--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # BERTopic_astrosenmovimiento This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("sdantonio/BERTopic_astrosenmovimiento") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 6 * Number of training documents: 404
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | inenarrable - queridas - encuadrando - reiniciar - encapsulan | 16 | -1_inenarrable_queridas_encuadrando_reiniciar | | 0 | genes - tardes - bellas - mercurio - venus | 6 | 0_genes_tardes_bellas_mercurio | | 1 | adentro - venus - mercurio - escorpio - suen | 151 | 1_adentro_venus_mercurio_escorpio | | 2 | bellas - venus - eclipse - comparto - pluto | 129 | 2_bellas_venus_eclipse_comparto | | 3 | bellas - mercurio - escorpio - venus - comparto | 58 | 3_bellas_mercurio_escorpio_venus | | 4 | historias - lxs - sinergia - bellas - venus | 44 | 4_historias_lxs_sinergia_bellas |
## Training hyperparameters * calculate_probabilities: False * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.23.5 * HDBSCAN: 0.8.38.post1 * UMAP: 0.5.6 * Pandas: 2.2.2 * Scikit-Learn: 1.5.1 * Sentence-transformers: 3.0.1 * Transformers: 4.44.2 * Numba: 0.60.0 * Plotly: 5.24.0 * Python: 3.10.12