cv = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (ck, cv))
|
| 985 |
+
k = torch.cat((k, ck), dim = -2)
|
| 986 |
+
v = torch.cat((v, cv), dim = -2)
|
| 987 |
+
|
| 988 |
+
q = q.softmax(dim = -1)
|
| 989 |
+
k = k.softmax(dim = -2)
|
| 990 |
+
|
| 991 |
+
q = q * self.scale
|
| 992 |
+
|
| 993 |
+
context = einsum('b n d, b n e -> b d e', k, v)
|
| 994 |
+
out = einsum('b n d, b d e -> b n e', q, context)
|
| 995 |
+
out = rearrange(out, '(b h) (x y) d -> b (h d) x y', h = h, x = x, y = y)
|
| 996 |
+
|
| 997 |
+
out = self.nonlin(out)
|
| 998 |
+
return self.to_out(out)
|
| 999 |
+
|
| 1000 |
+
class GlobalContext(nn.Module):
|
| 1001 |
+
""" basically a superior form of squeeze-excitation that is attention-esque """
|
| 1002 |
+
|
| 1003 |
+
def __init__(
|
| 1004 |
+
self,
|
| 1005 |
+
*,
|
| 1006 |
+
dim_in,
|
| 1007 |
+
dim_out
|
| 1008 |
+
):
|
| 1009 |
+
super().__init__()
|
| 1010 |
+
self.to_k = Conv2d(dim_in, 1, 1)
|
| 1011 |
+
hidden_dim = max(3, dim_out // 2)
|
| 1012 |
+
|
| 1013 |
+
self.net = nn.Sequential(
|
| 1014 |
+
Conv2d(dim_in, hidden_dim, 1),
|
| 1015 |
+
nn.SiLU(),
|
| 1016 |
+
Conv2d(hidden_dim, dim_out, 1),
|
| 1017 |
+
nn.Sigmoid()
|
| 1018 |
+
)
|
| 1019 |
+
|
| 1020 |
+
def forward(self, x):
|
| 1021 |
+
context = self.to_k(x)
|
| 1022 |
+
x, context = map(lambda t: rearrange(t, 'b n ... -> b n (...)'), (x, context))
|
| 1023 |
+
out = einsum('b i n, b c n -> b c i', context.softmax(dim = -1), x)
|
| 1024 |
+
out = rearrange(out, '... -> ... 1 1')
|
| 1025 |
+
return self.net(out)
|
| 1026 |
+
|
| 1027 |
+
def FeedForward(dim, mult = 2):
|
| 1028 |
+
hidden_dim = int(dim * mult)
|
| 1029 |
+
return nn.Sequential(
|
| 1030 |
+
LayerNorm(dim),
|
| 1031 |
+
nn.Linear(dim, hidden_dim, bias = False),
|
| 1032 |
+
nn.GELU(),
|
| 1033 |
+
LayerNorm(hidden_dim),
|
| 1034 |
+
nn.Linear(hidden_dim, dim, bias = False)
|
| 1035 |
+
)
|
| 1036 |
+
|
| 1037 |
+
class TimeTokenShift(nn.Module):
|
| 1038 |
+
def forward(self, x):
|
| 1039 |
+
if x.ndim != 5:
|
| 1040 |
+
return x
|
| 1041 |
+
|
| 1042 |
+
x, x_shift = x.chunk(2, dim = 1)
|
| 1043 |
+
x_shift = F.pad(x_shift, (0, 0, 0, 0, 1, -1), value = 0.)
|
| 1044 |
+
return torch.cat((x, x_shift), dim = 1)
|
| 1045 |
+
|
| 1046 |
+
def ChanFeedForward(dim, mult = 2, time_token_shift = True): # in paper, it seems for self attention layers they did feedforwards with twice channel width
|
| 1047 |
+
hidden_dim = int(dim * mult)
|
| 1048 |
+
return Sequential(
|
| 1049 |
+
ChanLayerNorm(dim),
|
| 1050 |
+
Conv2d(dim, hidden_dim, 1, bias = False),
|
| 1051 |
+
nn.GELU(),
|
| 1052 |
+
TimeTokenShift() if time_token_shift else None,
|
| 1053 |
+
ChanLayerNorm(hidden_dim),
|
| 1054 |
+
Conv2d(hidden_dim, dim, 1, bias = False)
|
| 1055 |
+
)
|
| 1056 |
+
|
| 1057 |
+
class TransformerBlock(nn.Module):
|
| 1058 |
+
def __init__(
|
| 1059 |
+
self,
|
| 1060 |
+
dim,
|
| 1061 |
+
*,
|
| 1062 |
+
depth = 1,
|
| 1063 |
+
heads = 8,
|
| 1064 |
+
dim_head = 32,
|
| 1065 |
+
ff_mult = 2,
|
| 1066 |
+
ff_time_token_shift = True,
|
| 1067 |
+
context_dim = None
|
| 1068 |
+
):
|
| 1069 |
+
super().__init__()
|
| 1070 |
+
self.layers = nn.ModuleList([])
|
| 1071 |
+
|
| 1072 |
+
for _ in range(depth):
|
| 1073 |
+
self.layers.append(nn.ModuleList([
|
| 1074 |
+
Attention(dim = dim, heads = heads, dim_head = dim_head, context_dim = context_dim),
|
| 1075 |
+
ChanFeedForward(dim = dim, mult = ff_mult, time_token_shift = ff_time_token_shift)
|
| 1076 |
+
]))
|
| 1077 |
+
|
| 1078 |
+
def forward(self, x, context = None):
|
| 1079 |
+
for attn, ff in self.layers:
|
| 1080 |
+
x = rearrange(x, 'b c ... -> b ... c')
|
| 1081 |
+
x, ps = pack([x], 'b * c')
|
| 1082 |
+
|
| 1083 |
+
x = attn(x, context = context) + x
|
| 1084 |
+
|
| 1085 |
+
x, = unpack(x, ps, 'b * c')
|
| 1086 |
+
x = rearrange(x, 'b ... c -> b c ...')
|
| 1087 |
+
|
| 1088 |
+
x = ff(x) + x
|
| 1089 |
+
return x
|
| 1090 |
+
|
| 1091 |
+
class LinearAttentionTransformerBlock(nn.Module):
|
| 1092 |
+
def __init__(
|
| 1093 |
+
self,
|
| 1094 |
+
dim,
|
| 1095 |
+
*,
|
| 1096 |
+
depth = 1,
|
| 1097 |
+
heads = 8,
|
| 1098 |
+
dim_head = 32,
|
| 1099 |
+
ff_mult = 2,
|
| 1100 |
+
ff_time_token_shift = True,
|
| 1101 |
+
context_dim = None,
|
| 1102 |
+
**kwargs
|
| 1103 |
+
):
|
| 1104 |
+
super().__init__()
|
| 1105 |
+
self.layers = nn.ModuleList([])
|
| 1106 |
+
|
| 1107 |
+
for _ in range(depth):
|
| 1108 |
+
self.layers.append(nn.ModuleList([
|
| 1109 |
+
LinearAttention(dim = dim, heads = heads, dim_head = dim_head, context_dim = context_dim),
|
| 1110 |
+
ChanFeedForward(dim = dim, mult = ff_mult, time_token_shift = ff_time_token_shift)
|
| 1111 |
+
]))
|
| 1112 |
+
|
| 1113 |
+
def forward(self, x, context = None):
|
| 1114 |
+
for attn, ff in self.layers:
|
| 1115 |
+
x = attn(x, context = context) + x
|
| 1116 |
+
x = ff(x) + x
|
| 1117 |
+
return x
|
| 1118 |
+
|
| 1119 |
+
class CrossEmbedLayer(nn.Module):
|
| 1120 |
+
def __init__(
|
| 1121 |
+
self,
|
| 1122 |
+
dim_in,
|
| 1123 |
+
kernel_sizes,
|
| 1124 |
+
dim_out = None,
|
| 1125 |
+
stride = 2
|
| 1126 |
+
):
|
| 1127 |
+
super().__init__()
|
| 1128 |
+
assert all([*map(lambda t: (t % 2) == (stride % 2), kernel_sizes)])
|
| 1129 |
+
dim_out = default(dim_out, dim_in)
|
| 1130 |
+
|
| 1131 |
+
kernel_sizes = sorted(kernel_sizes)
|
| 1132 |
+
num_scales = len(kernel_sizes)
|
| 1133 |
+
|
| 1134 |
+
# calculate the dimension at each scale
|
| 1135 |
+
dim_scales = [int(dim_out / (2 ** i)) for i in range(1, num_scales)]
|
| 1136 |
+
dim_scales = [*dim_scales, dim_out - sum(dim_scales)]
|
| 1137 |
+
|
| 1138 |
+
self.convs = nn.ModuleList([])
|
| 1139 |
+
for kernel, dim_scale in zip(kernel_sizes, dim_scales):
|
| 1140 |
+
self.convs.append(Conv2d(dim_in, dim_scale, kernel, stride = stride, padding = (kernel - stride) // 2))
|
| 1141 |
+
|
| 1142 |
+
def forward(self, x):
|
| 1143 |
+
fmaps = tuple(map(lambda conv: conv(x), self.convs))
|
| 1144 |
+
return torch.cat(fmaps, dim = 1)
|
| 1145 |
+
|
| 1146 |
+
class UpsampleCombiner(nn.Module):
|
| 1147 |
+
def __init__(
|
| 1148 |
+
self,
|
| 1149 |
+
dim,
|
| 1150 |
+
*,
|
| 1151 |
+
enabled = False,
|
| 1152 |
+
dim_ins = tuple(),
|
| 1153 |
+
dim_outs = tuple()
|
| 1154 |
+
):
|
| 1155 |
+
super().__init__()
|
| 1156 |
+
dim_outs = cast_tuple(dim_outs, len(dim_ins))
|
| 1157 |
+
assert len(dim_ins) == len(dim_outs)
|
| 1158 |
+
|
| 1159 |
+
self.enabled = enabled
|
| 1160 |
+
|
| 1161 |
+
if not self.enabled:
|
| 1162 |
+
self.dim_out = dim
|
| 1163 |
+
return
|
| 1164 |
+
|
| 1165 |
+
self.fmap_convs = nn.ModuleList([Block(dim_in, dim_out) for dim_in, dim_out in zip(dim_ins, dim_outs)])
|
| 1166 |
+
self.dim_out = dim + (sum(dim_outs) if len(dim_outs) > 0 else 0)
|
| 1167 |
+
|
| 1168 |
+
def forward(self, x, fmaps = None):
|
| 1169 |
+
target_size = x.shape[-1]
|
| 1170 |
+
|
| 1171 |
+
fmaps = default(fmaps, tuple())
|
| 1172 |
+
|
| 1173 |
+
if not self.enabled or len(fmaps) == 0 or len(self.fmap_convs) == 0:
|
| 1174 |
+
return x
|
| 1175 |
+
|
| 1176 |
+
fmaps = [resize_video_to(fmap, target_size) for fmap in fmaps]
|
| 1177 |
+
outs = [conv(fmap) for fmap, conv in zip(fmaps, self.fmap_convs)]
|
| 1178 |
+
return torch.cat((x, *outs), dim = 1)
|
| 1179 |
+
|
| 1180 |
+
class DynamicPositionBias(nn.Module):
|
| 1181 |
+
def __init__(
|
| 1182 |
+
self,
|
| 1183 |
+
dim,
|
| 1184 |
+
*,
|
| 1185 |
+
heads,
|
| 1186 |
+
depth
|
| 1187 |
+
):
|
| 1188 |
+
super().__init__()
|
| 1189 |
+
self.mlp = nn.ModuleList([])
|
| 1190 |
+
|
| 1191 |
+
self.mlp.append(nn.Sequential(
|
| 1192 |
+
nn.Linear(1, dim),
|
| 1193 |
+
LayerNorm(dim),
|
| 1194 |
+
nn.SiLU()
|
| 1195 |
+
))
|
| 1196 |
+
|
| 1197 |
+
for _ in range(max(depth - 1, 0)):
|
| 1198 |
+
self.mlp.append(nn.Sequential(
|
| 1199 |
+
nn.Linear(dim, dim),
|
| 1200 |
+
LayerNorm(dim),
|
| 1201 |
+
nn.SiLU()
|
| 1202 |
+
))
|
| 1203 |
+
|
| 1204 |
+
self.mlp.append(nn.Linear(dim, heads))
|
| 1205 |
+
|
| 1206 |
+
def forward(self, n, device, dtype):
|
| 1207 |
+
i = torch.arange(n, device = device)
|
| 1208 |
+
j = torch.arange(n, device = device)
|
| 1209 |
+
|
| 1210 |
+
indices = rearrange(i, 'i -> i 1') - rearrange(j, 'j -> 1 j')
|
| 1211 |
+
indices += (n - 1)
|
| 1212 |
+
|
| 1213 |
+
pos = torch.arange(-n + 1, n, device = device, dtype = dtype)
|
| 1214 |
+
pos = rearrange(pos, '... -> ... 1')
|
| 1215 |
+
|
| 1216 |
+
for layer in self.mlp:
|
| 1217 |
+
pos = layer(pos)
|
| 1218 |
+
|
| 1219 |
+
bias = pos[indices]
|
| 1220 |
+
bias = rearrange(bias, 'i j h -> h i j')
|
| 1221 |
+
return bias
|
| 1222 |
+
|
| 1223 |
+
class Unet3D(nn.Module):
|
| 1224 |
+
def __init__(
|
| 1225 |
+
self,
|
| 1226 |
+
*,
|
| 1227 |
+
dim,
|
| 1228 |
+
text_embed_dim = get_encoded_dim(DEFAULT_T5_NAME),
|
| 1229 |
+
num_resnet_blocks = 1,
|
| 1230 |
+
cond_dim = None,
|
| 1231 |
+
num_image_tokens = 4,
|
| 1232 |
+
num_time_tokens = 2,
|
| 1233 |
+
learned_sinu_pos_emb_dim = 16,
|
| 1234 |
+
out_dim = None,
|
| 1235 |
+
dim_mults = (1, 2, 4, 8),
|
| 1236 |
+
temporal_strides = 1,
|
| 1237 |
+
cond_images_channels = 0,
|
| 1238 |
+
channels = 3,
|
| 1239 |
+
channels_out = None,
|
| 1240 |
+
attn_dim_head = 64,
|
| 1241 |
+
attn_heads = 8,
|
| 1242 |
+
ff_mult = 2.,
|
| 1243 |
+
ff_time_token_shift = True, # this would do a token shift along time axis, at the hidden layer within feedforwards - from successful use in RWKV (Peng et al), and other token shift video transformer works
|
| 1244 |
+
lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/
|
| 1245 |
+
layer_attns = False,
|
| 1246 |
+
layer_attns_depth = 1,
|
| 1247 |
+
layer_attns_add_text_cond = True, # whether to condition the self-attention blocks with the text embeddings, as described in Appendix D.3.1
|
| 1248 |
+
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
|
| 1249 |
+
time_rel_pos_bias_depth = 2,
|
| 1250 |
+
time_causal_attn = True,
|
| 1251 |
+
layer_cross_attns = True,
|
| 1252 |
+
use_linear_attn = False,
|
| 1253 |
+
use_linear_cross_attn = False,
|
| 1254 |
+
cond_on_text = True,
|
| 1255 |
+
max_text_len = 256,
|
| 1256 |
+
init_dim = None,
|
| 1257 |
+
resnet_groups = 8,
|
| 1258 |
+
init_conv_kernel_size = 7, # kernel size of initial conv, if not using cross embed
|
| 1259 |
+
init_cross_embed = True,
|
| 1260 |
+
init_cross_embed_kernel_sizes = (3, 7, 15),
|
| 1261 |
+
cross_embed_downsample = False,
|
| 1262 |
+
cross_embed_downsample_kernel_sizes = (2, 4),
|
| 1263 |
+
attn_pool_text = True,
|
| 1264 |
+
attn_pool_num_latents = 32,
|
| 1265 |
+
dropout = 0.,
|
| 1266 |
+
memory_efficient = False,
|
| 1267 |
+
init_conv_to_final_conv_residual = False,
|
| 1268 |
+
use_global_context_attn = True,
|
| 1269 |
+
scale_skip_connection = True,
|
| 1270 |
+
final_resnet_block = True,
|
| 1271 |
+
final_conv_kernel_size = 3,
|
| 1272 |
+
self_cond = False,
|
| 1273 |
+
combine_upsample_fmaps = False, # combine feature maps from all upsample blocks, used in unet squared successfully
|
| 1274 |
+
pixel_shuffle_upsample = True, # may address checkboard artifacts
|
| 1275 |
+
resize_mode = 'nearest'
|
| 1276 |
+
):
|
| 1277 |
+
super().__init__()
|
| 1278 |
+
|
| 1279 |
+
# guide researchers
|
| 1280 |
+
|
| 1281 |
+
assert attn_heads > 1, 'you need to have more than 1 attention head, ideally at least 4 or 8'
|
| 1282 |
+
|
| 1283 |
+
if dim < 128:
|
| 1284 |
+
print_once('The base dimension of your u-net should ideally be no smaller than 128, as recommended by a professional DDPM trainer https://nonint.com/2022/05/04/friends-dont-let-friends-train-small-diffusion-models/')
|
| 1285 |
+
|
| 1286 |
+
# save locals to take care of some hyperparameters for cascading DDPM
|
| 1287 |
+
|
| 1288 |
+
self._locals = locals()
|
| 1289 |
+
self._locals.pop('self', None)
|
| 1290 |
+
self._locals.pop('__class__', None)
|
| 1291 |
+
|
| 1292 |
+
self.self_cond = self_cond
|
| 1293 |
+
|
| 1294 |
+
# determine dimensions
|
| 1295 |
+
|
| 1296 |
+
self.channels = channels
|
| 1297 |
+
self.channels_out = default(channels_out, channels)
|
| 1298 |
+
|
| 1299 |
+
# (1) in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis
|
| 1300 |
+
# (2) in self conditioning, one appends the predict x0 (x_start)
|
| 1301 |
+
init_channels = channels * (1 + int(lowres_cond) + int(self_cond))
|
| 1302 |
+
init_dim = default(init_dim, dim)
|
| 1303 |
+
|
| 1304 |
+
# optional image conditioning
|
| 1305 |
+
|
| 1306 |
+
self.has_cond_image = cond_images_channels > 0
|
| 1307 |
+
self.cond_images_channels = cond_images_channels
|
| 1308 |
+
|
| 1309 |
+
init_channels += cond_images_channels
|
| 1310 |
+
|
| 1311 |
+
# initial convolution
|
| 1312 |
+
|
| 1313 |
+
self.init_conv = CrossEmbedLayer(init_channels, dim_out = init_dim, kernel_sizes = init_cross_embed_kernel_sizes, stride = 1) if init_cross_embed else Conv2d(init_channels, init_dim, init_conv_kernel_size, padding = init_conv_kernel_size // 2)
|
| 1314 |
+
|
| 1315 |
+
dims = [init_dim, *map(lambda m: dim * m, dim_mults)]
|
| 1316 |
+
in_out = list(zip(dims[:-1], dims[1:]))
|
| 1317 |
+
|
| 1318 |
+
# time conditioning
|
| 1319 |
+
|
| 1320 |
+
cond_dim = default(cond_dim, dim)
|
| 1321 |
+
time_cond_dim = dim * 4 * (2 if lowres_cond else 1)
|
| 1322 |
+
|
| 1323 |
+
# embedding time for log(snr) noise from continuous version
|
| 1324 |
+
|
| 1325 |
+
sinu_pos_emb = LearnedSinusoidalPosEmb(learned_sinu_pos_emb_dim)
|
| 1326 |
+
sinu_pos_emb_input_dim = learned_sinu_pos_emb_dim + 1
|
| 1327 |
+
|
| 1328 |
+
self.to_time_hiddens = nn.Sequential(
|
| 1329 |
+
sinu_pos_emb,
|
| 1330 |
+
nn.Linear(sinu_pos_emb_input_dim, time_cond_dim),
|
| 1331 |
+
nn.SiLU()
|
| 1332 |
+
)
|
| 1333 |
+
|
| 1334 |
+
self.to_time_cond = nn.Sequential(
|
| 1335 |
+
nn.Linear(time_cond_dim, time_cond_dim)
|
| 1336 |
+
)
|
| 1337 |
+
|
| 1338 |
+
# project to time tokens as well as time hiddens
|
| 1339 |
+
|
| 1340 |
+
self.to_time_tokens = nn.Sequential(
|
| 1341 |
+
nn.Linear(time_cond_dim, cond_dim * num_time_tokens),
|
| 1342 |
+
Rearrange('b (r d) -> b r d', r = num_time_tokens)
|
| 1343 |
+
)
|
| 1344 |
+
|
| 1345 |
+
# low res aug noise conditioning
|
| 1346 |
+
|
| 1347 |
+
self.lowres_cond = lowres_cond
|
| 1348 |
+
|
| 1349 |
+
if lowres_cond:
|
| 1350 |
+
self.to_lowres_time_hiddens = nn.Sequential(
|
| 1351 |
+
LearnedSinusoidalPosEmb(learned_sinu_pos_emb_dim),
|
| 1352 |
+
nn.Linear(learned_sinu_pos_emb_dim + 1, time_cond_dim),
|
| 1353 |
+
nn.SiLU()
|
| 1354 |
+
)
|
| 1355 |
+
|
| 1356 |
+
self.to_lowres_time_cond = nn.Sequential(
|
| 1357 |
+
nn.Linear(time_cond_dim, time_cond_dim)
|
| 1358 |
+
)
|
| 1359 |
+
|
| 1360 |
+
self.to_lowres_time_tokens = nn.Sequential(
|
| 1361 |
+
nn.Linear(time_cond_dim, cond_dim * num_time_tokens),
|
| 1362 |
+
Rearrange('b (r d) -> b r d', r = num_time_tokens)
|
| 1363 |
+
)
|
| 1364 |
+
|
| 1365 |
+
# normalizations
|
| 1366 |
+
|
| 1367 |
+
self.norm_cond = nn.LayerNorm(cond_dim)
|
| 1368 |
+
|
| 1369 |
+
# text encoding conditioning (optional)
|
| 1370 |
+
|
| 1371 |
+
self.text_to_cond = None
|
| 1372 |
+
|
| 1373 |
+
if cond_on_text:
|
| 1374 |
+
assert exists(text_embed_dim), 'text_embed_dim must be given to the unet if cond_on_text is True'
|
| 1375 |
+
self.text_to_cond = nn.Linear(text_embed_dim, cond_dim)
|
| 1376 |
+
|
| 1377 |
+
# finer control over whether to condition on text encodings
|
| 1378 |
+
|
| 1379 |
+
self.cond_on_text = cond_on_text
|
| 1380 |
+
|
| 1381 |
+
# attention pooling
|
| 1382 |
+
|
| 1383 |
+
self.attn_pool = PerceiverResampler(dim = cond_dim, depth = 2, dim_head = attn_dim_head, heads = attn_heads, num_latents = attn_pool_num_latents) if attn_pool_text else None
|
| 1384 |
+
|
| 1385 |
+
# for classifier free guidance
|
| 1386 |
+
|
| 1387 |
+
self.max_text_len = max_text_len
|
| 1388 |
+
|
| 1389 |
+
self.null_text_embed = nn.Parameter(torch.randn(1, max_text_len, cond_dim))
|
| 1390 |
+
self.null_text_hidden = nn.Parameter(torch.randn(1, time_cond_dim))
|
| 1391 |
+
|
| 1392 |
+
# for non-attention based text conditioning at all points in the network where time is also conditioned
|
| 1393 |
+
|
| 1394 |
+
self.to_text_non_attn_cond = None
|
| 1395 |
+
|
| 1396 |
+
if cond_on_text:
|
| 1397 |
+
self.to_text_non_attn_cond = nn.Sequential(
|
| 1398 |
+
nn.LayerNorm(cond_dim),
|
| 1399 |
+
nn.Linear(cond_dim, time_cond_dim),
|
| 1400 |
+
nn.SiLU(),
|
| 1401 |
+
nn.Linear(time_cond_dim, time_cond_dim)
|
| 1402 |
+
)
|
| 1403 |
+
|
| 1404 |
+
# attention related params
|
| 1405 |
+
|
| 1406 |
+
attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head)
|
| 1407 |
+
|
| 1408 |
+
num_layers = len(in_out)
|
| 1409 |
+
|
| 1410 |
+
# temporal attention - attention across video frames
|
| 1411 |
+
|
| 1412 |
+
temporal_peg_padding = (0, 0, 0, 0, 2, 0) if time_causal_attn else (0, 0, 0, 0, 1, 1)
|
| 1413 |
+
temporal_peg = lambda dim: Residual(nn.Sequential(Pad(temporal_peg_padding), nn.Conv3d(dim, dim, (3, 1, 1), groups = dim)))
|
| 1414 |
+
|
| 1415 |
+
temporal_attn = lambda dim: RearrangeTimeCentric(Residual(Attention(dim, **{**attn_kwargs, 'causal': time_causal_attn, 'init_zero': True, 'rel_pos_bias': True})))
|
| 1416 |
+
|
| 1417 |
+
# resnet block klass
|
| 1418 |
+
|
| 1419 |
+
num_resnet_blocks = cast_tuple(num_resnet_blocks, num_layers)
|
| 1420 |
+
resnet_groups = cast_tuple(resnet_groups, num_layers)
|
| 1421 |
+
|
| 1422 |
+
resnet_klass = partial(ResnetBlock, **attn_kwargs)
|
| 1423 |
+
|
| 1424 |
+
layer_attns = cast_tuple(layer_attns, num_layers)
|
| 1425 |
+
layer_attns_depth = cast_tuple(layer_attns_depth, num_layers)
|
| 1426 |
+
layer_cross_attns = cast_tuple(layer_cross_attns, num_layers)
|
| 1427 |
+
|
| 1428 |
+
assert all([layers == num_layers for layers in list(map(len, (resnet_groups, layer_attns, layer_cross_attns)))])
|
| 1429 |
+
|
| 1430 |
+
# temporal downsample config
|
| 1431 |
+
|
| 1432 |
+
temporal_strides = cast_tuple(temporal_strides, num_layers)
|
| 1433 |
+
self.total_temporal_divisor = functools.reduce(operator.mul, temporal_strides, 1)
|
| 1434 |
+
|
| 1435 |
+
# downsample klass
|
| 1436 |
+
|
| 1437 |
+
downsample_klass = Downsample
|
| 1438 |
+
|
| 1439 |
+
if cross_embed_downsample:
|
| 1440 |
+
downsample_klass = partial(CrossEmbedLayer, kernel_sizes = cross_embed_downsample_kernel_sizes)
|
| 1441 |
+
|
| 1442 |
+
# initial resnet block (for memory efficient unet)
|
| 1443 |
+
|
| 1444 |
+
self.init_resnet_block = resnet_klass(init_dim, init_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[0], use_gca = use_global_context_attn) if memory_efficient else None
|
| 1445 |
+
|
| 1446 |
+
self.init_temporal_peg = temporal_peg(init_dim)
|
| 1447 |
+
self.init_temporal_attn = temporal_attn(init_dim)
|
| 1448 |
+
|
| 1449 |
+
# scale for resnet skip connections
|
| 1450 |
+
|
| 1451 |
+
self.skip_connect_scale = 1. if not scale_skip_connection else (2 ** -0.5)
|
| 1452 |
+
|
| 1453 |
+
# layers
|
| 1454 |
+
|
| 1455 |
+
self.downs = nn.ModuleList([])
|
| 1456 |
+
self.ups = nn.ModuleList([])
|
| 1457 |
+
num_resolutions = len(in_out)
|
| 1458 |
+
|
| 1459 |
+
layer_params = [num_resnet_blocks, resnet_groups, layer_attns, layer_attns_depth, layer_cross_attns, temporal_strides]
|
| 1460 |
+
reversed_layer_params = list(map(reversed, layer_params))
|
| 1461 |
+
|
| 1462 |
+
# downsampling layers
|
| 1463 |
+
|
| 1464 |
+
skip_connect_dims = [] # keep track of skip connection dimensions
|
| 1465 |
+
|
| 1466 |
+
for ind, ((dim_in, dim_out), layer_num_resnet_blocks, groups, layer_attn, layer_attn_depth, layer_cross_attn, temporal_stride) in enumerate(zip(in_out, *layer_params)):
|
| 1467 |
+
is_last = ind >= (num_resolutions - 1)
|
| 1468 |
+
|
| 1469 |
+
layer_use_linear_cross_attn = not layer_cross_attn and use_linear_cross_attn
|
| 1470 |
+
layer_cond_dim = cond_dim if layer_cross_attn or layer_use_linear_cross_attn else None
|
| 1471 |
+
|
| 1472 |
+
transformer_block_klass = TransformerBlock if layer_attn else (LinearAttentionTransformerBlock if use_linear_attn else Identity)
|
| 1473 |
+
|
| 1474 |
+
current_dim = dim_in
|
| 1475 |
+
|
| 1476 |
+
# whether to pre-downsample, from memory efficient unet
|
| 1477 |
+
|
| 1478 |
+
pre_downsample = None
|
| 1479 |
+
|
| 1480 |
+
if memory_efficient:
|
| 1481 |
+
pre_downsample = downsample_klass(dim_in, dim_out)
|
| 1482 |
+
current_dim = dim_out
|
| 1483 |
+
|
| 1484 |
+
skip_connect_dims.append(current_dim)
|
| 1485 |
+
|
| 1486 |
+
# whether to do post-downsample, for non-memory efficient unet
|
| 1487 |
+
|
| 1488 |
+
post_downsample = None
|
| 1489 |
+
if not memory_efficient:
|
| 1490 |
+
post_downsample = downsample_klass(current_dim, dim_out) if not is_last else Parallel(Conv2d(dim_in, dim_out, 3, padding = 1), Conv2d(dim_in, dim_out, 1))
|
| 1491 |
+
|
| 1492 |
+
self.downs.append(nn.ModuleList([
|
| 1493 |
+
pre_downsample,
|
| 1494 |
+
resnet_klass(current_dim, current_dim, cond_dim = layer_cond_dim, linear_attn = layer_use_linear_cross_attn, time_cond_dim = time_cond_dim, groups = groups),
|
| 1495 |
+
nn.ModuleList([ResnetBlock(current_dim, current_dim, time_cond_dim = time_cond_dim, groups = groups, use_gca = use_global_context_attn) for _ in range(layer_num_resnet_blocks)]),
|
| 1496 |
+
transformer_block_klass(dim = current_dim, depth = layer_attn_depth, ff_mult = ff_mult, ff_time_token_shift = ff_time_token_shift, context_dim = cond_dim, **attn_kwargs),
|
| 1497 |
+
temporal_peg(current_dim),
|
| 1498 |
+
temporal_attn(current_dim),
|
| 1499 |
+
TemporalDownsample(current_dim, stride = temporal_stride) if temporal_stride > 1 else None,
|
| 1500 |
+
post_downsample
|
| 1501 |
+
]))
|
| 1502 |
+
|
| 1503 |
+
# middle layers
|
| 1504 |
+
|
| 1505 |
+
mid_dim = dims[-1]
|
| 1506 |
+
|
| 1507 |
+
self.mid_block1 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
| 1508 |
+
self.mid_attn = EinopsToAndFrom('b c f h w', 'b (f h w) c', Residual(Attention(mid_dim, **attn_kwargs))) if attend_at_middle else None
|
| 1509 |
+
self.mid_temporal_peg = temporal_peg(mid_dim)
|
| 1510 |
+
self.mid_temporal_attn = temporal_attn(mid_dim)
|
| 1511 |
+
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
| 1512 |
+
|
| 1513 |
+
# upsample klass
|
| 1514 |
+
|
| 1515 |
+
upsample_klass = Upsample if not pixel_shuffle_upsample else PixelShuffleUpsample
|
| 1516 |
+
|
| 1517 |
+
# upsampling layers
|
| 1518 |
+
|
| 1519 |
+
upsample_fmap_dims = []
|
| 1520 |
+
|
| 1521 |
+
for ind, ((dim_in, dim_out), layer_num_resnet_blocks, groups, layer_attn, layer_attn_depth, layer_cross_attn, temporal_stride) in enumerate(zip(reversed(in_out), *reversed_layer_params)):
|
| 1522 |
+
is_last = ind == (len(in_out) - 1)
|
| 1523 |
+
layer_use_linear_cross_attn = not layer_cross_attn and use_linear_cross_attn
|
| 1524 |
+
layer_cond_dim = cond_dim if layer_cross_attn or layer_use_linear_cross_attn else None
|
| 1525 |
+
transformer_block_klass = TransformerBlock if layer_attn else (LinearAttentionTransformerBlock if use_linear_attn else Identity)
|
| 1526 |
+
|
| 1527 |
+
skip_connect_dim = skip_connect_dims.pop()
|
| 1528 |
+
|
| 1529 |
+
upsample_fmap_dims.append(dim_out)
|
| 1530 |
+
|
| 1531 |
+
self.ups.append(nn.ModuleList([
|
| 1532 |
+
resnet_klass(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, linear_attn = layer_use_linear_cross_attn, time_cond_dim = time_cond_dim, groups = groups),
|
| 1533 |
+
nn.ModuleList([ResnetBlock(dim_out + skip_connect_dim, dim_out, time_cond_dim = time_cond_dim, groups = groups, use_gca = use_global_context_attn) for _ in range(layer_num_resnet_blocks)]),
|
| 1534 |
+
transformer_block_klass(dim = dim_out, depth = layer_attn_depth, ff_mult = ff_mult, ff_time_token_shift = ff_time_token_shift, context_dim = cond_dim, **attn_kwargs),
|
| 1535 |
+
temporal_peg(dim_out),
|
| 1536 |
+
temporal_attn(dim_out),
|
| 1537 |
+
TemporalPixelShuffleUpsample(dim_out, stride = temporal_stride) if temporal_stride > 1 else None,
|
| 1538 |
+
upsample_klass(dim_out, dim_in) if not is_last or memory_efficient else Identity()
|
| 1539 |
+
]))
|
| 1540 |
+
|
| 1541 |
+
# whether to combine feature maps from all upsample blocks before final resnet block out
|
| 1542 |
+
|
| 1543 |
+
self.upsample_combiner = UpsampleCombiner(
|
| 1544 |
+
dim = dim,
|
| 1545 |
+
enabled = combine_upsample_fmaps,
|
| 1546 |
+
dim_ins = upsample_fmap_dims,
|
| 1547 |
+
dim_outs = dim
|
| 1548 |
+
)
|
| 1549 |
+
|
| 1550 |
+
# whether to do a final residual from initial conv to the final resnet block out
|
| 1551 |
+
|
| 1552 |
+
self.init_conv_to_final_conv_residual = init_conv_to_final_conv_residual
|
| 1553 |
+
final_conv_dim = self.upsample_combiner.dim_out + (dim if init_conv_to_final_conv_residual else 0)
|
| 1554 |
+
|
| 1555 |
+
# final optional resnet block and convolution out
|
| 1556 |
+
|
| 1557 |
+
self.final_res_block = ResnetBlock(final_conv_dim, dim, time_cond_dim = time_cond_dim, groups = resnet_groups[0], use_gca = True) if final_resnet_block else None
|
| 1558 |
+
|
| 1559 |
+
final_conv_dim_in = dim if final_resnet_block else final_conv_dim
|
| 1560 |
+
final_conv_dim_in += (channels if lowres_cond else 0)
|
| 1561 |
+
|
| 1562 |
+
self.final_conv = Conv2d(final_conv_dim_in, self.channels_out, final_conv_kernel_size, padding = final_conv_kernel_size // 2)
|
| 1563 |
+
|
| 1564 |
+
zero_init_(self.final_conv)
|
| 1565 |
+
|
| 1566 |
+
# resize mode
|
| 1567 |
+
|
| 1568 |
+
self.resize_mode = resize_mode
|
| 1569 |
+
|
| 1570 |
+
# if the current settings for the unet are not correct
|
| 1571 |
+
# for cascading DDPM, then reinit the unet with the right settings
|
| 1572 |
+
def cast_model_parameters(
|
| 1573 |
+
self,
|
| 1574 |
+
*,
|
| 1575 |
+
lowres_cond,
|
| 1576 |
+
text_embed_dim,
|
| 1577 |
+
channels,
|
| 1578 |
+
channels_out,
|
| 1579 |
+
cond_on_text
|
| 1580 |
+
):
|
| 1581 |
+
if lowres_cond == self.lowres_cond and \
|
| 1582 |
+
channels == self.channels and \
|
| 1583 |
+
cond_on_text == self.cond_on_text and \
|
| 1584 |
+
text_embed_dim == self._locals['text_embed_dim'] and \
|
| 1585 |
+
channels_out == self.channels_out:
|
| 1586 |
+
return self
|
| 1587 |
+
|
| 1588 |
+
updated_kwargs = dict(
|
| 1589 |
+
lowres_cond = lowres_cond,
|
| 1590 |
+
text_embed_dim = text_embed_dim,
|
| 1591 |
+
channels = channels,
|
| 1592 |
+
channels_out = channels_out,
|
| 1593 |
+
cond_on_text = cond_on_text
|
| 1594 |
+
)
|
| 1595 |
+
|
| 1596 |
+
return self.__class__(**{**self._locals, **updated_kwargs})
|
| 1597 |
+
|
| 1598 |
+
# methods for returning the full unet config as well as its parameter state
|
| 1599 |
+
|
| 1600 |
+
def to_config_and_state_dict(self):
|
| 1601 |
+
return self._locals, self.state_dict()
|
| 1602 |
+
|
| 1603 |
+
# class method for rehydrating the unet from its config and state dict
|
| 1604 |
+
|
| 1605 |
+
@classmethod
|
| 1606 |
+
def from_config_and_state_dict(klass, config, state_dict):
|
| 1607 |
+
unet = klass(**config)
|
| 1608 |
+
unet.load_state_dict(state_dict)
|
| 1609 |
+
return unet
|
| 1610 |
+
|
| 1611 |
+
# methods for persisting unet to disk
|
| 1612 |
+
|
| 1613 |
+
def persist_to_file(self, path):
|
| 1614 |
+
path = Path(path)
|
| 1615 |
+
path.parents[0].mkdir(exist_ok = True, parents = True)
|
| 1616 |
+
|
| 1617 |
+
config, state_dict = self.to_config_and_state_dict()
|
| 1618 |
+
pkg = dict(config = config, state_dict = state_dict)
|
| 1619 |
+
torch.save(pkg, str(path))
|
| 1620 |
+
|
| 1621 |
+
# class method for rehydrating the unet from file saved with `persist_to_file`
|
| 1622 |
+
|
| 1623 |
+
@classmethod
|
| 1624 |
+
def hydrate_from_file(klass, path):
|
| 1625 |
+
path = Path(path)
|
| 1626 |
+
assert path.exists()
|
| 1627 |
+
pkg = torch.load(str(path))
|
| 1628 |
+
|
| 1629 |
+
assert 'config' in pkg and 'state_dict' in pkg
|
| 1630 |
+
config, state_dict = pkg['config'], pkg['state_dict']
|
| 1631 |
+
|
| 1632 |
+
return Unet.from_config_and_state_dict(config, state_dict)
|
| 1633 |
+
|
| 1634 |
+
# forward with classifier free guidance
|
| 1635 |
+
|
| 1636 |
+
def forward_with_cond_scale(
|
| 1637 |
+
self,
|
| 1638 |
+
*args,
|
| 1639 |
+
cond_scale = 1.,
|
| 1640 |
+
**kwargs
|
| 1641 |
+
):
|
| 1642 |
+
logits = self.forward(*args, **kwargs)
|
| 1643 |
+
|
| 1644 |
+
if cond_scale == 1:
|
| 1645 |
+
return logits
|
| 1646 |
+
|
| 1647 |
+
null_logits = self.forward(*args, cond_drop_prob = 1., **kwargs)
|
| 1648 |
+
return null_logits + (logits - null_logits) * cond_scale
|
| 1649 |
+
|
| 1650 |
+
def forward(
|
| 1651 |
+
self,
|
| 1652 |
+
x,
|
| 1653 |
+
time,
|
| 1654 |
+
*,
|
| 1655 |
+
lowres_cond_img = None,
|
| 1656 |
+
lowres_noise_times = None,
|
| 1657 |
+
text_embeds = None,
|
| 1658 |
+
text_mask = None,
|
| 1659 |
+
cond_images = None,
|
| 1660 |
+
cond_video_frames = None,
|
| 1661 |
+
post_cond_video_frames = None,
|
| 1662 |
+
self_cond = None,
|
| 1663 |
+
cond_drop_prob = 0.,
|
| 1664 |
+
ignore_time = False
|
| 1665 |
+
):
|
| 1666 |
+
assert x.ndim == 5, 'input to 3d unet must have 5 dimensions (batch, channels, time, height, width)'
|
| 1667 |
+
|
| 1668 |
+
batch_size, frames, device, dtype = x.shape[0], x.shape[2], x.device, x.dtype
|
| 1669 |
+
|
| 1670 |
+
assert ignore_time or divisible_by(frames, self.total_temporal_divisor), f'number of input frames {frames} must be divisible by {self.total_temporal_divisor}'
|
| 1671 |
+
|
| 1672 |
+
# add self conditioning if needed
|
| 1673 |
+
|
| 1674 |
+
if self.self_cond:
|
| 1675 |
+
self_cond = default(self_cond, lambda: torch.zeros_like(x))
|
| 1676 |
+
x = torch.cat((x, self_cond), dim = 1)
|
| 1677 |
+
|
| 1678 |
+
# add low resolution conditioning, if present
|
| 1679 |
+
|
| 1680 |
+
assert not (self.lowres_cond and not exists(lowres_cond_img)), 'low resolution conditioning image must be present'
|
| 1681 |
+
assert not (self.lowres_cond and not exists(lowres_noise_times)), 'low resolution conditioning noise time must be present'
|
| 1682 |
+
|
| 1683 |
+
if exists(lowres_cond_img):
|
| 1684 |
+
x = torch.cat((x, lowres_cond_img), dim = 1)
|
| 1685 |
+
|
| 1686 |
+
if exists(cond_video_frames):
|
| 1687 |
+
lowres_cond_img = torch.cat((cond_video_frames, lowres_cond_img), dim = 2)
|
| 1688 |
+
cond_video_frames = torch.cat((cond_video_frames, cond_video_frames), dim = 1)
|
| 1689 |
+
|
| 1690 |
+
if exists(post_cond_video_frames):
|
| 1691 |
+
lowres_cond_img = torch.cat((lowres_cond_img, post_cond_video_frames), dim = 2)
|
| 1692 |
+
post_cond_video_frames = torch.cat((post_cond_video_frames, post_cond_video_frames), dim = 1)
|
| 1693 |
+
|
| 1694 |
+
# conditioning on video frames as a prompt
|
| 1695 |
+
|
| 1696 |
+
num_preceding_frames = 0
|
| 1697 |
+
if exists(cond_video_frames):
|
| 1698 |
+
cond_video_frames_len = cond_video_frames.shape[2]
|
| 1699 |
+
|
| 1700 |
+
assert divisible_by(cond_video_frames_len, self.total_temporal_divisor)
|
| 1701 |
+
|
| 1702 |
+
cond_video_frames = resize_video_to(cond_video_frames, x.shape[-1])
|
| 1703 |
+
x = torch.cat((cond_video_frames, x), dim = 2)
|
| 1704 |
+
|
| 1705 |
+
num_preceding_frames = cond_video_frames_len
|
| 1706 |
+
|
| 1707 |
+
# conditioning on video frames as a prompt
|
| 1708 |
+
|
| 1709 |
+
num_succeeding_frames = 0
|
| 1710 |
+
if exists(post_cond_video_frames):
|
| 1711 |
+
cond_video_frames_len = post_cond_video_frames.shape[2]
|
| 1712 |
+
|
| 1713 |
+
assert divisible_by(cond_video_frames_len, self.total_temporal_divisor)
|
| 1714 |
+
|
| 1715 |
+
post_cond_video_frames = resize_video_to(post_cond_video_frames, x.shape[-1])
|
| 1716 |
+
x = torch.cat((post_cond_video_frames, x), dim = 2)
|
| 1717 |
+
|
| 1718 |
+
num_succeeding_frames = cond_video_frames_len
|
| 1719 |
+
|
| 1720 |
+
# condition on input image
|
| 1721 |
+
|
| 1722 |
+
assert not (self.has_cond_image ^ exists(cond_images)), 'you either requested to condition on an image on the unet, but the conditioning image is not supplied, or vice versa'
|
| 1723 |
+
|
| 1724 |
+
if exists(cond_images):
|
| 1725 |
+
assert cond_images.ndim == 4, 'conditioning images must have 4 dimensions only, if you want to condition on frames of video, use `cond_video_frames` instead'
|
| 1726 |
+
assert cond_images.shape[1] == self.cond_images_channels, 'the number of channels on the conditioning image you are passing in does not match what you specified on initialiation of the unet'
|
| 1727 |
+
|
| 1728 |
+
cond_images = repeat(cond_images, 'b c h w -> b c f h w', f = x.shape[2])
|
| 1729 |
+
cond_images = resize_video_to(cond_images, x.shape[-1], mode = self.resize_mode)
|
| 1730 |
+
|
| 1731 |
+
x = torch.cat((cond_images, x), dim = 1)
|
| 1732 |
+
|
| 1733 |
+
# ignoring time in pseudo 3d resnet blocks
|
| 1734 |
+
|
| 1735 |
+
conv_kwargs = dict(
|
| 1736 |
+
ignore_time = ignore_time
|
| 1737 |
+
)
|
| 1738 |
+
|
| 1739 |
+
# initial convolution
|
| 1740 |
+
|
| 1741 |
+
x = self.init_conv(x)
|
| 1742 |
+
|
| 1743 |
+
if not ignore_time:
|
| 1744 |
+
x = self.init_temporal_peg(x)
|
| 1745 |
+
x = self.init_temporal_attn(x)
|
| 1746 |
+
|
| 1747 |
+
# init conv residual
|
| 1748 |
+
|
| 1749 |
+
if self.init_conv_to_final_conv_residual:
|
| 1750 |
+
init_conv_residual = x.clone()
|
| 1751 |
+
|
| 1752 |
+
# time conditioning
|
| 1753 |
+
|
| 1754 |
+
time_hiddens = self.to_time_hiddens(time)
|
| 1755 |
+
|
| 1756 |
+
# derive time tokens
|
| 1757 |
+
|
| 1758 |
+
time_tokens = self.to_time_tokens(time_hiddens)
|
| 1759 |
+
t = self.to_time_cond(time_hiddens)
|
| 1760 |
+
|
| 1761 |
+
# add lowres time conditioning to time hiddens
|
| 1762 |
+
# and add lowres time tokens along sequence dimension for attention
|
| 1763 |
+
|
| 1764 |
+
if self.lowres_cond:
|
| 1765 |
+
lowres_time_hiddens = self.to_lowres_time_hiddens(lowres_noise_times)
|
| 1766 |
+
lowres_time_tokens = self.to_lowres_time_tokens(lowres_time_hiddens)
|
| 1767 |
+
lowres_t = self.to_lowres_time_cond(lowres_time_hiddens)
|
| 1768 |
+
|
| 1769 |
+
t = t + lowres_t
|
| 1770 |
+
time_tokens = torch.cat((time_tokens, lowres_time_tokens), dim = -2)
|
| 1771 |
+
|
| 1772 |
+
# text conditioning
|
| 1773 |
+
|
| 1774 |
+
text_tokens = None
|
| 1775 |
+
|
| 1776 |
+
if exists(text_embeds) and self.cond_on_text:
|
| 1777 |
+
|
| 1778 |
+
# conditional dropout
|
| 1779 |
+
|
| 1780 |
+
text_keep_mask = prob_mask_like((batch_size,), 1 - cond_drop_prob, device = device)
|
| 1781 |
+
|
| 1782 |
+
text_keep_mask_embed = rearrange(text_keep_mask, 'b -> b 1 1')
|
| 1783 |
+
text_keep_mask_hidden = rearrange(text_keep_mask, 'b -> b 1')
|
| 1784 |
+
|
| 1785 |
+
# calculate text embeds
|
| 1786 |
+
|
| 1787 |
+
text_tokens = self.text_to_cond(text_embeds)
|
| 1788 |
+
|
| 1789 |
+
text_tokens = text_tokens[:, :self.max_text_len]
|
| 1790 |
+
|
| 1791 |
+
if exists(text_mask):
|
| 1792 |
+
text_mask = text_mask[:, :self.max_text_len]
|
| 1793 |
+
|
| 1794 |
+
text_tokens_len = text_tokens.shape[1]
|
| 1795 |
+
remainder = self.max_text_len - text_tokens_len
|
| 1796 |
+
|
| 1797 |
+
if remainder > 0:
|
| 1798 |
+
text_tokens = F.pad(text_tokens, (0, 0, 0, remainder))
|
| 1799 |
+
|
| 1800 |
+
if exists(text_mask):
|
| 1801 |
+
if remainder > 0:
|
| 1802 |
+
text_mask = F.pad(text_mask, (0, remainder), value = False)
|
| 1803 |
+
|
| 1804 |
+
text_mask = rearrange(text_mask, 'b n -> b n 1')
|
| 1805 |
+
text_keep_mask_embed = text_mask & text_keep_mask_embed
|
| 1806 |
+
|
| 1807 |
+
null_text_embed = self.null_text_embed.to(text_tokens.dtype) # for some reason pytorch AMP not working
|
| 1808 |
+
|
| 1809 |
+
text_tokens = torch.where(
|
| 1810 |
+
text_keep_mask_embed,
|
| 1811 |
+
text_tokens,
|
| 1812 |
+
null_text_embed
|
| 1813 |
+
)
|
| 1814 |
+
|
| 1815 |
+
if exists(self.attn_pool):
|
| 1816 |
+
text_tokens = self.attn_pool(text_tokens)
|
| 1817 |
+
|
| 1818 |
+
# extra non-attention conditioning by projecting and then summing text embeddings to time
|
| 1819 |
+
# termed as text hiddens
|
| 1820 |
+
|
| 1821 |
+
mean_pooled_text_tokens = text_tokens.mean(dim = -2)
|
| 1822 |
+
|
| 1823 |
+
text_hiddens = self.to_text_non_attn_cond(mean_pooled_text_tokens)
|
| 1824 |
+
|
| 1825 |
+
null_text_hidden = self.null_text_hidden.to(t.dtype)
|
| 1826 |
+
|
| 1827 |
+
text_hiddens = torch.where(
|
| 1828 |
+
text_keep_mask_hidden,
|
| 1829 |
+
text_hiddens,
|
| 1830 |
+
null_text_hidden
|
| 1831 |
+
)
|
| 1832 |
+
|
| 1833 |
+
t = t + text_hiddens
|
| 1834 |
+
|
| 1835 |
+
# main conditioning tokens (c)
|
| 1836 |
+
|
| 1837 |
+
c = time_tokens if not exists(text_tokens) else torch.cat((time_tokens, text_tokens), dim = -2)
|
| 1838 |
+
|
| 1839 |
+
# normalize conditioning tokens
|
| 1840 |
+
|
| 1841 |
+
c = self.norm_cond(c)
|
| 1842 |
+
|
| 1843 |
+
# initial resnet block (for memory efficient unet)
|
| 1844 |
+
|
| 1845 |
+
if exists(self.init_resnet_block):
|
| 1846 |
+
x = self.init_resnet_block(x, t, **conv_kwargs)
|
| 1847 |
+
|
| 1848 |
+
# go through the layers of the unet, down and up
|
| 1849 |
+
|
| 1850 |
+
hiddens = []
|
| 1851 |
+
|
| 1852 |
+
for pre_downsample, init_block, resnet_blocks, attn_block, temporal_peg, temporal_attn, temporal_downsample, post_downsample in self.downs:
|
| 1853 |
+
if exists(pre_downsample):
|
| 1854 |
+
x = pre_downsample(x)
|
| 1855 |
+
|
| 1856 |
+
x = init_block(x, t, c, **conv_kwargs)
|
| 1857 |
+
|
| 1858 |
+
for resnet_block in resnet_blocks:
|
| 1859 |
+
x = resnet_block(x, t, **conv_kwargs)
|
| 1860 |
+
hiddens.append(x)
|
| 1861 |
+
|
| 1862 |
+
x = attn_block(x, c)
|
| 1863 |
+
|
| 1864 |
+
if not ignore_time:
|
| 1865 |
+
x = temporal_peg(x)
|
| 1866 |
+
x = temporal_attn(x)
|
| 1867 |
+
|
| 1868 |
+
hiddens.append(x)
|
| 1869 |
+
|
| 1870 |
+
if exists(temporal_downsample) and not ignore_time:
|
| 1871 |
+
x = temporal_downsample(x)
|
| 1872 |
+
|
| 1873 |
+
if exists(post_downsample):
|
| 1874 |
+
x = post_downsample(x)
|
| 1875 |
+
|
| 1876 |
+
x = self.mid_block1(x, t, c, **conv_kwargs)
|
| 1877 |
+
|
| 1878 |
+
if exists(self.mid_attn):
|
| 1879 |
+
x = self.mid_attn(x)
|
| 1880 |
+
|
| 1881 |
+
if not ignore_time:
|
| 1882 |
+
x = self.mid_temporal_peg(x)
|
| 1883 |
+
x = self.mid_temporal_attn(x)
|
| 1884 |
+
|
| 1885 |
+
x = self.mid_block2(x, t, c, **conv_kwargs)
|
| 1886 |
+
|
| 1887 |
+
add_skip_connection = lambda x: torch.cat((x, hiddens.pop() * self.skip_connect_scale), dim = 1)
|
| 1888 |
+
|
| 1889 |
+
up_hiddens = []
|
| 1890 |
+
|
| 1891 |
+
for init_block, resnet_blocks, attn_block, temporal_peg, temporal_attn, temporal_upsample, upsample in self.ups:
|
| 1892 |
+
if exists(temporal_upsample) and not ignore_time:
|
| 1893 |
+
x = temporal_upsample(x)
|
| 1894 |
+
|
| 1895 |
+
x = add_skip_connection(x)
|
| 1896 |
+
x = init_block(x, t, c, **conv_kwargs)
|
| 1897 |
+
|
| 1898 |
+
for resnet_block in resnet_blocks:
|
| 1899 |
+
x = add_skip_connection(x)
|
| 1900 |
+
x = resnet_block(x, t, **conv_kwargs)
|
| 1901 |
+
|
| 1902 |
+
x = attn_block(x, c)
|
| 1903 |
+
|
| 1904 |
+
if not ignore_time:
|
| 1905 |
+
x = temporal_peg(x)
|
| 1906 |
+
x = temporal_attn(x)
|
| 1907 |
+
|
| 1908 |
+
up_hiddens.append(x.contiguous())
|
| 1909 |
+
|
| 1910 |
+
x = upsample(x)
|
| 1911 |
+
|
| 1912 |
+
# whether to combine all feature maps from upsample blocks
|
| 1913 |
+
|
| 1914 |
+
x = self.upsample_combiner(x, up_hiddens)
|
| 1915 |
+
|
| 1916 |
+
# final top-most residual if needed
|
| 1917 |
+
|
| 1918 |
+
if self.init_conv_to_final_conv_residual:
|
| 1919 |
+
x = torch.cat((x, init_conv_residual), dim = 1)
|
| 1920 |
+
|
| 1921 |
+
if exists(self.final_res_block):
|
| 1922 |
+
x = self.final_res_block(x, t, **conv_kwargs)
|
| 1923 |
+
|
| 1924 |
+
if exists(lowres_cond_img):
|
| 1925 |
+
x = torch.cat((x, lowres_cond_img), dim = 1)
|
| 1926 |
+
|
| 1927 |
+
out = self.final_conv(x)
|
| 1928 |
+
|
| 1929 |
+
if num_preceding_frames > 0:
|
| 1930 |
+
out = out[:, :, num_preceding_frames:]
|
| 1931 |
+
|
| 1932 |
+
if num_succeeding_frames > 0:
|
| 1933 |
+
out = out[:, :, :-num_succeeding_frames]
|
| 1934 |
+
|
| 1935 |
+
return out
|
t5.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import transformers
|
| 3 |
+
from typing import List
|
| 4 |
+
from transformers import T5Tokenizer, T5EncoderModel, T5Config
|
| 5 |
+
from einops import rearrange
|
| 6 |
+
|
| 7 |
+
transformers.logging.set_verbosity_error()
|
| 8 |
+
|
| 9 |
+
def exists(val):
|
| 10 |
+
return val is not None
|
| 11 |
+
|
| 12 |
+
def default(val, d):
|
| 13 |
+
if exists(val):
|
| 14 |
+
return val
|
| 15 |
+
return d() if callable(d) else d
|
| 16 |
+
|
| 17 |
+
# config
|
| 18 |
+
|
| 19 |
+
MAX_LENGTH = 256
|
| 20 |
+
|
| 21 |
+
DEFAULT_T5_NAME = 'google/t5-v1_1-base'
|
| 22 |
+
|
| 23 |
+
T5_CONFIGS = {}
|
| 24 |
+
|
| 25 |
+
# singleton globals
|
| 26 |
+
|
| 27 |
+
def get_tokenizer(name):
|
| 28 |
+
tokenizer = T5Tokenizer.from_pretrained(name, model_max_length=MAX_LENGTH)
|
| 29 |
+
return tokenizer
|
| 30 |
+
|
| 31 |
+
def get_model(name):
|
| 32 |
+
model = T5EncoderModel.from_pretrained(name)
|
| 33 |
+
return model
|
| 34 |
+
|
| 35 |
+
def get_model_and_tokenizer(name):
|
| 36 |
+
global T5_CONFIGS
|
| 37 |
+
|
| 38 |
+
if name not in T5_CONFIGS:
|
| 39 |
+
T5_CONFIGS[name] = dict()
|
| 40 |
+
if "model" not in T5_CONFIGS[name]:
|
| 41 |
+
T5_CONFIGS[name]["model"] = get_model(name)
|
| 42 |
+
if "tokenizer" not in T5_CONFIGS[name]:
|
| 43 |
+
T5_CONFIGS[name]["tokenizer"] = get_tokenizer(name)
|
| 44 |
+
|
| 45 |
+
return T5_CONFIGS[name]['model'], T5_CONFIGS[name]['tokenizer']
|
| 46 |
+
|
| 47 |
+
def get_encoded_dim(name):
|
| 48 |
+
if name not in T5_CONFIGS:
|
| 49 |
+
# avoids loading the model if we only want to get the dim
|
| 50 |
+
config = T5Config.from_pretrained(name)
|
| 51 |
+
T5_CONFIGS[name] = dict(config=config)
|
| 52 |
+
elif "config" in T5_CONFIGS[name]:
|
| 53 |
+
config = T5_CONFIGS[name]["config"]
|
| 54 |
+
elif "model" in T5_CONFIGS[name]:
|
| 55 |
+
config = T5_CONFIGS[name]["model"].config
|
| 56 |
+
else:
|
| 57 |
+
assert False
|
| 58 |
+
return config.d_model
|
| 59 |
+
|
| 60 |
+
# encoding text
|
| 61 |
+
|
| 62 |
+
def t5_tokenize(
|
| 63 |
+
texts: List[str],
|
| 64 |
+
name = DEFAULT_T5_NAME
|
| 65 |
+
):
|
| 66 |
+
t5, tokenizer = get_model_and_tokenizer(name)
|
| 67 |
+
|
| 68 |
+
if torch.cuda.is_available():
|
| 69 |
+
t5 = t5.cuda()
|
| 70 |
+
|
| 71 |
+
device = next(t5.parameters()).device
|
| 72 |
+
|
| 73 |
+
encoded = tokenizer.batch_encode_plus(
|
| 74 |
+
texts,
|
| 75 |
+
return_tensors = "pt",
|
| 76 |
+
padding = 'longest',
|
| 77 |
+
max_length = MAX_LENGTH,
|
| 78 |
+
truncation = True
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
input_ids = encoded.input_ids.to(device)
|
| 82 |
+
attn_mask = encoded.attention_mask.to(device)
|
| 83 |
+
return input_ids, attn_mask
|
| 84 |
+
|
| 85 |
+
def t5_encode_tokenized_text(
|
| 86 |
+
token_ids,
|
| 87 |
+
attn_mask = None,
|
| 88 |
+
pad_id = None,
|
| 89 |
+
name = DEFAULT_T5_NAME
|
| 90 |
+
):
|
| 91 |
+
assert exists(attn_mask) or exists(pad_id)
|
| 92 |
+
t5, _ = get_model_and_tokenizer(name)
|
| 93 |
+
|
| 94 |
+
attn_mask = default(attn_mask, lambda: (token_ids != pad_id).long())
|
| 95 |
+
|
| 96 |
+
t5.eval()
|
| 97 |
+
|
| 98 |
+
with torch.no_grad():
|
| 99 |
+
output = t5(input_ids = token_ids, attention_mask = attn_mask)
|
| 100 |
+
encoded_text = output.last_hidden_state.detach()
|
| 101 |
+
|
| 102 |
+
attn_mask = attn_mask.bool()
|
| 103 |
+
|
| 104 |
+
encoded_text = encoded_text.masked_fill(~rearrange(attn_mask, '... -> ... 1'), 0.) # just force all embeddings that is padding to be equal to 0.
|
| 105 |
+
return encoded_text
|
| 106 |
+
|
| 107 |
+
def t5_encode_text(
|
| 108 |
+
texts: List[str],
|
| 109 |
+
name = DEFAULT_T5_NAME,
|
| 110 |
+
return_attn_mask = False
|
| 111 |
+
):
|
| 112 |
+
token_ids, attn_mask = t5_tokenize(texts, name = name)
|
| 113 |
+
encoded_text = t5_encode_tokenized_text(token_ids, attn_mask = attn_mask, name = name)
|
| 114 |
+
|
| 115 |
+
if return_attn_mask:
|
| 116 |
+
attn_mask = attn_mask.bool()
|
| 117 |
+
return encoded_text, attn_mask
|
| 118 |
+
|
| 119 |
+
return encoded_text
|
trainer.py
ADDED
|
@@ -0,0 +1,992 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import copy
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from math import ceil
|
| 6 |
+
from contextlib import contextmanager, nullcontext
|
| 7 |
+
from functools import partial, wraps
|
| 8 |
+
from collections.abc import Iterable
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from torch import nn
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
from torch.utils.data import random_split, DataLoader
|
| 14 |
+
from torch.optim import Adam
|
| 15 |
+
from torch.optim.lr_scheduler import CosineAnnealingLR, LambdaLR
|
| 16 |
+
from torch.cuda.amp import autocast, GradScaler
|
| 17 |
+
|
| 18 |
+
import pytorch_warmup as warmup
|
| 19 |
+
|
| 20 |
+
from imagen_pytorch.imagen_pytorch import Imagen, NullUnet
|
| 21 |
+
from imagen_pytorch.elucidated_imagen import ElucidatedImagen
|
| 22 |
+
from imagen_pytorch.data import cycle
|
| 23 |
+
|
| 24 |
+
from imagen_pytorch.version import __version__
|
| 25 |
+
from packaging import version
|
| 26 |
+
|
| 27 |
+
import numpy as np
|
| 28 |
+
|
| 29 |
+
from ema_pytorch import EMA
|
| 30 |
+
|
| 31 |
+
from accelerate import Accelerator, DistributedType, DistributedDataParallelKwargs
|
| 32 |
+
|
| 33 |
+
from fsspec.core import url_to_fs
|
| 34 |
+
from fsspec.implementations.local import LocalFileSystem
|
| 35 |
+
|
| 36 |
+
# helper functions
|
| 37 |
+
|
| 38 |
+
def exists(val):
|
| 39 |
+
return val is not None
|
| 40 |
+
|
| 41 |
+
def default(val, d):
|
| 42 |
+
if exists(val):
|
| 43 |
+
return val
|
| 44 |
+
return d() if callable(d) else d
|
| 45 |
+
|
| 46 |
+
def cast_tuple(val, length = 1):
|
| 47 |
+
if isinstance(val, list):
|
| 48 |
+
val = tuple(val)
|
| 49 |
+
|
| 50 |
+
return val if isinstance(val, tuple) else ((val,) * length)
|
| 51 |
+
|
| 52 |
+
def find_first(fn, arr):
|
| 53 |
+
for ind, el in enumerate(arr):
|
| 54 |
+
if fn(el):
|
| 55 |
+
return ind
|
| 56 |
+
return -1
|
| 57 |
+
|
| 58 |
+
def pick_and_pop(keys, d):
|
| 59 |
+
values = list(map(lambda key: d.pop(key), keys))
|
| 60 |
+
return dict(zip(keys, values))
|
| 61 |
+
|
| 62 |
+
def group_dict_by_key(cond, d):
|
| 63 |
+
return_val = [dict(),dict()]
|
| 64 |
+
for key in d.keys():
|
| 65 |
+
match = bool(cond(key))
|
| 66 |
+
ind = int(not match)
|
| 67 |
+
return_val[ind][key] = d[key]
|
| 68 |
+
return (*return_val,)
|
| 69 |
+
|
| 70 |
+
def string_begins_with(prefix, str):
|
| 71 |
+
return str.startswith(prefix)
|
| 72 |
+
|
| 73 |
+
def group_by_key_prefix(prefix, d):
|
| 74 |
+
return group_dict_by_key(partial(string_begins_with, prefix), d)
|
| 75 |
+
|
| 76 |
+
def groupby_prefix_and_trim(prefix, d):
|
| 77 |
+
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
|
| 78 |
+
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
|
| 79 |
+
return kwargs_without_prefix, kwargs
|
| 80 |
+
|
| 81 |
+
def num_to_groups(num, divisor):
|
| 82 |
+
groups = num // divisor
|
| 83 |
+
remainder = num % divisor
|
| 84 |
+
arr = [divisor] * groups
|
| 85 |
+
if remainder > 0:
|
| 86 |
+
arr.append(remainder)
|
| 87 |
+
return arr
|
| 88 |
+
|
| 89 |
+
# url to fs, bucket, path - for checkpointing to cloud
|
| 90 |
+
|
| 91 |
+
def url_to_bucket(url):
|
| 92 |
+
if '://' not in url:
|
| 93 |
+
return url
|
| 94 |
+
|
| 95 |
+
_, suffix = url.split('://')
|
| 96 |
+
|
| 97 |
+
if prefix in {'gs', 's3'}:
|
| 98 |
+
return suffix.split('/')[0]
|
| 99 |
+
else:
|
| 100 |
+
raise ValueError(f'storage type prefix "{prefix}" is not supported yet')
|
| 101 |
+
|
| 102 |
+
# decorators
|
| 103 |
+
|
| 104 |
+
def eval_decorator(fn):
|
| 105 |
+
def inner(model, *args, **kwargs):
|
| 106 |
+
was_training = model.training
|
| 107 |
+
model.eval()
|
| 108 |
+
out = fn(model, *args, **kwargs)
|
| 109 |
+
model.train(was_training)
|
| 110 |
+
return out
|
| 111 |
+
return inner
|
| 112 |
+
|
| 113 |
+
def cast_torch_tensor(fn, cast_fp16 = False):
|
| 114 |
+
@wraps(fn)
|
| 115 |
+
def inner(model, *args, **kwargs):
|
| 116 |
+
device = kwargs.pop('_device', model.device)
|
| 117 |
+
cast_device = kwargs.pop('_cast_device', True)
|
| 118 |
+
|
| 119 |
+
should_cast_fp16 = cast_fp16 and model.cast_half_at_training
|
| 120 |
+
|
| 121 |
+
kwargs_keys = kwargs.keys()
|
| 122 |
+
all_args = (*args, *kwargs.values())
|
| 123 |
+
split_kwargs_index = len(all_args) - len(kwargs_keys)
|
| 124 |
+
all_args = tuple(map(lambda t: torch.from_numpy(t) if exists(t) and isinstance(t, np.ndarray) else t, all_args))
|
| 125 |
+
|
| 126 |
+
if cast_device:
|
| 127 |
+
all_args = tuple(map(lambda t: t.to(device) if exists(t) and isinstance(t, torch.Tensor) else t, all_args))
|
| 128 |
+
|
| 129 |
+
if should_cast_fp16:
|
| 130 |
+
all_args = tuple(map(lambda t: t.half() if exists(t) and isinstance(t, torch.Tensor) and t.dtype != torch.bool else t, all_args))
|
| 131 |
+
|
| 132 |
+
args, kwargs_values = all_args[:split_kwargs_index], all_args[split_kwargs_index:]
|
| 133 |
+
kwargs = dict(tuple(zip(kwargs_keys, kwargs_values)))
|
| 134 |
+
|
| 135 |
+
out = fn(model, *args, **kwargs)
|
| 136 |
+
return out
|
| 137 |
+
return inner
|
| 138 |
+
|
| 139 |
+
# gradient accumulation functions
|
| 140 |
+
|
| 141 |
+
def split_iterable(it, split_size):
|
| 142 |
+
accum = []
|
| 143 |
+
for ind in range(ceil(len(it) / split_size)):
|
| 144 |
+
start_index = ind * split_size
|
| 145 |
+
accum.append(it[start_index: (start_index + split_size)])
|
| 146 |
+
return accum
|
| 147 |
+
|
| 148 |
+
def split(t, split_size = None):
|
| 149 |
+
if not exists(split_size):
|
| 150 |
+
return t
|
| 151 |
+
|
| 152 |
+
if isinstance(t, torch.Tensor):
|
| 153 |
+
return t.split(split_size, dim = 0)
|
| 154 |
+
|
| 155 |
+
if isinstance(t, Iterable):
|
| 156 |
+
return split_iterable(t, split_size)
|
| 157 |
+
|
| 158 |
+
return TypeError
|
| 159 |
+
|
| 160 |
+
def find_first(cond, arr):
|
| 161 |
+
for el in arr:
|
| 162 |
+
if cond(el):
|
| 163 |
+
return el
|
| 164 |
+
return None
|
| 165 |
+
|
| 166 |
+
def split_args_and_kwargs(*args, split_size = None, **kwargs):
|
| 167 |
+
all_args = (*args, *kwargs.values())
|
| 168 |
+
len_all_args = len(all_args)
|
| 169 |
+
first_tensor = find_first(lambda t: isinstance(t, torch.Tensor), all_args)
|
| 170 |
+
assert exists(first_tensor)
|
| 171 |
+
|
| 172 |
+
batch_size = len(first_tensor)
|
| 173 |
+
split_size = default(split_size, batch_size)
|
| 174 |
+
num_chunks = ceil(batch_size / split_size)
|
| 175 |
+
|
| 176 |
+
dict_len = len(kwargs)
|
| 177 |
+
dict_keys = kwargs.keys()
|
| 178 |
+
split_kwargs_index = len_all_args - dict_len
|
| 179 |
+
|
| 180 |
+
split_all_args = [split(arg, split_size = split_size) if exists(arg) and isinstance(arg, (torch.Tensor, Iterable)) else ((arg,) * num_chunks) for arg in all_args]
|
| 181 |
+
chunk_sizes = num_to_groups(batch_size, split_size)
|
| 182 |
+
|
| 183 |
+
for (chunk_size, *chunked_all_args) in tuple(zip(chunk_sizes, *split_all_args)):
|
| 184 |
+
chunked_args, chunked_kwargs_values = chunked_all_args[:split_kwargs_index], chunked_all_args[split_kwargs_index:]
|
| 185 |
+
chunked_kwargs = dict(tuple(zip(dict_keys, chunked_kwargs_values)))
|
| 186 |
+
chunk_size_frac = chunk_size / batch_size
|
| 187 |
+
yield chunk_size_frac, (chunked_args, chunked_kwargs)
|
| 188 |
+
|
| 189 |
+
# imagen trainer
|
| 190 |
+
|
| 191 |
+
def imagen_sample_in_chunks(fn):
|
| 192 |
+
@wraps(fn)
|
| 193 |
+
def inner(self, *args, max_batch_size = None, **kwargs):
|
| 194 |
+
if not exists(max_batch_size):
|
| 195 |
+
return fn(self, *args, **kwargs)
|
| 196 |
+
|
| 197 |
+
if self.imagen.unconditional:
|
| 198 |
+
batch_size = kwargs.get('batch_size')
|
| 199 |
+
batch_sizes = num_to_groups(batch_size, max_batch_size)
|
| 200 |
+
outputs = [fn(self, *args, **{**kwargs, 'batch_size': sub_batch_size}) for sub_batch_size in batch_sizes]
|
| 201 |
+
else:
|
| 202 |
+
outputs = [fn(self, *chunked_args, **chunked_kwargs) for _, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs)]
|
| 203 |
+
|
| 204 |
+
if isinstance(outputs[0], torch.Tensor):
|
| 205 |
+
return torch.cat(outputs, dim = 0)
|
| 206 |
+
|
| 207 |
+
return list(map(lambda t: torch.cat(t, dim = 0), list(zip(*outputs))))
|
| 208 |
+
|
| 209 |
+
return inner
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
def restore_parts(state_dict_target, state_dict_from):
|
| 213 |
+
for name, param in state_dict_from.items():
|
| 214 |
+
|
| 215 |
+
if name not in state_dict_target:
|
| 216 |
+
continue
|
| 217 |
+
|
| 218 |
+
if param.size() == state_dict_target[name].size():
|
| 219 |
+
state_dict_target[name].copy_(param)
|
| 220 |
+
else:
|
| 221 |
+
print(f"layer {name}({param.size()} different than target: {state_dict_target[name].size()}")
|
| 222 |
+
|
| 223 |
+
return state_dict_target
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
class ImagenTrainer(nn.Module):
|
| 227 |
+
locked = False
|
| 228 |
+
|
| 229 |
+
def __init__(
|
| 230 |
+
self,
|
| 231 |
+
imagen = None,
|
| 232 |
+
imagen_checkpoint_path = None,
|
| 233 |
+
use_ema = True,
|
| 234 |
+
lr = 1e-4,
|
| 235 |
+
eps = 1e-8,
|
| 236 |
+
beta1 = 0.9,
|
| 237 |
+
beta2 = 0.99,
|
| 238 |
+
max_grad_norm = None,
|
| 239 |
+
group_wd_params = True,
|
| 240 |
+
warmup_steps = None,
|
| 241 |
+
cosine_decay_max_steps = None,
|
| 242 |
+
only_train_unet_number = None,
|
| 243 |
+
fp16 = False,
|
| 244 |
+
precision = None,
|
| 245 |
+
split_batches = True,
|
| 246 |
+
dl_tuple_output_keywords_names = ('images', 'text_embeds', 'text_masks', 'cond_images'),
|
| 247 |
+
verbose = True,
|
| 248 |
+
split_valid_fraction = 0.025,
|
| 249 |
+
split_valid_from_train = False,
|
| 250 |
+
split_random_seed = 42,
|
| 251 |
+
checkpoint_path = None,
|
| 252 |
+
checkpoint_every = None,
|
| 253 |
+
checkpoint_fs = None,
|
| 254 |
+
fs_kwargs: dict = None,
|
| 255 |
+
max_checkpoints_keep = 20,
|
| 256 |
+
**kwargs
|
| 257 |
+
):
|
| 258 |
+
super().__init__()
|
| 259 |
+
assert not ImagenTrainer.locked, 'ImagenTrainer can only be initialized once per process - for the sake of distributed training, you will now have to create a separate script to train each unet (or a script that accepts unet number as an argument)'
|
| 260 |
+
assert exists(imagen) ^ exists(imagen_checkpoint_path), 'either imagen instance is passed into the trainer, or a checkpoint path that contains the imagen config'
|
| 261 |
+
|
| 262 |
+
# determine filesystem, using fsspec, for saving to local filesystem or cloud
|
| 263 |
+
|
| 264 |
+
self.fs = checkpoint_fs
|
| 265 |
+
|
| 266 |
+
if not exists(self.fs):
|
| 267 |
+
fs_kwargs = default(fs_kwargs, {})
|
| 268 |
+
self.fs, _ = url_to_fs(default(checkpoint_path, './'), **fs_kwargs)
|
| 269 |
+
|
| 270 |
+
assert isinstance(imagen, (Imagen, ElucidatedImagen))
|
| 271 |
+
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
|
| 272 |
+
|
| 273 |
+
# elucidated or not
|
| 274 |
+
|
| 275 |
+
self.is_elucidated = isinstance(imagen, ElucidatedImagen)
|
| 276 |
+
|
| 277 |
+
# create accelerator instance
|
| 278 |
+
|
| 279 |
+
accelerate_kwargs, kwargs = groupby_prefix_and_trim('accelerate_', kwargs)
|
| 280 |
+
|
| 281 |
+
assert not (fp16 and exists(precision)), 'either set fp16 = True or forward the precision ("fp16", "bf16") to Accelerator'
|
| 282 |
+
accelerator_mixed_precision = default(precision, 'fp16' if fp16 else 'no')
|
| 283 |
+
|
| 284 |
+
self.accelerator = Accelerator(**{
|
| 285 |
+
'split_batches': split_batches,
|
| 286 |
+
'mixed_precision': accelerator_mixed_precision,
|
| 287 |
+
'kwargs_handlers': [DistributedDataParallelKwargs(find_unused_parameters = True)]
|
| 288 |
+
, **accelerate_kwargs})
|
| 289 |
+
|
| 290 |
+
ImagenTrainer.locked = self.is_distributed
|
| 291 |
+
|
| 292 |
+
# cast data to fp16 at training time if needed
|
| 293 |
+
|
| 294 |
+
self.cast_half_at_training = accelerator_mixed_precision == 'fp16'
|
| 295 |
+
|
| 296 |
+
# grad scaler must be managed outside of accelerator
|
| 297 |
+
|
| 298 |
+
grad_scaler_enabled = fp16
|
| 299 |
+
|
| 300 |
+
# imagen, unets and ema unets
|
| 301 |
+
|
| 302 |
+
self.imagen = imagen
|
| 303 |
+
self.num_unets = len(self.imagen.unets)
|
| 304 |
+
|
| 305 |
+
self.use_ema = use_ema and self.is_main
|
| 306 |
+
self.ema_unets = nn.ModuleList([])
|
| 307 |
+
|
| 308 |
+
# keep track of what unet is being trained on
|
| 309 |
+
# only going to allow 1 unet training at a time
|
| 310 |
+
|
| 311 |
+
self.ema_unet_being_trained_index = -1 # keeps track of which ema unet is being trained on
|
| 312 |
+
|
| 313 |
+
# data related functions
|
| 314 |
+
|
| 315 |
+
self.train_dl_iter = None
|
| 316 |
+
self.train_dl = None
|
| 317 |
+
|
| 318 |
+
self.valid_dl_iter = None
|
| 319 |
+
self.valid_dl = None
|
| 320 |
+
|
| 321 |
+
self.dl_tuple_output_keywords_names = dl_tuple_output_keywords_names
|
| 322 |
+
|
| 323 |
+
# auto splitting validation from training, if dataset is passed in
|
| 324 |
+
|
| 325 |
+
self.split_valid_from_train = split_valid_from_train
|
| 326 |
+
|
| 327 |
+
assert 0 <= split_valid_fraction <= 1, 'split valid fraction must be between 0 and 1'
|
| 328 |
+
self.split_valid_fraction = split_valid_fraction
|
| 329 |
+
self.split_random_seed = split_random_seed
|
| 330 |
+
|
| 331 |
+
# be able to finely customize learning rate, weight decay
|
| 332 |
+
# per unet
|
| 333 |
+
|
| 334 |
+
lr, eps, warmup_steps, cosine_decay_max_steps = map(partial(cast_tuple, length = self.num_unets), (lr, eps, warmup_steps, cosine_decay_max_steps))
|
| 335 |
+
|
| 336 |
+
for ind, (unet, unet_lr, unet_eps, unet_warmup_steps, unet_cosine_decay_max_steps) in enumerate(zip(self.imagen.unets, lr, eps, warmup_steps, cosine_decay_max_steps)):
|
| 337 |
+
|
| 338 |
+
optimizer = Adam(
|
| 339 |
+
unet.parameters(),
|
| 340 |
+
lr = unet_lr,
|
| 341 |
+
eps = unet_eps,
|
| 342 |
+
betas = (beta1, beta2),
|
| 343 |
+
**kwargs
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
if self.use_ema:
|
| 347 |
+
self.ema_unets.append(EMA(unet, **ema_kwargs))
|
| 348 |
+
|
| 349 |
+
scaler = GradScaler(enabled = grad_scaler_enabled)
|
| 350 |
+
|
| 351 |
+
scheduler = warmup_scheduler = None
|
| 352 |
+
|
| 353 |
+
if exists(unet_cosine_decay_max_steps):
|
| 354 |
+
scheduler = CosineAnnealingLR(optimizer, T_max = unet_cosine_decay_max_steps)
|
| 355 |
+
|
| 356 |
+
if exists(unet_warmup_steps):
|
| 357 |
+
warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period = unet_warmup_steps)
|
| 358 |
+
|
| 359 |
+
if not exists(scheduler):
|
| 360 |
+
scheduler = LambdaLR(optimizer, lr_lambda = lambda step: 1.0)
|
| 361 |
+
|
| 362 |
+
# set on object
|
| 363 |
+
|
| 364 |
+
setattr(self, f'optim{ind}', optimizer) # cannot use pytorch ModuleList for some reason with optimizers
|
| 365 |
+
setattr(self, f'scaler{ind}', scaler)
|
| 366 |
+
setattr(self, f'scheduler{ind}', scheduler)
|
| 367 |
+
setattr(self, f'warmup{ind}', warmup_scheduler)
|
| 368 |
+
|
| 369 |
+
# gradient clipping if needed
|
| 370 |
+
|
| 371 |
+
self.max_grad_norm = max_grad_norm
|
| 372 |
+
|
| 373 |
+
# step tracker and misc
|
| 374 |
+
|
| 375 |
+
self.register_buffer('steps', torch.tensor([0] * self.num_unets))
|
| 376 |
+
|
| 377 |
+
self.verbose = verbose
|
| 378 |
+
|
| 379 |
+
# automatic set devices based on what accelerator decided
|
| 380 |
+
|
| 381 |
+
self.imagen.to(self.device)
|
| 382 |
+
self.to(self.device)
|
| 383 |
+
|
| 384 |
+
# checkpointing
|
| 385 |
+
|
| 386 |
+
assert not (exists(checkpoint_path) ^ exists(checkpoint_every))
|
| 387 |
+
self.checkpoint_path = checkpoint_path
|
| 388 |
+
self.checkpoint_every = checkpoint_every
|
| 389 |
+
self.max_checkpoints_keep = max_checkpoints_keep
|
| 390 |
+
|
| 391 |
+
self.can_checkpoint = self.is_local_main if isinstance(checkpoint_fs, LocalFileSystem) else self.is_main
|
| 392 |
+
|
| 393 |
+
if exists(checkpoint_path) and self.can_checkpoint:
|
| 394 |
+
bucket = url_to_bucket(checkpoint_path)
|
| 395 |
+
|
| 396 |
+
if not self.fs.exists(bucket):
|
| 397 |
+
self.fs.mkdir(bucket)
|
| 398 |
+
|
| 399 |
+
self.load_from_checkpoint_folder()
|
| 400 |
+
|
| 401 |
+
# only allowing training for unet
|
| 402 |
+
|
| 403 |
+
self.only_train_unet_number = only_train_unet_number
|
| 404 |
+
self.prepared = False
|
| 405 |
+
|
| 406 |
+
|
| 407 |
+
def prepare(self):
|
| 408 |
+
assert not self.prepared, f'The trainer is allready prepared'
|
| 409 |
+
self.validate_and_set_unet_being_trained(self.only_train_unet_number)
|
| 410 |
+
self.prepared = True
|
| 411 |
+
# computed values
|
| 412 |
+
|
| 413 |
+
@property
|
| 414 |
+
def device(self):
|
| 415 |
+
return self.accelerator.device
|
| 416 |
+
|
| 417 |
+
@property
|
| 418 |
+
def is_distributed(self):
|
| 419 |
+
return not (self.accelerator.distributed_type == DistributedType.NO and self.accelerator.num_processes == 1)
|
| 420 |
+
|
| 421 |
+
@property
|
| 422 |
+
def is_main(self):
|
| 423 |
+
return self.accelerator.is_main_process
|
| 424 |
+
|
| 425 |
+
@property
|
| 426 |
+
def is_local_main(self):
|
| 427 |
+
return self.accelerator.is_local_main_process
|
| 428 |
+
|
| 429 |
+
@property
|
| 430 |
+
def unwrapped_unet(self):
|
| 431 |
+
return self.accelerator.unwrap_model(self.unet_being_trained)
|
| 432 |
+
|
| 433 |
+
# optimizer helper functions
|
| 434 |
+
|
| 435 |
+
def get_lr(self, unet_number):
|
| 436 |
+
self.validate_unet_number(unet_number)
|
| 437 |
+
unet_index = unet_number - 1
|
| 438 |
+
|
| 439 |
+
optim = getattr(self, f'optim{unet_index}')
|
| 440 |
+
|
| 441 |
+
return optim.param_groups[0]['lr']
|
| 442 |
+
|
| 443 |
+
# function for allowing only one unet from being trained at a time
|
| 444 |
+
|
| 445 |
+
def validate_and_set_unet_being_trained(self, unet_number = None):
|
| 446 |
+
if exists(unet_number):
|
| 447 |
+
self.validate_unet_number(unet_number)
|
| 448 |
+
|
| 449 |
+
assert not exists(self.only_train_unet_number) or self.only_train_unet_number == unet_number, 'you cannot only train on one unet at a time. you will need to save the trainer into a checkpoint, and resume training on a new unet'
|
| 450 |
+
|
| 451 |
+
self.only_train_unet_number = unet_number
|
| 452 |
+
self.imagen.only_train_unet_number = unet_number
|
| 453 |
+
|
| 454 |
+
if not exists(unet_number):
|
| 455 |
+
return
|
| 456 |
+
|
| 457 |
+
self.wrap_unet(unet_number)
|
| 458 |
+
|
| 459 |
+
def wrap_unet(self, unet_number):
|
| 460 |
+
if hasattr(self, 'one_unet_wrapped'):
|
| 461 |
+
return
|
| 462 |
+
|
| 463 |
+
unet = self.imagen.get_unet(unet_number)
|
| 464 |
+
unet_index = unet_number - 1
|
| 465 |
+
|
| 466 |
+
optimizer = getattr(self, f'optim{unet_index}')
|
| 467 |
+
scheduler = getattr(self, f'scheduler{unet_index}')
|
| 468 |
+
|
| 469 |
+
if self.train_dl:
|
| 470 |
+
self.unet_being_trained, self.train_dl, optimizer = self.accelerator.prepare(unet, self.train_dl, optimizer)
|
| 471 |
+
else:
|
| 472 |
+
self.unet_being_trained, optimizer = self.accelerator.prepare(unet, optimizer)
|
| 473 |
+
|
| 474 |
+
if exists(scheduler):
|
| 475 |
+
scheduler = self.accelerator.prepare(scheduler)
|
| 476 |
+
|
| 477 |
+
setattr(self, f'optim{unet_index}', optimizer)
|
| 478 |
+
setattr(self, f'scheduler{unet_index}', scheduler)
|
| 479 |
+
|
| 480 |
+
self.one_unet_wrapped = True
|
| 481 |
+
|
| 482 |
+
# hacking accelerator due to not having separate gradscaler per optimizer
|
| 483 |
+
|
| 484 |
+
def set_accelerator_scaler(self, unet_number):
|
| 485 |
+
def patch_optimizer_step(accelerated_optimizer, method):
|
| 486 |
+
def patched_step(*args, **kwargs):
|
| 487 |
+
accelerated_optimizer._accelerate_step_called = True
|
| 488 |
+
return method(*args, **kwargs)
|
| 489 |
+
return patched_step
|
| 490 |
+
|
| 491 |
+
unet_number = self.validate_unet_number(unet_number)
|
| 492 |
+
scaler = getattr(self, f'scaler{unet_number - 1}')
|
| 493 |
+
|
| 494 |
+
self.accelerator.scaler = scaler
|
| 495 |
+
for optimizer in self.accelerator._optimizers:
|
| 496 |
+
optimizer.scaler = scaler
|
| 497 |
+
optimizer._accelerate_step_called = False
|
| 498 |
+
optimizer._optimizer_original_step_method = optimizer.optimizer.step
|
| 499 |
+
optimizer._optimizer_patched_step_method = patch_optimizer_step(optimizer, optimizer.optimizer.step)
|
| 500 |
+
|
| 501 |
+
# helper print
|
| 502 |
+
|
| 503 |
+
def print(self, msg):
|
| 504 |
+
if not self.is_main:
|
| 505 |
+
return
|
| 506 |
+
|
| 507 |
+
if not self.verbose:
|
| 508 |
+
return
|
| 509 |
+
|
| 510 |
+
return self.accelerator.print(msg)
|
| 511 |
+
|
| 512 |
+
# validating the unet number
|
| 513 |
+
|
| 514 |
+
def validate_unet_number(self, unet_number = None):
|
| 515 |
+
if self.num_unets == 1:
|
| 516 |
+
unet_number = default(unet_number, 1)
|
| 517 |
+
|
| 518 |
+
assert 0 < unet_number <= self.num_unets, f'unet number should be in between 1 and {self.num_unets}'
|
| 519 |
+
return unet_number
|
| 520 |
+
|
| 521 |
+
# number of training steps taken
|
| 522 |
+
|
| 523 |
+
def num_steps_taken(self, unet_number = None):
|
| 524 |
+
if self.num_unets == 1:
|
| 525 |
+
unet_number = default(unet_number, 1)
|
| 526 |
+
|
| 527 |
+
return self.steps[unet_number - 1].item()
|
| 528 |
+
|
| 529 |
+
def print_untrained_unets(self):
|
| 530 |
+
print_final_error = False
|
| 531 |
+
|
| 532 |
+
for ind, (steps, unet) in enumerate(zip(self.steps.tolist(), self.imagen.unets)):
|
| 533 |
+
if steps > 0 or isinstance(unet, NullUnet):
|
| 534 |
+
continue
|
| 535 |
+
|
| 536 |
+
self.print(f'unet {ind + 1} has not been trained')
|
| 537 |
+
print_final_error = True
|
| 538 |
+
|
| 539 |
+
if print_final_error:
|
| 540 |
+
self.print('when sampling, you can pass stop_at_unet_number to stop early in the cascade, so it does not try to generate with untrained unets')
|
| 541 |
+
|
| 542 |
+
# data related functions
|
| 543 |
+
|
| 544 |
+
def add_train_dataloader(self, dl = None):
|
| 545 |
+
if not exists(dl):
|
| 546 |
+
return
|
| 547 |
+
|
| 548 |
+
assert not exists(self.train_dl), 'training dataloader was already added'
|
| 549 |
+
assert not self.prepared, f'You need to add the dataset before preperation'
|
| 550 |
+
self.train_dl = dl
|
| 551 |
+
|
| 552 |
+
def add_valid_dataloader(self, dl):
|
| 553 |
+
if not exists(dl):
|
| 554 |
+
return
|
| 555 |
+
|
| 556 |
+
assert not exists(self.valid_dl), 'validation dataloader was already added'
|
| 557 |
+
assert not self.prepared, f'You need to add the dataset before preperation'
|
| 558 |
+
self.valid_dl = dl
|
| 559 |
+
|
| 560 |
+
def add_train_dataset(self, ds = None, *, batch_size, **dl_kwargs):
|
| 561 |
+
if not exists(ds):
|
| 562 |
+
return
|
| 563 |
+
|
| 564 |
+
assert not exists(self.train_dl), 'training dataloader was already added'
|
| 565 |
+
|
| 566 |
+
valid_ds = None
|
| 567 |
+
if self.split_valid_from_train:
|
| 568 |
+
train_size = int((1 - self.split_valid_fraction) * len(ds))
|
| 569 |
+
valid_size = len(ds) - train_size
|
| 570 |
+
|
| 571 |
+
ds, valid_ds = random_split(ds, [train_size, valid_size], generator = torch.Generator().manual_seed(self.split_random_seed))
|
| 572 |
+
self.print(f'training with dataset of {len(ds)} samples and validating with randomly splitted {len(valid_ds)} samples')
|
| 573 |
+
|
| 574 |
+
dl = DataLoader(ds, batch_size = batch_size, **dl_kwargs)
|
| 575 |
+
self.add_train_dataloader(dl)
|
| 576 |
+
|
| 577 |
+
if not self.split_valid_from_train:
|
| 578 |
+
return
|
| 579 |
+
|
| 580 |
+
self.add_valid_dataset(valid_ds, batch_size = batch_size, **dl_kwargs)
|
| 581 |
+
|
| 582 |
+
def add_valid_dataset(self, ds, *, batch_size, **dl_kwargs):
|
| 583 |
+
if not exists(ds):
|
| 584 |
+
return
|
| 585 |
+
|
| 586 |
+
assert not exists(self.valid_dl), 'validation dataloader was already added'
|
| 587 |
+
|
| 588 |
+
dl = DataLoader(ds, batch_size = batch_size, **dl_kwargs)
|
| 589 |
+
self.add_valid_dataloader(dl)
|
| 590 |
+
|
| 591 |
+
def create_train_iter(self):
|
| 592 |
+
assert exists(self.train_dl), 'training dataloader has not been registered with the trainer yet'
|
| 593 |
+
|
| 594 |
+
if exists(self.train_dl_iter):
|
| 595 |
+
return
|
| 596 |
+
|
| 597 |
+
self.train_dl_iter = cycle(self.train_dl)
|
| 598 |
+
|
| 599 |
+
def create_valid_iter(self):
|
| 600 |
+
assert exists(self.valid_dl), 'validation dataloader has not been registered with the trainer yet'
|
| 601 |
+
|
| 602 |
+
if exists(self.valid_dl_iter):
|
| 603 |
+
return
|
| 604 |
+
|
| 605 |
+
self.valid_dl_iter = cycle(self.valid_dl)
|
| 606 |
+
|
| 607 |
+
def train_step(self, *, unet_number = None, **kwargs):
|
| 608 |
+
if not self.prepared:
|
| 609 |
+
self.prepare()
|
| 610 |
+
self.create_train_iter()
|
| 611 |
+
|
| 612 |
+
kwargs = {'unet_number': unet_number, **kwargs}
|
| 613 |
+
loss = self.step_with_dl_iter(self.train_dl_iter, **kwargs)
|
| 614 |
+
self.update(unet_number = unet_number)
|
| 615 |
+
return loss
|
| 616 |
+
|
| 617 |
+
@torch.no_grad()
|
| 618 |
+
@eval_decorator
|
| 619 |
+
def valid_step(self, **kwargs):
|
| 620 |
+
if not self.prepared:
|
| 621 |
+
self.prepare()
|
| 622 |
+
self.create_valid_iter()
|
| 623 |
+
context = self.use_ema_unets if kwargs.pop('use_ema_unets', False) else nullcontext
|
| 624 |
+
with context():
|
| 625 |
+
loss = self.step_with_dl_iter(self.valid_dl_iter, **kwargs)
|
| 626 |
+
return loss
|
| 627 |
+
|
| 628 |
+
def step_with_dl_iter(self, dl_iter, **kwargs):
|
| 629 |
+
dl_tuple_output = cast_tuple(next(dl_iter))
|
| 630 |
+
model_input = dict(list(zip(self.dl_tuple_output_keywords_names, dl_tuple_output)))
|
| 631 |
+
loss = self.forward(**{**kwargs, **model_input})
|
| 632 |
+
return loss
|
| 633 |
+
|
| 634 |
+
# checkpointing functions
|
| 635 |
+
|
| 636 |
+
@property
|
| 637 |
+
def all_checkpoints_sorted(self):
|
| 638 |
+
glob_pattern = os.path.join(self.checkpoint_path, '*.pt')
|
| 639 |
+
checkpoints = self.fs.glob(glob_pattern)
|
| 640 |
+
sorted_checkpoints = sorted(checkpoints, key = lambda x: int(str(x).split('.')[-2]), reverse = True)
|
| 641 |
+
return sorted_checkpoints
|
| 642 |
+
|
| 643 |
+
def load_from_checkpoint_folder(self, last_total_steps = -1):
|
| 644 |
+
if last_total_steps != -1:
|
| 645 |
+
filepath = os.path.join(self.checkpoint_path, f'checkpoint.{last_total_steps}.pt')
|
| 646 |
+
self.load(filepath)
|
| 647 |
+
return
|
| 648 |
+
|
| 649 |
+
sorted_checkpoints = self.all_checkpoints_sorted
|
| 650 |
+
|
| 651 |
+
if len(sorted_checkpoints) == 0:
|
| 652 |
+
self.print(f'no checkpoints found to load from at {self.checkpoint_path}')
|
| 653 |
+
return
|
| 654 |
+
|
| 655 |
+
last_checkpoint = sorted_checkpoints[0]
|
| 656 |
+
self.load(last_checkpoint)
|
| 657 |
+
|
| 658 |
+
def save_to_checkpoint_folder(self):
|
| 659 |
+
self.accelerator.wait_for_everyone()
|
| 660 |
+
|
| 661 |
+
if not self.can_checkpoint:
|
| 662 |
+
return
|
| 663 |
+
|
| 664 |
+
total_steps = int(self.steps.sum().item())
|
| 665 |
+
filepath = os.path.join(self.checkpoint_path, f'checkpoint.{total_steps}.pt')
|
| 666 |
+
|
| 667 |
+
self.save(filepath)
|
| 668 |
+
|
| 669 |
+
if self.max_checkpoints_keep <= 0:
|
| 670 |
+
return
|
| 671 |
+
|
| 672 |
+
sorted_checkpoints = self.all_checkpoints_sorted
|
| 673 |
+
checkpoints_to_discard = sorted_checkpoints[self.max_checkpoints_keep:]
|
| 674 |
+
|
| 675 |
+
for checkpoint in checkpoints_to_discard:
|
| 676 |
+
self.fs.rm(checkpoint)
|
| 677 |
+
|
| 678 |
+
# saving and loading functions
|
| 679 |
+
|
| 680 |
+
def save(
|
| 681 |
+
self,
|
| 682 |
+
path,
|
| 683 |
+
overwrite = True,
|
| 684 |
+
without_optim_and_sched = False,
|
| 685 |
+
**kwargs
|
| 686 |
+
):
|
| 687 |
+
self.accelerator.wait_for_everyone()
|
| 688 |
+
|
| 689 |
+
if not self.can_checkpoint:
|
| 690 |
+
return
|
| 691 |
+
|
| 692 |
+
fs = self.fs
|
| 693 |
+
|
| 694 |
+
assert not (fs.exists(path) and not overwrite)
|
| 695 |
+
|
| 696 |
+
self.reset_ema_unets_all_one_device()
|
| 697 |
+
|
| 698 |
+
save_obj = dict(
|
| 699 |
+
model = self.imagen.state_dict(),
|
| 700 |
+
version = __version__,
|
| 701 |
+
steps = self.steps.cpu(),
|
| 702 |
+
**kwargs
|
| 703 |
+
)
|
| 704 |
+
|
| 705 |
+
save_optim_and_sched_iter = range(0, self.num_unets) if not without_optim_and_sched else tuple()
|
| 706 |
+
|
| 707 |
+
for ind in save_optim_and_sched_iter:
|
| 708 |
+
scaler_key = f'scaler{ind}'
|
| 709 |
+
optimizer_key = f'optim{ind}'
|
| 710 |
+
scheduler_key = f'scheduler{ind}'
|
| 711 |
+
warmup_scheduler_key = f'warmup{ind}'
|
| 712 |
+
|
| 713 |
+
scaler = getattr(self, scaler_key)
|
| 714 |
+
optimizer = getattr(self, optimizer_key)
|
| 715 |
+
scheduler = getattr(self, scheduler_key)
|
| 716 |
+
warmup_scheduler = getattr(self, warmup_scheduler_key)
|
| 717 |
+
|
| 718 |
+
if exists(scheduler):
|
| 719 |
+
save_obj = {**save_obj, scheduler_key: scheduler.state_dict()}
|
| 720 |
+
|
| 721 |
+
if exists(warmup_scheduler):
|
| 722 |
+
save_obj = {**save_obj, warmup_scheduler_key: warmup_scheduler.state_dict()}
|
| 723 |
+
|
| 724 |
+
save_obj = {**save_obj, scaler_key: scaler.state_dict(), optimizer_key: optimizer.state_dict()}
|
| 725 |
+
|
| 726 |
+
if self.use_ema:
|
| 727 |
+
save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()}
|
| 728 |
+
|
| 729 |
+
# determine if imagen config is available
|
| 730 |
+
|
| 731 |
+
if hasattr(self.imagen, '_config'):
|
| 732 |
+
self.print(f'this checkpoint is commandable from the CLI - "imagen --model {str(path)} \"<prompt>\""')
|
| 733 |
+
|
| 734 |
+
save_obj = {
|
| 735 |
+
**save_obj,
|
| 736 |
+
'imagen_type': 'elucidated' if self.is_elucidated else 'original',
|
| 737 |
+
'imagen_params': self.imagen._config
|
| 738 |
+
}
|
| 739 |
+
|
| 740 |
+
#save to path
|
| 741 |
+
|
| 742 |
+
with fs.open(path, 'wb') as f:
|
| 743 |
+
torch.save(save_obj, f)
|
| 744 |
+
|
| 745 |
+
self.print(f'checkpoint saved to {path}')
|
| 746 |
+
|
| 747 |
+
def load(self, path, only_model = False, strict = True, noop_if_not_exist = False):
|
| 748 |
+
fs = self.fs
|
| 749 |
+
|
| 750 |
+
if noop_if_not_exist and not fs.exists(path):
|
| 751 |
+
self.print(f'trainer checkpoint not found at {str(path)}')
|
| 752 |
+
return
|
| 753 |
+
|
| 754 |
+
assert fs.exists(path), f'{path} does not exist'
|
| 755 |
+
|
| 756 |
+
self.reset_ema_unets_all_one_device()
|
| 757 |
+
|
| 758 |
+
# to avoid extra GPU memory usage in main process when using Accelerate
|
| 759 |
+
|
| 760 |
+
with fs.open(path) as f:
|
| 761 |
+
loaded_obj = torch.load(f, map_location='cpu')
|
| 762 |
+
|
| 763 |
+
if version.parse(__version__) != version.parse(loaded_obj['version']):
|
| 764 |
+
self.print(f'loading saved imagen at version {loaded_obj["version"]}, but current package version is {__version__}')
|
| 765 |
+
|
| 766 |
+
try:
|
| 767 |
+
self.imagen.load_state_dict(loaded_obj['model'], strict = strict)
|
| 768 |
+
except RuntimeError:
|
| 769 |
+
print("Failed loading state dict. Trying partial load")
|
| 770 |
+
self.imagen.load_state_dict(restore_parts(self.imagen.state_dict(),
|
| 771 |
+
loaded_obj['model']))
|
| 772 |
+
|
| 773 |
+
if only_model:
|
| 774 |
+
return loaded_obj
|
| 775 |
+
|
| 776 |
+
self.steps.copy_(loaded_obj['steps'])
|
| 777 |
+
|
| 778 |
+
for ind in range(0, self.num_unets):
|
| 779 |
+
scaler_key = f'scaler{ind}'
|
| 780 |
+
optimizer_key = f'optim{ind}'
|
| 781 |
+
scheduler_key = f'scheduler{ind}'
|
| 782 |
+
warmup_scheduler_key = f'warmup{ind}'
|
| 783 |
+
|
| 784 |
+
scaler = getattr(self, scaler_key)
|
| 785 |
+
optimizer = getattr(self, optimizer_key)
|
| 786 |
+
scheduler = getattr(self, scheduler_key)
|
| 787 |
+
warmup_scheduler = getattr(self, warmup_scheduler_key)
|
| 788 |
+
|
| 789 |
+
if exists(scheduler) and scheduler_key in loaded_obj:
|
| 790 |
+
scheduler.load_state_dict(loaded_obj[scheduler_key])
|
| 791 |
+
|
| 792 |
+
if exists(warmup_scheduler) and warmup_scheduler_key in loaded_obj:
|
| 793 |
+
warmup_scheduler.load_state_dict(loaded_obj[warmup_scheduler_key])
|
| 794 |
+
|
| 795 |
+
if exists(optimizer):
|
| 796 |
+
try:
|
| 797 |
+
optimizer.load_state_dict(loaded_obj[optimizer_key])
|
| 798 |
+
scaler.load_state_dict(loaded_obj[scaler_key])
|
| 799 |
+
except:
|
| 800 |
+
self.print('could not load optimizer and scaler, possibly because you have turned on mixed precision training since the last run. resuming with new optimizer and scalers')
|
| 801 |
+
|
| 802 |
+
if self.use_ema:
|
| 803 |
+
assert 'ema' in loaded_obj
|
| 804 |
+
try:
|
| 805 |
+
self.ema_unets.load_state_dict(loaded_obj['ema'], strict = strict)
|
| 806 |
+
except RuntimeError:
|
| 807 |
+
print("Failed loading state dict. Trying partial load")
|
| 808 |
+
self.ema_unets.load_state_dict(restore_parts(self.ema_unets.state_dict(),
|
| 809 |
+
loaded_obj['ema']))
|
| 810 |
+
|
| 811 |
+
self.print(f'checkpoint loaded from {path}')
|
| 812 |
+
return loaded_obj
|
| 813 |
+
|
| 814 |
+
# managing ema unets and their devices
|
| 815 |
+
|
| 816 |
+
@property
|
| 817 |
+
def unets(self):
|
| 818 |
+
return nn.ModuleList([ema.ema_model for ema in self.ema_unets])
|
| 819 |
+
|
| 820 |
+
def get_ema_unet(self, unet_number = None):
|
| 821 |
+
if not self.use_ema:
|
| 822 |
+
return
|
| 823 |
+
|
| 824 |
+
unet_number = self.validate_unet_number(unet_number)
|
| 825 |
+
index = unet_number - 1
|
| 826 |
+
|
| 827 |
+
if isinstance(self.unets, nn.ModuleList):
|
| 828 |
+
unets_list = [unet for unet in self.ema_unets]
|
| 829 |
+
delattr(self, 'ema_unets')
|
| 830 |
+
self.ema_unets = unets_list
|
| 831 |
+
|
| 832 |
+
if index != self.ema_unet_being_trained_index:
|
| 833 |
+
for unet_index, unet in enumerate(self.ema_unets):
|
| 834 |
+
unet.to(self.device if unet_index == index else 'cpu')
|
| 835 |
+
|
| 836 |
+
self.ema_unet_being_trained_index = index
|
| 837 |
+
return self.ema_unets[index]
|
| 838 |
+
|
| 839 |
+
def reset_ema_unets_all_one_device(self, device = None):
|
| 840 |
+
if not self.use_ema:
|
| 841 |
+
return
|
| 842 |
+
|
| 843 |
+
device = default(device, self.device)
|
| 844 |
+
self.ema_unets = nn.ModuleList([*self.ema_unets])
|
| 845 |
+
self.ema_unets.to(device)
|
| 846 |
+
|
| 847 |
+
self.ema_unet_being_trained_index = -1
|
| 848 |
+
|
| 849 |
+
@torch.no_grad()
|
| 850 |
+
@contextmanager
|
| 851 |
+
def use_ema_unets(self):
|
| 852 |
+
if not self.use_ema:
|
| 853 |
+
output = yield
|
| 854 |
+
return output
|
| 855 |
+
|
| 856 |
+
self.reset_ema_unets_all_one_device()
|
| 857 |
+
self.imagen.reset_unets_all_one_device()
|
| 858 |
+
|
| 859 |
+
self.unets.eval()
|
| 860 |
+
|
| 861 |
+
trainable_unets = self.imagen.unets
|
| 862 |
+
self.imagen.unets = self.unets # swap in exponential moving averaged unets for sampling
|
| 863 |
+
|
| 864 |
+
output = yield
|
| 865 |
+
|
| 866 |
+
self.imagen.unets = trainable_unets # restore original training unets
|
| 867 |
+
|
| 868 |
+
# cast the ema_model unets back to original device
|
| 869 |
+
for ema in self.ema_unets:
|
| 870 |
+
ema.restore_ema_model_device()
|
| 871 |
+
|
| 872 |
+
return output
|
| 873 |
+
|
| 874 |
+
def print_unet_devices(self):
|
| 875 |
+
self.print('unet devices:')
|
| 876 |
+
for i, unet in enumerate(self.imagen.unets):
|
| 877 |
+
device = next(unet.parameters()).device
|
| 878 |
+
self.print(f'\tunet {i}: {device}')
|
| 879 |
+
|
| 880 |
+
if not self.use_ema:
|
| 881 |
+
return
|
| 882 |
+
|
| 883 |
+
self.print('\nema unet devices:')
|
| 884 |
+
for i, ema_unet in enumerate(self.ema_unets):
|
| 885 |
+
device = next(ema_unet.parameters()).device
|
| 886 |
+
self.print(f'\tema unet {i}: {device}')
|
| 887 |
+
|
| 888 |
+
# overriding state dict functions
|
| 889 |
+
|
| 890 |
+
def state_dict(self, *args, **kwargs):
|
| 891 |
+
self.reset_ema_unets_all_one_device()
|
| 892 |
+
return super().state_dict(*args, **kwargs)
|
| 893 |
+
|
| 894 |
+
def load_state_dict(self, *args, **kwargs):
|
| 895 |
+
self.reset_ema_unets_all_one_device()
|
| 896 |
+
return super().load_state_dict(*args, **kwargs)
|
| 897 |
+
|
| 898 |
+
# encoding text functions
|
| 899 |
+
|
| 900 |
+
def encode_text(self, text, **kwargs):
|
| 901 |
+
return self.imagen.encode_text(text, **kwargs)
|
| 902 |
+
|
| 903 |
+
# forwarding functions and gradient step updates
|
| 904 |
+
|
| 905 |
+
def update(self, unet_number = None):
|
| 906 |
+
unet_number = self.validate_unet_number(unet_number)
|
| 907 |
+
self.validate_and_set_unet_being_trained(unet_number)
|
| 908 |
+
self.set_accelerator_scaler(unet_number)
|
| 909 |
+
|
| 910 |
+
index = unet_number - 1
|
| 911 |
+
unet = self.unet_being_trained
|
| 912 |
+
|
| 913 |
+
optimizer = getattr(self, f'optim{index}')
|
| 914 |
+
scaler = getattr(self, f'scaler{index}')
|
| 915 |
+
scheduler = getattr(self, f'scheduler{index}')
|
| 916 |
+
warmup_scheduler = getattr(self, f'warmup{index}')
|
| 917 |
+
|
| 918 |
+
# set the grad scaler on the accelerator, since we are managing one per u-net
|
| 919 |
+
|
| 920 |
+
if exists(self.max_grad_norm):
|
| 921 |
+
self.accelerator.clip_grad_norm_(unet.parameters(), self.max_grad_norm)
|
| 922 |
+
|
| 923 |
+
optimizer.step()
|
| 924 |
+
optimizer.zero_grad()
|
| 925 |
+
|
| 926 |
+
if self.use_ema:
|
| 927 |
+
ema_unet = self.get_ema_unet(unet_number)
|
| 928 |
+
ema_unet.update()
|
| 929 |
+
|
| 930 |
+
# scheduler, if needed
|
| 931 |
+
|
| 932 |
+
maybe_warmup_context = nullcontext() if not exists(warmup_scheduler) else warmup_scheduler.dampening()
|
| 933 |
+
|
| 934 |
+
with maybe_warmup_context:
|
| 935 |
+
if exists(scheduler) and not self.accelerator.optimizer_step_was_skipped: # recommended in the docs
|
| 936 |
+
scheduler.step()
|
| 937 |
+
|
| 938 |
+
self.steps += F.one_hot(torch.tensor(unet_number - 1, device = self.steps.device), num_classes = len(self.steps))
|
| 939 |
+
|
| 940 |
+
if not exists(self.checkpoint_path):
|
| 941 |
+
return
|
| 942 |
+
|
| 943 |
+
total_steps = int(self.steps.sum().item())
|
| 944 |
+
|
| 945 |
+
if total_steps % self.checkpoint_every:
|
| 946 |
+
return
|
| 947 |
+
|
| 948 |
+
self.save_to_checkpoint_folder()
|
| 949 |
+
|
| 950 |
+
@torch.no_grad()
|
| 951 |
+
@cast_torch_tensor
|
| 952 |
+
@imagen_sample_in_chunks
|
| 953 |
+
def sample(self, *args, **kwargs):
|
| 954 |
+
context = nullcontext if kwargs.pop('use_non_ema', False) else self.use_ema_unets
|
| 955 |
+
|
| 956 |
+
self.print_untrained_unets()
|
| 957 |
+
|
| 958 |
+
if not self.is_main:
|
| 959 |
+
kwargs['use_tqdm'] = False
|
| 960 |
+
|
| 961 |
+
with context():
|
| 962 |
+
output = self.imagen.sample(*args, device = self.device, **kwargs)
|
| 963 |
+
|
| 964 |
+
return output
|
| 965 |
+
|
| 966 |
+
@partial(cast_torch_tensor, cast_fp16 = True)
|
| 967 |
+
def forward(
|
| 968 |
+
self,
|
| 969 |
+
*args,
|
| 970 |
+
unet_number = None,
|
| 971 |
+
max_batch_size = None,
|
| 972 |
+
**kwargs
|
| 973 |
+
):
|
| 974 |
+
unet_number = self.validate_unet_number(unet_number)
|
| 975 |
+
self.validate_and_set_unet_being_trained(unet_number)
|
| 976 |
+
self.set_accelerator_scaler(unet_number)
|
| 977 |
+
|
| 978 |
+
assert not exists(self.only_train_unet_number) or self.only_train_unet_number == unet_number, f'you can only train unet #{self.only_train_unet_number}'
|
| 979 |
+
|
| 980 |
+
total_loss = 0.
|
| 981 |
+
|
| 982 |
+
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
|
| 983 |
+
with self.accelerator.autocast():
|
| 984 |
+
loss = self.imagen(*chunked_args, unet = self.unet_being_trained, unet_number = unet_number, **chunked_kwargs)
|
| 985 |
+
loss = loss * chunk_size_frac
|
| 986 |
+
|
| 987 |
+
total_loss += loss.item()
|
| 988 |
+
|
| 989 |
+
if self.training:
|
| 990 |
+
self.accelerator.backward(loss)
|
| 991 |
+
|
| 992 |
+
return total_loss
|
utils.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from functools import reduce
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
from imagen_pytorch.configs import ImagenConfig, ElucidatedImagenConfig
|
| 7 |
+
from ema_pytorch import EMA
|
| 8 |
+
|
| 9 |
+
def exists(val):
|
| 10 |
+
return val is not None
|
| 11 |
+
|
| 12 |
+
def safeget(dictionary, keys, default = None):
|
| 13 |
+
return reduce(lambda d, key: d.get(key, default) if isinstance(d, dict) else default, keys.split('.'), dictionary)
|
| 14 |
+
|
| 15 |
+
def load_imagen_from_checkpoint(
|
| 16 |
+
checkpoint_path,
|
| 17 |
+
load_weights = True,
|
| 18 |
+
load_ema_if_available = False
|
| 19 |
+
):
|
| 20 |
+
model_path = Path(checkpoint_path)
|
| 21 |
+
full_model_path = str(model_path.resolve())
|
| 22 |
+
assert model_path.exists(), f'checkpoint not found at {full_model_path}'
|
| 23 |
+
loaded = torch.load(str(model_path), map_location='cpu')
|
| 24 |
+
|
| 25 |
+
imagen_params = safeget(loaded, 'imagen_params')
|
| 26 |
+
imagen_type = safeget(loaded, 'imagen_type')
|
| 27 |
+
|
| 28 |
+
if imagen_type == 'original':
|
| 29 |
+
imagen_klass = ImagenConfig
|
| 30 |
+
elif imagen_type == 'elucidated':
|
| 31 |
+
imagen_klass = ElucidatedImagenConfig
|
| 32 |
+
else:
|
| 33 |
+
raise ValueError(f'unknown imagen type {imagen_type} - you need to instantiate your Imagen with configurations, using classes ImagenConfig or ElucidatedImagenConfig')
|
| 34 |
+
|
| 35 |
+
assert exists(imagen_params) and exists(imagen_type), 'imagen type and configuration not saved in this checkpoint'
|
| 36 |
+
|
| 37 |
+
imagen = imagen_klass(**imagen_params).create()
|
| 38 |
+
|
| 39 |
+
if not load_weights:
|
| 40 |
+
return imagen
|
| 41 |
+
|
| 42 |
+
has_ema = 'ema' in loaded
|
| 43 |
+
should_load_ema = has_ema and load_ema_if_available
|
| 44 |
+
|
| 45 |
+
imagen.load_state_dict(loaded['model'])
|
| 46 |
+
|
| 47 |
+
if not should_load_ema:
|
| 48 |
+
print('loading non-EMA version of unets')
|
| 49 |
+
return imagen
|
| 50 |
+
|
| 51 |
+
ema_unets = nn.ModuleList([])
|
| 52 |
+
for unet in imagen.unets:
|
| 53 |
+
ema_unets.append(EMA(unet))
|
| 54 |
+
|
| 55 |
+
ema_unets.load_state_dict(loaded['ema'])
|
| 56 |
+
|
| 57 |
+
for unet, ema_unet in zip(imagen.unets, ema_unets):
|
| 58 |
+
unet.load_state_dict(ema_unet.ema_model.state_dict())
|
| 59 |
+
|
| 60 |
+
print('loaded EMA version of unets')
|
| 61 |
+
return imagen
|
version.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
__version__ = '1.25.12'
|