Training in progress, epoch 1
Browse files- .gitattributes +2 -0
- .gitignore +1 -0
- config.json +24 -0
- last-checkpoint/config.json +24 -0
- last-checkpoint/global_step69473/mp_rank_00_model_states.pt +3 -0
- last-checkpoint/global_step69473/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step69473/zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step69473/zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/latest +1 -0
- last-checkpoint/pytorch_model.bin +3 -0
- last-checkpoint/rng_state_0.pth +3 -0
- last-checkpoint/rng_state_1.pth +3 -0
- last-checkpoint/rng_state_2.pth +3 -0
- last-checkpoint/special_tokens_map.json +1 -0
- last-checkpoint/tokenizer.json +3 -0
- last-checkpoint/tokenizer_config.json +1 -0
- last-checkpoint/trainer_state.json +853 -0
- last-checkpoint/training_args.bin +3 -0
- last-checkpoint/zero_to_fp32.py +482 -0
- pytorch_model.bin +3 -0
- runs/May29_03-16-06_user-SYS-5049A-TR/1685297788.4675024/events.out.tfevents.1685297788.user-SYS-5049A-TR.557399.1 +3 -0
- runs/May29_03-16-06_user-SYS-5049A-TR/events.out.tfevents.1685297788.user-SYS-5049A-TR.557399.0 +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +3 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
last-checkpoint/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
checkpoint-*/
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 512,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 2048,
|
12 |
+
"layer_norm_eps": 1e-12,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"model_type": "bert",
|
15 |
+
"num_attention_heads": 8,
|
16 |
+
"num_hidden_layers": 4,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"position_embedding_type": "absolute",
|
19 |
+
"torch_dtype": "float16",
|
20 |
+
"transformers_version": "4.19.2",
|
21 |
+
"type_vocab_size": 2,
|
22 |
+
"use_cache": true,
|
23 |
+
"vocab_size": 32000
|
24 |
+
}
|
last-checkpoint/config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 512,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 2048,
|
12 |
+
"layer_norm_eps": 1e-12,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"model_type": "bert",
|
15 |
+
"num_attention_heads": 8,
|
16 |
+
"num_hidden_layers": 4,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"position_embedding_type": "absolute",
|
19 |
+
"torch_dtype": "float16",
|
20 |
+
"transformers_version": "4.19.2",
|
21 |
+
"type_vocab_size": 2,
|
22 |
+
"use_cache": true,
|
23 |
+
"vocab_size": 32000
|
24 |
+
}
|
last-checkpoint/global_step69473/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7fee8ad094b83eafb4642aa67dc407906abb44069898b2d6c01fd181dd03f90
|
3 |
+
size 59134503
|
last-checkpoint/global_step69473/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f34ee05e660ec808d9d4648e0485f42ed647626a0576a2bca6c533ff5ee64a9d
|
3 |
+
size 118216675
|
last-checkpoint/global_step69473/zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39aa3ad356dd3f1bd38de7a6b8f582311549d66711f3c25502065746eb93de23
|
3 |
+
size 118217955
|
last-checkpoint/global_step69473/zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:144cc18a21fe4f219a0758ed77c9d75a4a523f2a1c0bdcf9b069217f7f3d46a8
|
3 |
+
size 118221091
|
last-checkpoint/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step69473
|
last-checkpoint/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8580ea39a228320967d4824ff6206951e183008e7b62cfbb21d206b6b9269df3
|
3 |
+
size 59121639
|
last-checkpoint/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f169d1cf1a734807c702253110798a5ca20f34433b059f3de158c0b402fb8c46
|
3 |
+
size 14503
|
last-checkpoint/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0648ff4fbfac201ed269d3868ad0f72ce67617862117228e73f1d42fce1c7983
|
3 |
+
size 14503
|
last-checkpoint/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b0079d1b5a931b7462d29aeab466686876fa00d6f81fbe274e1b655db2c6c3a
|
3 |
+
size 14503
|
last-checkpoint/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
last-checkpoint/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b96a3eb5bd33d698db9cd98db4e1c5669e97156454ce236f540672fb04db0d29
|
3 |
+
size 1990331
|
last-checkpoint/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"model_max_length": 128, "padding_side": "right", "truncation_side": "right", "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "special_tokens_map_file": "pretrained_tokenizers/UnidicUnigram/special_tokens_map.json", "name_or_path": "pretrained_tokenizers/UnidicUnigram", "tokenizer_class": "PreTrainedTokenizerFast"}
|
last-checkpoint/trainer_state.json
ADDED
@@ -0,0 +1,853 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"global_step": 69473,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.01,
|
12 |
+
"learning_rate": 6.763399204600845e-05,
|
13 |
+
"loss": 6.4694,
|
14 |
+
"step": 500
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.01,
|
18 |
+
"learning_rate": 7.520427275451058e-05,
|
19 |
+
"loss": 5.0083,
|
20 |
+
"step": 1000
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.02,
|
24 |
+
"learning_rate": 7.961254711978457e-05,
|
25 |
+
"loss": 4.0697,
|
26 |
+
"step": 1500
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.03,
|
30 |
+
"learning_rate": 8.275270773909965e-05,
|
31 |
+
"loss": 3.5216,
|
32 |
+
"step": 2000
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.04,
|
36 |
+
"learning_rate": 8.517839539271491e-05,
|
37 |
+
"loss": 3.2063,
|
38 |
+
"step": 2500
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.04,
|
42 |
+
"learning_rate": 8.716825914421595e-05,
|
43 |
+
"loss": 3.0101,
|
44 |
+
"step": 3000
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.05,
|
48 |
+
"learning_rate": 8.884385574179297e-05,
|
49 |
+
"loss": 2.8699,
|
50 |
+
"step": 3500
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.06,
|
54 |
+
"learning_rate": 9.030114272368873e-05,
|
55 |
+
"loss": 2.7617,
|
56 |
+
"step": 4000
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.06,
|
60 |
+
"learning_rate": 9.158138540964539e-05,
|
61 |
+
"loss": 2.6704,
|
62 |
+
"step": 4500
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.07,
|
66 |
+
"learning_rate": 9.273119601765861e-05,
|
67 |
+
"loss": 2.5998,
|
68 |
+
"step": 5000
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.08,
|
72 |
+
"learning_rate": 9.376714826181023e-05,
|
73 |
+
"loss": 2.5312,
|
74 |
+
"step": 5500
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.09,
|
78 |
+
"learning_rate": 9.471669412880503e-05,
|
79 |
+
"loss": 2.4839,
|
80 |
+
"step": 6000
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.09,
|
84 |
+
"learning_rate": 9.558668751136338e-05,
|
85 |
+
"loss": 2.4323,
|
86 |
+
"step": 6500
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.1,
|
90 |
+
"learning_rate": 9.639540886232853e-05,
|
91 |
+
"loss": 2.3904,
|
92 |
+
"step": 7000
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.11,
|
96 |
+
"learning_rate": 9.714529240377096e-05,
|
97 |
+
"loss": 2.3488,
|
98 |
+
"step": 7500
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.12,
|
102 |
+
"learning_rate": 9.784957770827781e-05,
|
103 |
+
"loss": 2.3144,
|
104 |
+
"step": 8000
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.12,
|
108 |
+
"learning_rate": 9.850850144881638e-05,
|
109 |
+
"loss": 2.2815,
|
110 |
+
"step": 8500
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.13,
|
114 |
+
"learning_rate": 9.91322455339213e-05,
|
115 |
+
"loss": 2.2535,
|
116 |
+
"step": 9000
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.14,
|
120 |
+
"learning_rate": 9.97198937413398e-05,
|
121 |
+
"loss": 2.2257,
|
122 |
+
"step": 9500
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.14,
|
126 |
+
"learning_rate": 9.997382892215664e-05,
|
127 |
+
"loss": 2.1964,
|
128 |
+
"step": 10000
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.15,
|
132 |
+
"learning_rate": 9.99221098873709e-05,
|
133 |
+
"loss": 2.1748,
|
134 |
+
"step": 10500
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.16,
|
138 |
+
"learning_rate": 9.987018314561817e-05,
|
139 |
+
"loss": 2.1486,
|
140 |
+
"step": 11000
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.17,
|
144 |
+
"learning_rate": 9.981846411083245e-05,
|
145 |
+
"loss": 2.1307,
|
146 |
+
"step": 11500
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.17,
|
150 |
+
"learning_rate": 9.97665373690797e-05,
|
151 |
+
"loss": 2.109,
|
152 |
+
"step": 12000
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.18,
|
156 |
+
"learning_rate": 9.971481833429398e-05,
|
157 |
+
"loss": 2.0916,
|
158 |
+
"step": 12500
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.19,
|
162 |
+
"learning_rate": 9.966289159254125e-05,
|
163 |
+
"loss": 2.075,
|
164 |
+
"step": 13000
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.19,
|
168 |
+
"learning_rate": 9.961117255775553e-05,
|
169 |
+
"loss": 2.059,
|
170 |
+
"step": 13500
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.2,
|
174 |
+
"learning_rate": 9.95592458160028e-05,
|
175 |
+
"loss": 2.0434,
|
176 |
+
"step": 14000
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.21,
|
180 |
+
"learning_rate": 9.950752678121706e-05,
|
181 |
+
"loss": 2.0309,
|
182 |
+
"step": 14500
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.22,
|
186 |
+
"learning_rate": 9.945560003946433e-05,
|
187 |
+
"loss": 2.0167,
|
188 |
+
"step": 15000
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.22,
|
192 |
+
"learning_rate": 9.94038810046786e-05,
|
193 |
+
"loss": 1.9992,
|
194 |
+
"step": 15500
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.23,
|
198 |
+
"learning_rate": 9.935195426292587e-05,
|
199 |
+
"loss": 1.9896,
|
200 |
+
"step": 16000
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.24,
|
204 |
+
"learning_rate": 9.930023522814015e-05,
|
205 |
+
"loss": 1.9796,
|
206 |
+
"step": 16500
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.24,
|
210 |
+
"learning_rate": 9.92483084863874e-05,
|
211 |
+
"loss": 1.9663,
|
212 |
+
"step": 17000
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.25,
|
216 |
+
"learning_rate": 9.919658945160168e-05,
|
217 |
+
"loss": 1.9531,
|
218 |
+
"step": 17500
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.26,
|
222 |
+
"learning_rate": 9.914466270984895e-05,
|
223 |
+
"loss": 1.946,
|
224 |
+
"step": 18000
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.27,
|
228 |
+
"learning_rate": 9.909294367506321e-05,
|
229 |
+
"loss": 1.9323,
|
230 |
+
"step": 18500
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.27,
|
234 |
+
"learning_rate": 9.90410169333105e-05,
|
235 |
+
"loss": 1.9229,
|
236 |
+
"step": 19000
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.28,
|
240 |
+
"learning_rate": 9.898929789852477e-05,
|
241 |
+
"loss": 1.9076,
|
242 |
+
"step": 19500
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.29,
|
246 |
+
"learning_rate": 9.893737115677203e-05,
|
247 |
+
"loss": 1.9028,
|
248 |
+
"step": 20000
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.3,
|
252 |
+
"learning_rate": 9.88856521219863e-05,
|
253 |
+
"loss": 1.8983,
|
254 |
+
"step": 20500
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.3,
|
258 |
+
"learning_rate": 9.883372538023356e-05,
|
259 |
+
"loss": 1.8901,
|
260 |
+
"step": 21000
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.31,
|
264 |
+
"learning_rate": 9.878200634544784e-05,
|
265 |
+
"loss": 1.8776,
|
266 |
+
"step": 21500
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.32,
|
270 |
+
"learning_rate": 9.873007960369511e-05,
|
271 |
+
"loss": 1.8693,
|
272 |
+
"step": 22000
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.32,
|
276 |
+
"learning_rate": 9.867836056890939e-05,
|
277 |
+
"loss": 1.8586,
|
278 |
+
"step": 22500
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.33,
|
282 |
+
"learning_rate": 9.862643382715665e-05,
|
283 |
+
"loss": 1.8554,
|
284 |
+
"step": 23000
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.34,
|
288 |
+
"learning_rate": 9.857471479237093e-05,
|
289 |
+
"loss": 1.8526,
|
290 |
+
"step": 23500
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.35,
|
294 |
+
"learning_rate": 9.85227880506182e-05,
|
295 |
+
"loss": 1.8446,
|
296 |
+
"step": 24000
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.35,
|
300 |
+
"learning_rate": 9.847106901583248e-05,
|
301 |
+
"loss": 1.8372,
|
302 |
+
"step": 24500
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.36,
|
306 |
+
"learning_rate": 9.841914227407973e-05,
|
307 |
+
"loss": 1.8317,
|
308 |
+
"step": 25000
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.37,
|
312 |
+
"learning_rate": 9.836742323929401e-05,
|
313 |
+
"loss": 1.8224,
|
314 |
+
"step": 25500
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.37,
|
318 |
+
"learning_rate": 9.831549649754126e-05,
|
319 |
+
"loss": 1.8184,
|
320 |
+
"step": 26000
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.38,
|
324 |
+
"learning_rate": 9.826377746275554e-05,
|
325 |
+
"loss": 1.8131,
|
326 |
+
"step": 26500
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.39,
|
330 |
+
"learning_rate": 9.821185072100282e-05,
|
331 |
+
"loss": 1.807,
|
332 |
+
"step": 27000
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.4,
|
336 |
+
"learning_rate": 9.816013168621709e-05,
|
337 |
+
"loss": 1.8027,
|
338 |
+
"step": 27500
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.4,
|
342 |
+
"learning_rate": 9.810820494446436e-05,
|
343 |
+
"loss": 1.7964,
|
344 |
+
"step": 28000
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.41,
|
348 |
+
"learning_rate": 9.805648590967863e-05,
|
349 |
+
"loss": 1.7902,
|
350 |
+
"step": 28500
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.42,
|
354 |
+
"learning_rate": 9.800455916792589e-05,
|
355 |
+
"loss": 1.7873,
|
356 |
+
"step": 29000
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.42,
|
360 |
+
"learning_rate": 9.795284013314017e-05,
|
361 |
+
"loss": 1.7819,
|
362 |
+
"step": 29500
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.43,
|
366 |
+
"learning_rate": 9.790091339138744e-05,
|
367 |
+
"loss": 1.7787,
|
368 |
+
"step": 30000
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.44,
|
372 |
+
"learning_rate": 9.784919435660171e-05,
|
373 |
+
"loss": 1.7752,
|
374 |
+
"step": 30500
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.45,
|
378 |
+
"learning_rate": 9.779726761484898e-05,
|
379 |
+
"loss": 1.7694,
|
380 |
+
"step": 31000
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.45,
|
384 |
+
"learning_rate": 9.774554858006325e-05,
|
385 |
+
"loss": 1.7641,
|
386 |
+
"step": 31500
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.46,
|
390 |
+
"learning_rate": 9.769362183831051e-05,
|
391 |
+
"loss": 1.7587,
|
392 |
+
"step": 32000
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.47,
|
396 |
+
"learning_rate": 9.764190280352479e-05,
|
397 |
+
"loss": 1.7566,
|
398 |
+
"step": 32500
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.48,
|
402 |
+
"learning_rate": 9.758997606177206e-05,
|
403 |
+
"loss": 1.7537,
|
404 |
+
"step": 33000
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.48,
|
408 |
+
"learning_rate": 9.753825702698634e-05,
|
409 |
+
"loss": 1.7463,
|
410 |
+
"step": 33500
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.49,
|
414 |
+
"learning_rate": 9.748633028523359e-05,
|
415 |
+
"loss": 1.7382,
|
416 |
+
"step": 34000
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.5,
|
420 |
+
"learning_rate": 9.743461125044787e-05,
|
421 |
+
"loss": 1.7413,
|
422 |
+
"step": 34500
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.5,
|
426 |
+
"learning_rate": 9.738268450869514e-05,
|
427 |
+
"loss": 1.7386,
|
428 |
+
"step": 35000
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.51,
|
432 |
+
"learning_rate": 9.73309654739094e-05,
|
433 |
+
"loss": 1.7329,
|
434 |
+
"step": 35500
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.52,
|
438 |
+
"learning_rate": 9.727903873215668e-05,
|
439 |
+
"loss": 1.7279,
|
440 |
+
"step": 36000
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.53,
|
444 |
+
"learning_rate": 9.722731969737096e-05,
|
445 |
+
"loss": 1.726,
|
446 |
+
"step": 36500
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.53,
|
450 |
+
"learning_rate": 9.717539295561822e-05,
|
451 |
+
"loss": 1.7205,
|
452 |
+
"step": 37000
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.54,
|
456 |
+
"learning_rate": 9.71236739208325e-05,
|
457 |
+
"loss": 1.718,
|
458 |
+
"step": 37500
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.55,
|
462 |
+
"learning_rate": 9.707174717907976e-05,
|
463 |
+
"loss": 1.7136,
|
464 |
+
"step": 38000
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.55,
|
468 |
+
"learning_rate": 9.702002814429404e-05,
|
469 |
+
"loss": 1.7171,
|
470 |
+
"step": 38500
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.56,
|
474 |
+
"learning_rate": 9.69681014025413e-05,
|
475 |
+
"loss": 1.7071,
|
476 |
+
"step": 39000
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.57,
|
480 |
+
"learning_rate": 9.691638236775557e-05,
|
481 |
+
"loss": 1.7067,
|
482 |
+
"step": 39500
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.58,
|
486 |
+
"learning_rate": 9.686445562600284e-05,
|
487 |
+
"loss": 1.7034,
|
488 |
+
"step": 40000
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.58,
|
492 |
+
"learning_rate": 9.681273659121712e-05,
|
493 |
+
"loss": 1.6944,
|
494 |
+
"step": 40500
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.59,
|
498 |
+
"learning_rate": 9.676080984946439e-05,
|
499 |
+
"loss": 1.6958,
|
500 |
+
"step": 41000
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.6,
|
504 |
+
"learning_rate": 9.670909081467867e-05,
|
505 |
+
"loss": 1.6896,
|
506 |
+
"step": 41500
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.6,
|
510 |
+
"learning_rate": 9.665716407292592e-05,
|
511 |
+
"loss": 1.6894,
|
512 |
+
"step": 42000
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.61,
|
516 |
+
"learning_rate": 9.66054450381402e-05,
|
517 |
+
"loss": 1.6864,
|
518 |
+
"step": 42500
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.62,
|
522 |
+
"learning_rate": 9.655351829638745e-05,
|
523 |
+
"loss": 1.6838,
|
524 |
+
"step": 43000
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.63,
|
528 |
+
"learning_rate": 9.650179926160173e-05,
|
529 |
+
"loss": 1.6814,
|
530 |
+
"step": 43500
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.63,
|
534 |
+
"learning_rate": 9.6449872519849e-05,
|
535 |
+
"loss": 1.6763,
|
536 |
+
"step": 44000
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.64,
|
540 |
+
"learning_rate": 9.639815348506328e-05,
|
541 |
+
"loss": 1.6751,
|
542 |
+
"step": 44500
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.65,
|
546 |
+
"learning_rate": 9.634622674331054e-05,
|
547 |
+
"loss": 1.6712,
|
548 |
+
"step": 45000
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.65,
|
552 |
+
"learning_rate": 9.629450770852482e-05,
|
553 |
+
"loss": 1.6706,
|
554 |
+
"step": 45500
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.66,
|
558 |
+
"learning_rate": 9.624258096677208e-05,
|
559 |
+
"loss": 1.6668,
|
560 |
+
"step": 46000
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.67,
|
564 |
+
"learning_rate": 9.619086193198635e-05,
|
565 |
+
"loss": 1.665,
|
566 |
+
"step": 46500
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.68,
|
570 |
+
"learning_rate": 9.613893519023362e-05,
|
571 |
+
"loss": 1.6627,
|
572 |
+
"step": 47000
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.68,
|
576 |
+
"learning_rate": 9.60872161554479e-05,
|
577 |
+
"loss": 1.6635,
|
578 |
+
"step": 47500
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.69,
|
582 |
+
"learning_rate": 9.603528941369516e-05,
|
583 |
+
"loss": 1.6606,
|
584 |
+
"step": 48000
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.7,
|
588 |
+
"learning_rate": 9.598357037890943e-05,
|
589 |
+
"loss": 1.6553,
|
590 |
+
"step": 48500
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.71,
|
594 |
+
"learning_rate": 9.59316436371567e-05,
|
595 |
+
"loss": 1.6587,
|
596 |
+
"step": 49000
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.71,
|
600 |
+
"learning_rate": 9.587992460237098e-05,
|
601 |
+
"loss": 1.6552,
|
602 |
+
"step": 49500
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.72,
|
606 |
+
"learning_rate": 9.582799786061825e-05,
|
607 |
+
"loss": 1.6485,
|
608 |
+
"step": 50000
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.73,
|
612 |
+
"learning_rate": 9.577627882583253e-05,
|
613 |
+
"loss": 1.6473,
|
614 |
+
"step": 50500
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.73,
|
618 |
+
"learning_rate": 9.572435208407978e-05,
|
619 |
+
"loss": 1.6488,
|
620 |
+
"step": 51000
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.74,
|
624 |
+
"learning_rate": 9.567263304929406e-05,
|
625 |
+
"loss": 1.645,
|
626 |
+
"step": 51500
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.75,
|
630 |
+
"learning_rate": 9.562070630754133e-05,
|
631 |
+
"loss": 1.6432,
|
632 |
+
"step": 52000
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.76,
|
636 |
+
"learning_rate": 9.55689872727556e-05,
|
637 |
+
"loss": 1.6385,
|
638 |
+
"step": 52500
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.76,
|
642 |
+
"learning_rate": 9.551706053100287e-05,
|
643 |
+
"loss": 1.6398,
|
644 |
+
"step": 53000
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.77,
|
648 |
+
"learning_rate": 9.546534149621714e-05,
|
649 |
+
"loss": 1.6349,
|
650 |
+
"step": 53500
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.78,
|
654 |
+
"learning_rate": 9.54134147544644e-05,
|
655 |
+
"loss": 1.6343,
|
656 |
+
"step": 54000
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.78,
|
660 |
+
"learning_rate": 9.536169571967868e-05,
|
661 |
+
"loss": 1.6319,
|
662 |
+
"step": 54500
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.79,
|
666 |
+
"learning_rate": 9.530976897792595e-05,
|
667 |
+
"loss": 1.6271,
|
668 |
+
"step": 55000
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.8,
|
672 |
+
"learning_rate": 9.525804994314023e-05,
|
673 |
+
"loss": 1.6258,
|
674 |
+
"step": 55500
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.81,
|
678 |
+
"learning_rate": 9.520612320138748e-05,
|
679 |
+
"loss": 1.6245,
|
680 |
+
"step": 56000
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.81,
|
684 |
+
"learning_rate": 9.515440416660176e-05,
|
685 |
+
"loss": 1.6234,
|
686 |
+
"step": 56500
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.82,
|
690 |
+
"learning_rate": 9.510247742484903e-05,
|
691 |
+
"loss": 1.6241,
|
692 |
+
"step": 57000
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.83,
|
696 |
+
"learning_rate": 9.50507583900633e-05,
|
697 |
+
"loss": 1.6234,
|
698 |
+
"step": 57500
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.83,
|
702 |
+
"learning_rate": 9.499883164831058e-05,
|
703 |
+
"loss": 1.6159,
|
704 |
+
"step": 58000
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.84,
|
708 |
+
"learning_rate": 9.494711261352485e-05,
|
709 |
+
"loss": 1.6156,
|
710 |
+
"step": 58500
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.85,
|
714 |
+
"learning_rate": 9.489518587177211e-05,
|
715 |
+
"loss": 1.6122,
|
716 |
+
"step": 59000
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.86,
|
720 |
+
"learning_rate": 9.484346683698639e-05,
|
721 |
+
"loss": 1.6117,
|
722 |
+
"step": 59500
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.86,
|
726 |
+
"learning_rate": 9.479154009523364e-05,
|
727 |
+
"loss": 1.6122,
|
728 |
+
"step": 60000
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.87,
|
732 |
+
"learning_rate": 9.473982106044792e-05,
|
733 |
+
"loss": 1.609,
|
734 |
+
"step": 60500
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.88,
|
738 |
+
"learning_rate": 9.468789431869519e-05,
|
739 |
+
"loss": 1.6056,
|
740 |
+
"step": 61000
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.89,
|
744 |
+
"learning_rate": 9.463617528390946e-05,
|
745 |
+
"loss": 1.6065,
|
746 |
+
"step": 61500
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.89,
|
750 |
+
"learning_rate": 9.458424854215673e-05,
|
751 |
+
"loss": 1.6024,
|
752 |
+
"step": 62000
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.9,
|
756 |
+
"learning_rate": 9.453252950737101e-05,
|
757 |
+
"loss": 1.6048,
|
758 |
+
"step": 62500
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.91,
|
762 |
+
"learning_rate": 9.448060276561828e-05,
|
763 |
+
"loss": 1.5998,
|
764 |
+
"step": 63000
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 0.91,
|
768 |
+
"learning_rate": 9.442888373083256e-05,
|
769 |
+
"loss": 1.5987,
|
770 |
+
"step": 63500
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 0.92,
|
774 |
+
"learning_rate": 9.437695698907981e-05,
|
775 |
+
"loss": 1.597,
|
776 |
+
"step": 64000
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.93,
|
780 |
+
"learning_rate": 9.432523795429409e-05,
|
781 |
+
"loss": 1.6008,
|
782 |
+
"step": 64500
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.94,
|
786 |
+
"learning_rate": 9.427331121254134e-05,
|
787 |
+
"loss": 1.5975,
|
788 |
+
"step": 65000
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.94,
|
792 |
+
"learning_rate": 9.422159217775562e-05,
|
793 |
+
"loss": 1.5933,
|
794 |
+
"step": 65500
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.95,
|
798 |
+
"learning_rate": 9.41696654360029e-05,
|
799 |
+
"loss": 1.5908,
|
800 |
+
"step": 66000
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.96,
|
804 |
+
"learning_rate": 9.411794640121717e-05,
|
805 |
+
"loss": 1.5946,
|
806 |
+
"step": 66500
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 0.96,
|
810 |
+
"learning_rate": 9.406601965946444e-05,
|
811 |
+
"loss": 1.5926,
|
812 |
+
"step": 67000
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 0.97,
|
816 |
+
"learning_rate": 9.401430062467871e-05,
|
817 |
+
"loss": 1.5857,
|
818 |
+
"step": 67500
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.98,
|
822 |
+
"learning_rate": 9.396237388292597e-05,
|
823 |
+
"loss": 1.5857,
|
824 |
+
"step": 68000
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.99,
|
828 |
+
"learning_rate": 9.391065484814025e-05,
|
829 |
+
"loss": 1.5845,
|
830 |
+
"step": 68500
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.99,
|
834 |
+
"learning_rate": 9.385872810638751e-05,
|
835 |
+
"loss": 1.5872,
|
836 |
+
"step": 69000
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 1.0,
|
840 |
+
"eval_accuracy": 0.686660818699687,
|
841 |
+
"eval_loss": 1.453125,
|
842 |
+
"eval_runtime": 744.6208,
|
843 |
+
"eval_samples_per_second": 723.775,
|
844 |
+
"eval_steps_per_second": 30.158,
|
845 |
+
"step": 69473
|
846 |
+
}
|
847 |
+
],
|
848 |
+
"max_steps": 972622,
|
849 |
+
"num_train_epochs": 14,
|
850 |
+
"total_flos": 5.247432957928407e+17,
|
851 |
+
"trial_name": null,
|
852 |
+
"trial_params": null
|
853 |
+
}
|
last-checkpoint/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b26d3567c2b8b22ce9a875cd1a84e63ff8c21e2415bcb2e94eb917e10a4d3036
|
3 |
+
size 4399
|
last-checkpoint/zero_to_fp32.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
4 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
5 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
6 |
+
# application.
|
7 |
+
#
|
8 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
import torch
|
12 |
+
import glob
|
13 |
+
import math
|
14 |
+
import os
|
15 |
+
import re
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
19 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
20 |
+
from deepspeed.utils import logger
|
21 |
+
from deepspeed.checkpoint.constants import (DS_VERSION,
|
22 |
+
OPTIMIZER_STATE_DICT,
|
23 |
+
SINGLE_PARTITION_OF_FP32_GROUPS,
|
24 |
+
FP32_FLAT_GROUPS,
|
25 |
+
ZERO_STAGE,
|
26 |
+
PARTITION_COUNT,
|
27 |
+
PARAM_SHAPES,
|
28 |
+
BUFFER_NAMES)
|
29 |
+
|
30 |
+
debug = 0
|
31 |
+
|
32 |
+
# load to cpu
|
33 |
+
device = torch.device('cpu')
|
34 |
+
|
35 |
+
|
36 |
+
def atoi(text):
|
37 |
+
return int(text) if text.isdigit() else text
|
38 |
+
|
39 |
+
|
40 |
+
def natural_keys(text):
|
41 |
+
'''
|
42 |
+
alist.sort(key=natural_keys) sorts in human order
|
43 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
44 |
+
(See Toothy's implementation in the comments)
|
45 |
+
'''
|
46 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
47 |
+
|
48 |
+
|
49 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
50 |
+
if not os.path.isdir(checkpoint_dir):
|
51 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
52 |
+
|
53 |
+
# there should be only one file
|
54 |
+
if zero_stage == 2:
|
55 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
56 |
+
elif zero_stage == 3:
|
57 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
58 |
+
|
59 |
+
if not os.path.exists(file):
|
60 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
61 |
+
|
62 |
+
return file
|
63 |
+
|
64 |
+
|
65 |
+
def get_optim_files(checkpoint_dir):
|
66 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
67 |
+
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
|
68 |
+
"*_optim_states.pt")),
|
69 |
+
key=natural_keys)
|
70 |
+
|
71 |
+
if len(optim_files) == 0:
|
72 |
+
raise FileNotFoundError(
|
73 |
+
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
74 |
+
|
75 |
+
return optim_files
|
76 |
+
|
77 |
+
|
78 |
+
def parse_model_state(file):
|
79 |
+
state_dict = torch.load(file, map_location=device)
|
80 |
+
|
81 |
+
if BUFFER_NAMES not in state_dict:
|
82 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
83 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
84 |
+
if debug:
|
85 |
+
print("Found buffers:", buffer_names)
|
86 |
+
|
87 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
88 |
+
buffers = {
|
89 |
+
k: v.float()
|
90 |
+
for k,
|
91 |
+
v in state_dict["module"].items() if k in buffer_names
|
92 |
+
}
|
93 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
94 |
+
|
95 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
96 |
+
|
97 |
+
return buffers, param_shapes, ds_version
|
98 |
+
|
99 |
+
|
100 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
101 |
+
|
102 |
+
total_files = len(files)
|
103 |
+
state_dicts = []
|
104 |
+
for f in files:
|
105 |
+
state_dicts.append(torch.load(f, map_location=device))
|
106 |
+
|
107 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
108 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
109 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
110 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
111 |
+
|
112 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
113 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
114 |
+
# use the max of the partition_count to get the dp world_size.
|
115 |
+
|
116 |
+
if type(world_size) is list:
|
117 |
+
world_size = max(world_size)
|
118 |
+
|
119 |
+
if world_size != total_files:
|
120 |
+
raise ValueError(
|
121 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
122 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
123 |
+
)
|
124 |
+
|
125 |
+
# the groups are named differently in each stage
|
126 |
+
if zero_stage == 2:
|
127 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
128 |
+
elif zero_stage == 3:
|
129 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
130 |
+
else:
|
131 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
132 |
+
|
133 |
+
if zero_stage == 2:
|
134 |
+
fp32_flat_groups = [
|
135 |
+
state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
|
136 |
+
for i in range(len(state_dicts))
|
137 |
+
]
|
138 |
+
elif zero_stage == 3:
|
139 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
140 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
141 |
+
#
|
142 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
143 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
144 |
+
|
145 |
+
fp32_flat_groups = [
|
146 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
|
147 |
+
0) for i in range(len(state_dicts))
|
148 |
+
]
|
149 |
+
|
150 |
+
return zero_stage, world_size, fp32_flat_groups
|
151 |
+
|
152 |
+
|
153 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
154 |
+
"""
|
155 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
156 |
+
|
157 |
+
Args:
|
158 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
159 |
+
|
160 |
+
"""
|
161 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
162 |
+
|
163 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
164 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
165 |
+
print(
|
166 |
+
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
167 |
+
|
168 |
+
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
169 |
+
buffers, param_shapes, ds_version = parse_model_state(model_file)
|
170 |
+
print(f'Parsing checkpoint created by deepspeed=={ds_version}')
|
171 |
+
|
172 |
+
if zero_stage == 2:
|
173 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
174 |
+
param_shapes,
|
175 |
+
fp32_flat_groups,
|
176 |
+
buffers)
|
177 |
+
elif zero_stage == 3:
|
178 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
179 |
+
param_shapes,
|
180 |
+
fp32_flat_groups,
|
181 |
+
buffers)
|
182 |
+
|
183 |
+
|
184 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
185 |
+
param_shapes,
|
186 |
+
fp32_flat_groups,
|
187 |
+
buffers):
|
188 |
+
|
189 |
+
# Reconstruction protocol:
|
190 |
+
#
|
191 |
+
# XXX: document this
|
192 |
+
|
193 |
+
if debug:
|
194 |
+
for i in range(world_size):
|
195 |
+
for j in range(len(fp32_flat_groups[0])):
|
196 |
+
print(
|
197 |
+
f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
198 |
+
|
199 |
+
# XXX: memory usage doubles here (zero2)
|
200 |
+
num_param_groups = len(fp32_flat_groups[0])
|
201 |
+
merged_single_partition_of_fp32_groups = []
|
202 |
+
for i in range(num_param_groups):
|
203 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
204 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
205 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
206 |
+
avail_numel = sum([
|
207 |
+
full_single_fp32_vector.numel()
|
208 |
+
for full_single_fp32_vector in merged_single_partition_of_fp32_groups
|
209 |
+
])
|
210 |
+
|
211 |
+
if debug:
|
212 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
213 |
+
wanted_numel = sum(
|
214 |
+
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
215 |
+
# not asserting if there is a mismatch due to possible padding
|
216 |
+
print(f"Have {avail_numel} numels to process.")
|
217 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
218 |
+
|
219 |
+
state_dict = OrderedDict()
|
220 |
+
|
221 |
+
# buffers
|
222 |
+
state_dict.update(buffers)
|
223 |
+
if debug:
|
224 |
+
print(f"added {len(buffers)} buffers")
|
225 |
+
|
226 |
+
# params
|
227 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
228 |
+
# out-of-core computing solution
|
229 |
+
total_numel = 0
|
230 |
+
total_params = 0
|
231 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
232 |
+
offset = 0
|
233 |
+
avail_numel = full_single_fp32_vector.numel()
|
234 |
+
for name, shape in shapes.items():
|
235 |
+
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
total_params += 1
|
239 |
+
|
240 |
+
if debug:
|
241 |
+
print(
|
242 |
+
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
243 |
+
)
|
244 |
+
state_dict[name] = full_single_fp32_vector.narrow(
|
245 |
+
0,
|
246 |
+
offset,
|
247 |
+
unpartitioned_numel).view(shape)
|
248 |
+
offset += unpartitioned_numel
|
249 |
+
|
250 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
251 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
252 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
253 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
254 |
+
align_to = 2 * world_size
|
255 |
+
|
256 |
+
def zero2_align(x):
|
257 |
+
return align_to * math.ceil(x / align_to)
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
261 |
+
|
262 |
+
offset = zero2_align(offset)
|
263 |
+
avail_numel = zero2_align(avail_numel)
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
267 |
+
|
268 |
+
# Sanity check
|
269 |
+
if offset != avail_numel:
|
270 |
+
raise ValueError(
|
271 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
272 |
+
|
273 |
+
print(
|
274 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
275 |
+
)
|
276 |
+
|
277 |
+
return state_dict
|
278 |
+
|
279 |
+
|
280 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
281 |
+
remainder = unpartitioned_numel % world_size
|
282 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
283 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
284 |
+
return partitioned_numel, padding_numel
|
285 |
+
|
286 |
+
|
287 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
288 |
+
param_shapes,
|
289 |
+
fp32_flat_groups,
|
290 |
+
buffers):
|
291 |
+
|
292 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
293 |
+
# param, re-consolidating each param, while dealing with padding if any
|
294 |
+
|
295 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
296 |
+
# merge list of dicts, preserving order
|
297 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
for i in range(world_size):
|
301 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
302 |
+
|
303 |
+
wanted_params = len(param_shapes)
|
304 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
305 |
+
# not asserting if there is a mismatch due to possible padding
|
306 |
+
print(f"Have {avail_numel} numels to process.")
|
307 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
308 |
+
|
309 |
+
state_dict = OrderedDict()
|
310 |
+
|
311 |
+
# buffers
|
312 |
+
state_dict.update(buffers)
|
313 |
+
if debug:
|
314 |
+
print(f"added {len(buffers)} buffers")
|
315 |
+
|
316 |
+
# params
|
317 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
318 |
+
# out-of-core computing solution
|
319 |
+
offset = 0
|
320 |
+
total_numel = 0
|
321 |
+
total_params = 0
|
322 |
+
for name, shape in param_shapes.items():
|
323 |
+
|
324 |
+
unpartitioned_numel = shape.numel()
|
325 |
+
total_numel += unpartitioned_numel
|
326 |
+
total_params += 1
|
327 |
+
|
328 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
329 |
+
|
330 |
+
if debug:
|
331 |
+
print(
|
332 |
+
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
333 |
+
)
|
334 |
+
|
335 |
+
# XXX: memory usage doubles here
|
336 |
+
state_dict[name] = torch.cat(
|
337 |
+
tuple(fp32_flat_groups[i].narrow(0,
|
338 |
+
offset,
|
339 |
+
partitioned_numel)
|
340 |
+
for i in range(world_size)),
|
341 |
+
0).narrow(0,
|
342 |
+
0,
|
343 |
+
unpartitioned_numel).view(shape)
|
344 |
+
offset += partitioned_numel
|
345 |
+
|
346 |
+
offset *= world_size
|
347 |
+
|
348 |
+
# Sanity check
|
349 |
+
if offset != avail_numel:
|
350 |
+
raise ValueError(
|
351 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
352 |
+
|
353 |
+
print(
|
354 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
355 |
+
)
|
356 |
+
|
357 |
+
return state_dict
|
358 |
+
|
359 |
+
|
360 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
361 |
+
"""
|
362 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
363 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
364 |
+
via a model hub.
|
365 |
+
|
366 |
+
Args:
|
367 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
368 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
369 |
+
|
370 |
+
Returns:
|
371 |
+
- pytorch ``state_dict``
|
372 |
+
|
373 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
374 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
375 |
+
the checkpoint.
|
376 |
+
|
377 |
+
A typical usage might be ::
|
378 |
+
|
379 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
380 |
+
# do the training and checkpoint saving
|
381 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
382 |
+
model = model.cpu() # move to cpu
|
383 |
+
model.load_state_dict(state_dict)
|
384 |
+
# submit to model hub or save the model to share with others
|
385 |
+
|
386 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
387 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
388 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
389 |
+
|
390 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
391 |
+
|
392 |
+
"""
|
393 |
+
if tag is None:
|
394 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
395 |
+
if os.path.isfile(latest_path):
|
396 |
+
with open(latest_path, 'r') as fd:
|
397 |
+
tag = fd.read().strip()
|
398 |
+
else:
|
399 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
400 |
+
|
401 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
402 |
+
|
403 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
404 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
405 |
+
|
406 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
407 |
+
|
408 |
+
|
409 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
410 |
+
"""
|
411 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
412 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
413 |
+
|
414 |
+
Args:
|
415 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
416 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
417 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
418 |
+
"""
|
419 |
+
|
420 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
421 |
+
print(f"Saving fp32 state dict to {output_file}")
|
422 |
+
torch.save(state_dict, output_file)
|
423 |
+
|
424 |
+
|
425 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
426 |
+
"""
|
427 |
+
1. Put the provided model to cpu
|
428 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
429 |
+
3. Load it into the provided model
|
430 |
+
|
431 |
+
Args:
|
432 |
+
- ``model``: the model object to update
|
433 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
434 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
435 |
+
|
436 |
+
Returns:
|
437 |
+
- ``model`: modified model
|
438 |
+
|
439 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
440 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
441 |
+
conveniently placed for you in the checkpoint folder.
|
442 |
+
|
443 |
+
A typical usage might be ::
|
444 |
+
|
445 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
446 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
447 |
+
# submit to model hub or save the model to share with others
|
448 |
+
|
449 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
450 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
451 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
452 |
+
|
453 |
+
"""
|
454 |
+
logger.info(f"Extracting fp32 weights")
|
455 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
456 |
+
|
457 |
+
logger.info(f"Overwriting model with fp32 weights")
|
458 |
+
model = model.cpu()
|
459 |
+
model.load_state_dict(state_dict, strict=False)
|
460 |
+
|
461 |
+
return model
|
462 |
+
|
463 |
+
|
464 |
+
if __name__ == "__main__":
|
465 |
+
|
466 |
+
parser = argparse.ArgumentParser()
|
467 |
+
parser.add_argument(
|
468 |
+
"checkpoint_dir",
|
469 |
+
type=str,
|
470 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
471 |
+
parser.add_argument(
|
472 |
+
"output_file",
|
473 |
+
type=str,
|
474 |
+
help=
|
475 |
+
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
476 |
+
)
|
477 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
478 |
+
args = parser.parse_args()
|
479 |
+
|
480 |
+
debug = args.debug
|
481 |
+
|
482 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8580ea39a228320967d4824ff6206951e183008e7b62cfbb21d206b6b9269df3
|
3 |
+
size 59121639
|
runs/May29_03-16-06_user-SYS-5049A-TR/1685297788.4675024/events.out.tfevents.1685297788.user-SYS-5049A-TR.557399.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29849569c7f16a6ff13544b9d412b4835e5e6080f7d1b3a7d8267a1aa81b7fc9
|
3 |
+
size 5228
|
runs/May29_03-16-06_user-SYS-5049A-TR/events.out.tfevents.1685297788.user-SYS-5049A-TR.557399.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca9621f74faf5bf7b6b0e40513a69505f964b552a1b618d987a8dbefa57b3c1b
|
3 |
+
size 25766
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b96a3eb5bd33d698db9cd98db4e1c5669e97156454ce236f540672fb04db0d29
|
3 |
+
size 1990331
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"model_max_length": 128, "padding_side": "right", "truncation_side": "right", "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "special_tokens_map_file": "pretrained_tokenizers/UnidicUnigram/special_tokens_map.json", "name_or_path": "pretrained_tokenizers/UnidicUnigram", "tokenizer_class": "PreTrainedTokenizerFast"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b26d3567c2b8b22ce9a875cd1a84e63ff8c21e2415bcb2e94eb917e10a4d3036
|
3 |
+
size 4399
|