sebastian-hofstaetter
commited on
Commit
·
b974692
1
Parent(s):
ea13c97
inital model & readme
Browse files- README.md +300 -0
- config.json +13 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: "en"
|
3 |
+
tags:
|
4 |
+
- document-retrieval
|
5 |
+
- knowledge-distillation
|
6 |
+
datasets:
|
7 |
+
- ms_marco
|
8 |
+
---
|
9 |
+
|
10 |
+
# Intra-Document Cascading (IDCM)
|
11 |
+
|
12 |
+
We provide a retrieval trained IDCM model. Our model is trained on MSMARCO-Document with up to 2000 tokens.
|
13 |
+
|
14 |
+
This instance can be used to **re-rank a candidate set** of long documents. The base BERT architecure is a 6-layer DistilBERT.
|
15 |
+
|
16 |
+
If you want to know more about our intra document cascading model & training procedure using knowledge distillation check out our paper: https://arxiv.org/abs/2105.09816 🎉
|
17 |
+
|
18 |
+
For more information, training data, source code, and a minimal usage example please visit: https://github.com/sebastian-hofstaetter/intra-document-cascade
|
19 |
+
|
20 |
+
## Configuration
|
21 |
+
|
22 |
+
- Trained with fp16 mixed precision
|
23 |
+
- We select the top 4 windows of size (50 + 2*7 overlap words) with our fast CK model and score them with BERT
|
24 |
+
- The published code here is only usable for inference (we removed the training code)
|
25 |
+
|
26 |
+
## Model Code
|
27 |
+
|
28 |
+
````python
|
29 |
+
from transformers import AutoTokenizer,AutoModel, PreTrainedModel,PretrainedConfig
|
30 |
+
from typing import Dict
|
31 |
+
import torch
|
32 |
+
from torch import nn as nn
|
33 |
+
|
34 |
+
class IDCM_InferenceOnly(PreTrainedModel):
|
35 |
+
'''
|
36 |
+
IDCM is a neural re-ranking model for long documents, it creates an intra-document cascade between a fast (CK) and a slow module (BERT_Cat)
|
37 |
+
This code is only usable for inference (we removed the training mechanism for simplicity)
|
38 |
+
'''
|
39 |
+
|
40 |
+
config_class = IDCM_Config
|
41 |
+
base_model_prefix = "bert_model"
|
42 |
+
|
43 |
+
def __init__(self,
|
44 |
+
cfg) -> None:
|
45 |
+
super().__init__(cfg)
|
46 |
+
|
47 |
+
#
|
48 |
+
# bert - scoring
|
49 |
+
#
|
50 |
+
if isinstance(cfg.bert_model, str):
|
51 |
+
self.bert_model = AutoModel.from_pretrained(cfg.bert_model)
|
52 |
+
else:
|
53 |
+
self.bert_model = cfg.bert_model
|
54 |
+
|
55 |
+
#
|
56 |
+
# final scoring (combination of bert scores)
|
57 |
+
#
|
58 |
+
self._classification_layer = torch.nn.Linear(self.bert_model.config.hidden_size, 1)
|
59 |
+
self.top_k_chunks = cfg.top_k_chunks
|
60 |
+
self.top_k_scoring = nn.Parameter(torch.full([1,self.top_k_chunks], 1, dtype=torch.float32, requires_grad=True))
|
61 |
+
|
62 |
+
#
|
63 |
+
# local self attention
|
64 |
+
#
|
65 |
+
self.padding_idx= cfg.padding_idx
|
66 |
+
self.chunk_size = cfg.chunk_size
|
67 |
+
self.overlap = cfg.overlap
|
68 |
+
self.extended_chunk_size = self.chunk_size + 2 * self.overlap
|
69 |
+
|
70 |
+
#
|
71 |
+
# sampling stuff
|
72 |
+
#
|
73 |
+
self.sample_n = cfg.sample_n
|
74 |
+
self.sample_context = cfg.sample_context
|
75 |
+
|
76 |
+
if self.sample_context == "ck":
|
77 |
+
i = 3
|
78 |
+
self.sample_cnn3 = nn.Sequential(
|
79 |
+
nn.ConstantPad1d((0,i - 1), 0),
|
80 |
+
nn.Conv1d(kernel_size=i, in_channels=self.bert_model.config.dim, out_channels=self.bert_model.config.dim),
|
81 |
+
nn.ReLU()
|
82 |
+
)
|
83 |
+
elif self.sample_context == "ck-small":
|
84 |
+
i = 3
|
85 |
+
self.sample_projector = nn.Linear(self.bert_model.config.dim,384)
|
86 |
+
self.sample_cnn3 = nn.Sequential(
|
87 |
+
nn.ConstantPad1d((0,i - 1), 0),
|
88 |
+
nn.Conv1d(kernel_size=i, in_channels=384, out_channels=128),
|
89 |
+
nn.ReLU()
|
90 |
+
)
|
91 |
+
|
92 |
+
self.sampling_binweights = nn.Linear(11, 1, bias=True)
|
93 |
+
torch.nn.init.uniform_(self.sampling_binweights.weight, -0.01, 0.01)
|
94 |
+
self.kernel_alpha_scaler = nn.Parameter(torch.full([1,1,11], 1, dtype=torch.float32, requires_grad=True))
|
95 |
+
|
96 |
+
self.register_buffer("mu",nn.Parameter(torch.tensor([1.0, 0.9, 0.7, 0.5, 0.3, 0.1, -0.1, -0.3, -0.5, -0.7, -0.9]), requires_grad=False).view(1, 1, 1, -1))
|
97 |
+
self.register_buffer("sigma", nn.Parameter(torch.tensor([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]), requires_grad=False).view(1, 1, 1, -1))
|
98 |
+
|
99 |
+
|
100 |
+
def forward(self,
|
101 |
+
query: Dict[str, torch.LongTensor],
|
102 |
+
document: Dict[str, torch.LongTensor],
|
103 |
+
use_fp16:bool = True,
|
104 |
+
output_secondary_output: bool = False):
|
105 |
+
|
106 |
+
#
|
107 |
+
# patch up documents - local self attention
|
108 |
+
#
|
109 |
+
document_ids = document["input_ids"][:,1:]
|
110 |
+
if document_ids.shape[1] > self.overlap:
|
111 |
+
needed_padding = self.extended_chunk_size - (((document_ids.shape[1]) % self.chunk_size) - self.overlap)
|
112 |
+
else:
|
113 |
+
needed_padding = self.extended_chunk_size - self.overlap - document_ids.shape[1]
|
114 |
+
orig_doc_len = document_ids.shape[1]
|
115 |
+
|
116 |
+
document_ids = nn.functional.pad(document_ids,(self.overlap, needed_padding),value=self.padding_idx)
|
117 |
+
chunked_ids = document_ids.unfold(1,self.extended_chunk_size,self.chunk_size)
|
118 |
+
|
119 |
+
batch_size = chunked_ids.shape[0]
|
120 |
+
chunk_pieces = chunked_ids.shape[1]
|
121 |
+
|
122 |
+
|
123 |
+
chunked_ids_unrolled=chunked_ids.reshape(-1,self.extended_chunk_size)
|
124 |
+
packed_indices = (chunked_ids_unrolled[:,self.overlap:-self.overlap] != self.padding_idx).any(-1)
|
125 |
+
orig_packed_indices = packed_indices.clone()
|
126 |
+
ids_packed = chunked_ids_unrolled[packed_indices]
|
127 |
+
mask_packed = (ids_packed != self.padding_idx)
|
128 |
+
|
129 |
+
total_chunks=chunked_ids_unrolled.shape[0]
|
130 |
+
|
131 |
+
packed_query_ids = query["input_ids"].unsqueeze(1).expand(-1,chunk_pieces,-1).reshape(-1,query["input_ids"].shape[1])[packed_indices]
|
132 |
+
packed_query_mask = query["attention_mask"].unsqueeze(1).expand(-1,chunk_pieces,-1).reshape(-1,query["attention_mask"].shape[1])[packed_indices]
|
133 |
+
|
134 |
+
#
|
135 |
+
# sampling
|
136 |
+
#
|
137 |
+
if self.sample_n > -1:
|
138 |
+
|
139 |
+
#
|
140 |
+
# ck learned matches
|
141 |
+
#
|
142 |
+
if self.sample_context == "ck-small":
|
143 |
+
query_ctx = torch.nn.functional.normalize(self.sample_cnn3(self.sample_projector(self.bert_model.embeddings(packed_query_ids).detach()).transpose(1,2)).transpose(1, 2),p=2,dim=-1)
|
144 |
+
document_ctx = torch.nn.functional.normalize(self.sample_cnn3(self.sample_projector(self.bert_model.embeddings(ids_packed).detach()).transpose(1,2)).transpose(1, 2),p=2,dim=-1)
|
145 |
+
elif self.sample_context == "ck":
|
146 |
+
query_ctx = torch.nn.functional.normalize(self.sample_cnn3((self.bert_model.embeddings(packed_query_ids).detach()).transpose(1,2)).transpose(1, 2),p=2,dim=-1)
|
147 |
+
document_ctx = torch.nn.functional.normalize(self.sample_cnn3((self.bert_model.embeddings(ids_packed).detach()).transpose(1,2)).transpose(1, 2),p=2,dim=-1)
|
148 |
+
else:
|
149 |
+
qe = self.tk_projector(self.bert_model.embeddings(packed_query_ids).detach())
|
150 |
+
de = self.tk_projector(self.bert_model.embeddings(ids_packed).detach())
|
151 |
+
query_ctx = self.tk_contextualizer(qe.transpose(1,0),src_key_padding_mask=~packed_query_mask.bool()).transpose(1,0)
|
152 |
+
document_ctx = self.tk_contextualizer(de.transpose(1,0),src_key_padding_mask=~mask_packed.bool()).transpose(1,0)
|
153 |
+
|
154 |
+
query_ctx = torch.nn.functional.normalize(query_ctx,p=2,dim=-1)
|
155 |
+
document_ctx= torch.nn.functional.normalize(document_ctx,p=2,dim=-1)
|
156 |
+
|
157 |
+
cosine_matrix = torch.bmm(query_ctx,document_ctx.transpose(-1, -2)).unsqueeze(-1)
|
158 |
+
|
159 |
+
kernel_activations = torch.exp(- torch.pow(cosine_matrix - self.mu, 2) / (2 * torch.pow(self.sigma, 2))) * mask_packed.unsqueeze(-1).unsqueeze(1)
|
160 |
+
kernel_res = torch.log(torch.clamp(torch.sum(kernel_activations, 2) * self.kernel_alpha_scaler, min=1e-4)) * packed_query_mask.unsqueeze(-1)
|
161 |
+
packed_patch_scores = self.sampling_binweights(torch.sum(kernel_res, 1))
|
162 |
+
|
163 |
+
|
164 |
+
sampling_scores_per_doc = torch.zeros((total_chunks,1), dtype=packed_patch_scores.dtype, layout=packed_patch_scores.layout, device=packed_patch_scores.device)
|
165 |
+
sampling_scores_per_doc[packed_indices] = packed_patch_scores
|
166 |
+
sampling_scores_per_doc = sampling_scores_per_doc.reshape(batch_size,-1,)
|
167 |
+
sampling_scores_per_doc_orig = sampling_scores_per_doc.clone()
|
168 |
+
sampling_scores_per_doc[sampling_scores_per_doc == 0] = -9000
|
169 |
+
|
170 |
+
sampling_sorted = sampling_scores_per_doc.sort(descending=True)
|
171 |
+
sampled_indices = sampling_sorted.indices + torch.arange(0,sampling_scores_per_doc.shape[0]*sampling_scores_per_doc.shape[1],sampling_scores_per_doc.shape[1],device=sampling_scores_per_doc.device).unsqueeze(-1)
|
172 |
+
|
173 |
+
sampled_indices = sampled_indices[:,:self.sample_n]
|
174 |
+
sampled_indices_mask = torch.zeros_like(packed_indices).scatter(0, sampled_indices.reshape(-1), 1)
|
175 |
+
|
176 |
+
# pack indices
|
177 |
+
|
178 |
+
packed_indices = sampled_indices_mask * packed_indices
|
179 |
+
|
180 |
+
packed_query_ids = query["input_ids"].unsqueeze(1).expand(-1,chunk_pieces,-1).reshape(-1,query["input_ids"].shape[1])[packed_indices]
|
181 |
+
packed_query_mask = query["attention_mask"].unsqueeze(1).expand(-1,chunk_pieces,-1).reshape(-1,query["attention_mask"].shape[1])[packed_indices]
|
182 |
+
|
183 |
+
ids_packed = chunked_ids_unrolled[packed_indices]
|
184 |
+
mask_packed = (ids_packed != self.padding_idx)
|
185 |
+
|
186 |
+
#
|
187 |
+
# expensive bert scores
|
188 |
+
#
|
189 |
+
|
190 |
+
bert_vecs = self.forward_representation(torch.cat([packed_query_ids,ids_packed],dim=1),torch.cat([packed_query_mask,mask_packed],dim=1))
|
191 |
+
packed_patch_scores = self._classification_layer(bert_vecs)
|
192 |
+
|
193 |
+
scores_per_doc = torch.zeros((total_chunks,1), dtype=packed_patch_scores.dtype, layout=packed_patch_scores.layout, device=packed_patch_scores.device)
|
194 |
+
scores_per_doc[packed_indices] = packed_patch_scores
|
195 |
+
scores_per_doc = scores_per_doc.reshape(batch_size,-1,)
|
196 |
+
scores_per_doc_orig = scores_per_doc.clone()
|
197 |
+
scores_per_doc_orig_sorter = scores_per_doc.clone()
|
198 |
+
|
199 |
+
if self.sample_n > -1:
|
200 |
+
scores_per_doc = scores_per_doc * sampled_indices_mask.view(batch_size,-1)
|
201 |
+
|
202 |
+
#
|
203 |
+
# aggregate bert scores
|
204 |
+
#
|
205 |
+
|
206 |
+
if scores_per_doc.shape[1] < self.top_k_chunks:
|
207 |
+
scores_per_doc = nn.functional.pad(scores_per_doc,(0, self.top_k_chunks - scores_per_doc.shape[1]))
|
208 |
+
|
209 |
+
scores_per_doc[scores_per_doc == 0] = -9000
|
210 |
+
scores_per_doc_orig_sorter[scores_per_doc_orig_sorter == 0] = -9000
|
211 |
+
score = torch.sort(scores_per_doc,descending=True,dim=-1).values
|
212 |
+
score[score <= -8900] = 0
|
213 |
+
|
214 |
+
score = (score[:,:self.top_k_chunks] * self.top_k_scoring).sum(dim=1)
|
215 |
+
|
216 |
+
if self.sample_n == -1:
|
217 |
+
if output_secondary_output:
|
218 |
+
return score,{
|
219 |
+
"packed_indices": orig_packed_indices.view(batch_size,-1),
|
220 |
+
"bert_scores":scores_per_doc_orig
|
221 |
+
}
|
222 |
+
else:
|
223 |
+
return score,scores_per_doc_orig
|
224 |
+
else:
|
225 |
+
if output_secondary_output:
|
226 |
+
return score,scores_per_doc_orig,{
|
227 |
+
"score": score,
|
228 |
+
"packed_indices": orig_packed_indices.view(batch_size,-1),
|
229 |
+
"sampling_scores":sampling_scores_per_doc_orig,
|
230 |
+
"bert_scores":scores_per_doc_orig
|
231 |
+
}
|
232 |
+
|
233 |
+
return score
|
234 |
+
|
235 |
+
def forward_representation(self, ids,mask,type_ids=None) -> Dict[str, torch.Tensor]:
|
236 |
+
|
237 |
+
if self.bert_model.base_model_prefix == 'distilbert': # diff input / output
|
238 |
+
pooled = self.bert_model(input_ids=ids,
|
239 |
+
attention_mask=mask)[0][:,0,:]
|
240 |
+
elif self.bert_model.base_model_prefix == 'longformer':
|
241 |
+
_, pooled = self.bert_model(input_ids=ids,
|
242 |
+
attention_mask=mask.long(),
|
243 |
+
global_attention_mask = ((1-ids)*mask).long())
|
244 |
+
elif self.bert_model.base_model_prefix == 'roberta': # no token type ids
|
245 |
+
_, pooled = self.bert_model(input_ids=ids,
|
246 |
+
attention_mask=mask)
|
247 |
+
else:
|
248 |
+
_, pooled = self.bert_model(input_ids=ids,
|
249 |
+
token_type_ids=type_ids,
|
250 |
+
attention_mask=mask)
|
251 |
+
|
252 |
+
return pooled
|
253 |
+
|
254 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") # honestly not sure if that is the best way to go, but it works :)
|
255 |
+
model = ColBERT.from_pretrained("sebastian-hofstaetter/idcm-distilbert-msmarco_doc")
|
256 |
+
````
|
257 |
+
|
258 |
+
## Effectiveness on MSMARCO Passage & TREC Deep Learning '19
|
259 |
+
|
260 |
+
We trained our model on the MSMARCO-Document collection. We trained the selection module CK with knowledge distillation from the stronger BERT model.
|
261 |
+
|
262 |
+
For re-ranking we used the top-100 BM25 results. The throughput of IDCM should be ~600 documents with max 2000 tokens per second.
|
263 |
+
|
264 |
+
### MSMARCO-Document-DEV
|
265 |
+
|
266 |
+
| | MRR@10 | NDCG@10 |
|
267 |
+
|----------------------------------|--------|---------|
|
268 |
+
| BM25 | .252 | .311 |
|
269 |
+
| **IDCM** | .380 | .446 |
|
270 |
+
|
271 |
+
### TREC-DL'19 (Document Task)
|
272 |
+
|
273 |
+
For MRR we use the recommended binarization point of the graded relevance of 2. This might skew the results when compared to other binarization point numbers.
|
274 |
+
|
275 |
+
| | MRR@10 | NDCG@10 |
|
276 |
+
|----------------------------------|--------|---------|
|
277 |
+
| BM25 | .661 | .488 |
|
278 |
+
| **IDCM** | .916 | .688 |
|
279 |
+
|
280 |
+
For more metrics, baselines, info and analysis, please see the paper: https://arxiv.org/abs/2105.09816
|
281 |
+
|
282 |
+
## Limitations & Bias
|
283 |
+
|
284 |
+
- The model inherits social biases from both DistilBERT and MSMARCO.
|
285 |
+
|
286 |
+
- The model is only trained on longer documents of MSMARCO, so it might struggle with especially short document text - for short text we recommend one of our MSMARCO-Passage trained models.
|
287 |
+
|
288 |
+
|
289 |
+
## Citation
|
290 |
+
|
291 |
+
If you use our model checkpoint please cite our work as:
|
292 |
+
|
293 |
+
```
|
294 |
+
@inproceedings{Hofstaetter2021_idcm,
|
295 |
+
author = {Sebastian Hofst{\"a}tter and Bhaskar Mitra and Hamed Zamani and Nick Craswell and Allan Hanbury},
|
296 |
+
title = {{Intra-Document Cascading: Learning to Select Passages for Neural Document Ranking}},
|
297 |
+
booktitle = {Proc. of SIGIR},
|
298 |
+
year = {2021},
|
299 |
+
}
|
300 |
+
```
|
config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"IDCM_InferenceOnly"
|
4 |
+
],
|
5 |
+
"bert_model": "distilbert-base-uncased",
|
6 |
+
"chunk_size": 50,
|
7 |
+
"model_type": "IDCM",
|
8 |
+
"overlap": 7,
|
9 |
+
"padding_idx": 0,
|
10 |
+
"sample_context": "ck",
|
11 |
+
"sample_n": 4,
|
12 |
+
"top_k_chunks": 3
|
13 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f470359d91aa8ef7ac65c914d212eb4edb704c0e4245d4d4310e89d1cbf6fac
|
3 |
+
size 272560219
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "do_basic_tokenize": true, "never_split": null, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "name_or_path": "distilbert-base-uncased"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|