--- library_name: sklearn tags: - sklearn - skops - tabular-classification model_file: model.pkl widget: structuredData: x0: - 19.89 - 12.89 - 17.14 x1: - 20.26 - 13.12 - 16.4 x10: - 0.5079 - 0.1532 - 1.046 x11: - 0.8737 - 0.469 - 0.976 x12: - 3.654 - 1.115 - 7.276 x13: - 59.7 - 12.68 - 111.4 x14: - 0.005089 - 0.004731 - 0.008029 x15: - 0.02303 - 0.01345 - 0.03799 x16: - 0.03052 - 0.01652 - 0.03732 x17: - 0.01178 - 0.005905 - 0.02397 x18: - 0.01057 - 0.01619 - 0.02308 x19: - 0.003391 - 0.002081 - 0.007444 x2: - 130.5 - 81.89 - 116.0 x20: - 23.73 - 13.62 - 22.25 x21: - 25.23 - 15.54 - 21.4 x22: - 160.5 - 87.4 - 152.4 x23: - 1646.0 - 577.0 - 1461.0 x24: - 0.1417 - 0.09616 - 0.1545 x25: - 0.3309 - 0.1147 - 0.3949 x26: - 0.4185 - 0.1186 - 0.3853 x27: - 0.1613 - 0.05366 - 0.255 x28: - 0.2549 - 0.2309 - 0.4066 x29: - 0.09136 - 0.06915 - 0.1059 x3: - 1214.0 - 515.9 - 912.7 x4: - 0.1037 - 0.06955 - 0.1186 x5: - 0.131 - 0.03729 - 0.2276 x6: - 0.1411 - 0.0226 - 0.2229 x7: - 0.09431 - 0.01171 - 0.1401 x8: - 0.1802 - 0.1337 - 0.304 x9: - 0.06188 - 0.05581 - 0.07413 --- # Model description This is a Decision Tree Classifier trained on breast cancer dataset and pruned with CCP. ## Intended uses & limitations This model is trained for educational purposes. ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters.
Click to expand | Hyperparameter | Value | |--------------------------|---------| | ccp_alpha | 0.0 | | class_weight | | | criterion | gini | | max_depth | | | max_features | | | max_leaf_nodes | | | min_impurity_decrease | 0.0 | | min_impurity_split | | | min_samples_leaf | 1 | | min_samples_split | 2 | | min_weight_fraction_leaf | 0.0 | | random_state | 0 | | splitter | best |
### Model Plot The model plot is below.
DecisionTreeClassifier(random_state=0)
## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|----------| | accuracy | 0.937063 | | f1 score | 0.937063 | # How to Get Started with the Model Use the code below to get started with the model. ```python import joblib import json import pandas as pd clf = joblib.load(model.pkl) with open("config.json") as f: config = json.load(f) clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"])) ``` # Additional Content ## Feature Importances ![Feature Importances](feature_importances.png) ## Tree Splits ![Tree Splits](tree.png) ## Confusion Matrix ![Confusion Matrix](confusion_matrix.png)