update
Browse files- .gitattributes +1 -0
- LICENSE +21 -0
- README.md +121 -3
- chat_template.json +3 -0
- config.json +32 -0
- configuration_sarashina2_vision.py +76 -0
- generation_config.json +6 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +691 -0
- modeling_sarashina2_vision.py +242 -0
- preprocessor_config.json +32 -0
- processing_sarashina2_vision.py +383 -0
- processor_config.json +6 -0
- sample.jpg +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +176 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
sample.jpg filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2025 SB Intuitions
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,3 +1,121 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ja
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- sbintuitions/sarashina2-7b
|
7 |
+
license: mit
|
8 |
+
tags:
|
9 |
+
- multimodal
|
10 |
+
- vision-language
|
11 |
+
- llama
|
12 |
+
- qwen2_vl
|
13 |
+
pipeline_tag: image-to-text
|
14 |
+
library_name: transformers
|
15 |
+
---
|
16 |
+
|
17 |
+
# Sarashina2-Vision-8B
|
18 |
+
**Sarashina2-Vision-8B** is a Japanese Large Vision Language Model trained by [SB Intuitions](https://www.sbintuitions.co.jp/).
|
19 |
+
|
20 |
+
This model is based on [Sarashina2-7B](https://huggingface.co/sbintuitions/sarashina2-7b) and Image Encoder of [Qwen2-VL-7B](https://huggingface.co/Qwen/Qwen2-VL-7B).
|
21 |
+
|
22 |
+
It achieved the highest level of scores in 4 benchmarks (as of 2025/03/07) compared to other Japanese VLMs.
|
23 |
+
|
24 |
+
## How to use
|
25 |
+
### 1. Install dependencies
|
26 |
+
|
27 |
+
```sh
|
28 |
+
pip install -U transformers==4.47.0 torch torchvision pillow protobuf sentencepiece accelerate
|
29 |
+
```
|
30 |
+
|
31 |
+
### 2. Inference
|
32 |
+
The following script loads the model and allows inference.
|
33 |
+
```python
|
34 |
+
import requests
|
35 |
+
from PIL import Image
|
36 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
37 |
+
|
38 |
+
# Define model path
|
39 |
+
model_path = "sbintuitions/sarashina2-vision-8b"
|
40 |
+
|
41 |
+
# Load model and processor
|
42 |
+
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
44 |
+
model_path,
|
45 |
+
device_map="cuda",
|
46 |
+
torch_dtype="auto",
|
47 |
+
trust_remote_code=True,
|
48 |
+
)
|
49 |
+
|
50 |
+
message = [{"role": "user", "content": "この写真に写っているもので、最も有名と考えられる建築物は何でどこに写っていますか?"}]
|
51 |
+
text_prompt = processor.apply_chat_template(message, add_generation_prompt=True)
|
52 |
+
"""text_prompt: <s><|prefix|><|file|><|suffix|>A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
|
53 |
+
|
54 |
+
### Human: この写真に写っているもので、最も有名と考えられる建築物は何でどこに写っていますか?
|
55 |
+
### Assistant:"""
|
56 |
+
|
57 |
+
sample_image_url = "https://huggingface.co/sbintuitions/sarashina2-vision-8b/resolve/main/sample.jpg"
|
58 |
+
image = Image.open(requests.get(sample_image_url, stream=True).raw).convert("RGB")
|
59 |
+
inputs = processor(
|
60 |
+
text=[text_prompt],
|
61 |
+
images=[image],
|
62 |
+
padding=True,
|
63 |
+
return_tensors="pt",
|
64 |
+
)
|
65 |
+
inputs = inputs.to("cuda")
|
66 |
+
stopping_criteria = processor.get_stopping_criteria(["\n###"])
|
67 |
+
|
68 |
+
# Inference: Generation of the output
|
69 |
+
output_ids = model.generate(
|
70 |
+
**inputs,
|
71 |
+
max_new_tokens=128,
|
72 |
+
temperature=0.0,
|
73 |
+
do_sample=False,
|
74 |
+
stopping_criteria=stopping_criteria,
|
75 |
+
)
|
76 |
+
generated_ids = [
|
77 |
+
output_ids[len(input_ids) :] for input_ids, output_ids in zip(inputs.input_ids, output_ids)
|
78 |
+
]
|
79 |
+
output_text = processor.batch_decode(
|
80 |
+
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
81 |
+
)
|
82 |
+
print(output_text[0])
|
83 |
+
"""この写真に写っているもので、最も有名と考えられる建築物は東京タワーです。東京タワーは、東京のランドマークであり、この写真では、ビル群の向こうに写っています。"""
|
84 |
+
```
|
85 |
+
|
86 |
+
### Example
|
87 |
+
<img src="https://huggingface.co/sbintuitions/sarashina2-vision-8b/resolve/main/sample.jpg" width="350">
|
88 |
+
|
89 |
+
|Prompt|Output|
|
90 |
+
|-|-|
|
91 |
+
|この写真に写っているもので、最も有名と考えられる建築物は何でどこに写っていますか?|この写真に写っているもので、最も有名と考えられる建築物は東京タワーです。東京タワーは、東京のランドマークであり、この写真では、ビル群の向こうに写っています。|
|
92 |
+
|真ん中に映っている赤と白の物は何ですか?|真ん中に映っている赤と白のものはクレーンです。|
|
93 |
+
|
94 |
+
## Training
|
95 |
+
**Sarashina2-Vision** is created through the following three-stage learning process:
|
96 |
+
|
97 |
+
1. We tune the parameters in the projector by caption datasets.
|
98 |
+
2. We tune the parameters in the Vision Encoder and projector by caption datasets.
|
99 |
+
3. We tune the parameters in the projector and LLM by Visual Instruction datasets.
|
100 |
+
|
101 |
+
## Evaluation Results
|
102 |
+
|Model|Model Size|JMMMU<sup>*1</sup>|Heron-Bench<sup>*2</sup>|JDocQA|
|
103 |
+
|-|-|-|-|-|
|
104 |
+
|[heron-chat-git-ja-stablelm-base-7b-v1](https://huggingface.co/turing-motors/heron-chat-git-ja-stablelm-base-7b-v1)|7B|0.294|0.461|0.069|
|
105 |
+
|[llava-calm2-siglip](https://huggingface.co/cyberagent/llava-calm2-siglip)|7B|0.07|0.521|0.084|
|
106 |
+
|[Llama-3-EvoVLM-JP-v2](https://huggingface.co/SakanaAI/Llama-3-EvoVLM-JP-v2)|8B|0.389|0.509|0.103|
|
107 |
+
|[Asagi-14B](https://huggingface.co/MIL-UT/Asagi-14B)|14B|0.302|0.433|0.06|
|
108 |
+
|[llm-jp-3-vila-14b](https://huggingface.co/llm-jp/llm-jp-3-vila-14b)|14B|0.23|**0.665**|0.176|
|
109 |
+
|[EZO-InternVL2-26B](https://huggingface.co/AXCXEPT/EZO-InternVL2-26B)|26B|0.389|0.609|0.196|
|
110 |
+
|[Sarashina2-Vision-8B](https://huggingface.co/sbintuitions/sarashina2-vision-8b)|8B|0.393|0.648|0.229|
|
111 |
+
|[Sarashina2-Vision-14B](https://huggingface.co/sbintuitions/sarashina2-vision-14b)|14B|**0.433**|0.644|**0.245**|
|
112 |
+
|
113 |
+
1. Evaluated only single image samples (1,286 samples). If answer extraction failed, we treated it as incorrect (score 0) instead of making a random choice to eliminate stochasticity.
|
114 |
+
2. GPT-4o (gpt-4o-2024-08-06) was used for LLM-as-a-Judge.
|
115 |
+
|
116 |
+
|
117 |
+
## Ethical Considerations and Limitations
|
118 |
+
Sarashina2-Vision might generate some meaningless sequences, some inaccurate instances or biased/objectionable outputs. Before using Sarashina2-Vision, we would like developers to tune models based on human preferences and safety considerations.
|
119 |
+
|
120 |
+
## LICENSE
|
121 |
+
[MIT License](./LICENSE)
|
chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "{{ bos_token + '<|prefix|><|file|><|suffix|>A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human\\'s questions.\\n\\n' }}{% for message in messages %}{% if message['role'] == 'user' %}{{ '### Human: ' + message['content'] + '\\n' }}{% elif message['role'] == 'assistant' %}{{ 'Assistant: ' + message['content'] + '\\n' }}{% endif %}{% endfor %}{% if messages[-1]['role'] == 'user' %}{{ '### Assistant:' }}{% endif %}"
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Sarashina2VisionForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_sarashina2_vision.Sarashina2VisionConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_sarashina2_vision.Sarashina2VisionForCausalLM"
|
8 |
+
},
|
9 |
+
"end_image_token_index": 102398,
|
10 |
+
"image_token_index": 14,
|
11 |
+
"model_type": "sarashina2_vision",
|
12 |
+
"start_image_token_index": 102397,
|
13 |
+
"text_config": {
|
14 |
+
"_name_or_path": "sbintuitions/sarashina2-7b",
|
15 |
+
"architectures": [
|
16 |
+
"LlamaForCausalLM"
|
17 |
+
],
|
18 |
+
"max_position_embeddings": 4096,
|
19 |
+
"model_type": "llama",
|
20 |
+
"rms_norm_eps": 1e-05,
|
21 |
+
"torch_dtype": "bfloat16",
|
22 |
+
"vocab_size": 102400
|
23 |
+
},
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.47.0",
|
26 |
+
"vision_config": {
|
27 |
+
"hidden_size": 4096,
|
28 |
+
"in_chans": 3,
|
29 |
+
"model_type": "qwen2_vl",
|
30 |
+
"spatial_patch_size": 14
|
31 |
+
}
|
32 |
+
}
|
configuration_sarashina2_vision.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 the SB Intuitions.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Sarashina2Vision model configuration"""
|
16 |
+
|
17 |
+
from typing import Any, Optional
|
18 |
+
|
19 |
+
from transformers import LlamaConfig, PretrainedConfig
|
20 |
+
from transformers.models.qwen2_vl.configuration_qwen2_vl import Qwen2VLVisionConfig
|
21 |
+
from transformers.utils import logging
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class Sarashina2VisionConfig(PretrainedConfig):
|
27 |
+
"""
|
28 |
+
This is the configuration class to store the configuration of a [`Sarashina2VisionModel`]. It is used to instantiate a
|
29 |
+
Sarashina2Vision model according to the specified arguments, defining the model architecture.
|
30 |
+
|
31 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
32 |
+
documentation from [`PretrainedConfig`] for more information.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
vision_config (`Dict`, *optional*):
|
36 |
+
The config for the visual encoder initialization.
|
37 |
+
text_config (`Dict`, *optional*):
|
38 |
+
The config for the text decoder initialization.
|
39 |
+
image_token_index (`int`):
|
40 |
+
image token id.
|
41 |
+
start_image_token_index (`int`):
|
42 |
+
start image token id.
|
43 |
+
end_image_token_index (`int`):
|
44 |
+
end image token id.
|
45 |
+
"""
|
46 |
+
|
47 |
+
model_type = "sarashina2_vision"
|
48 |
+
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
vision_config: Optional[dict[str, Any]] = None,
|
52 |
+
text_config: Optional[dict[str, Any]] = None,
|
53 |
+
image_token_index: int = 14,
|
54 |
+
start_image_token_index: int = 102397,
|
55 |
+
end_image_token_index: int = 102398,
|
56 |
+
**kwargs,
|
57 |
+
):
|
58 |
+
if isinstance(text_config, dict):
|
59 |
+
self.text_config = LlamaConfig(**text_config)
|
60 |
+
elif isinstance(text_config, LlamaConfig):
|
61 |
+
self.text_config = text_config
|
62 |
+
elif text_config is None:
|
63 |
+
self.text_config = LlamaConfig()
|
64 |
+
|
65 |
+
if isinstance(vision_config, dict):
|
66 |
+
self.vision_config = Qwen2VLVisionConfig(**vision_config)
|
67 |
+
elif isinstance(vision_config, Qwen2VLVisionConfig):
|
68 |
+
self.vision_config = vision_config
|
69 |
+
elif vision_config is None:
|
70 |
+
self.vision_config = Qwen2VLVisionConfig()
|
71 |
+
|
72 |
+
self.image_token_index = image_token_index
|
73 |
+
self.start_image_token_index = start_image_token_index
|
74 |
+
self.end_image_token_index = end_image_token_index
|
75 |
+
|
76 |
+
super().__init__(**kwargs)
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.47.0"
|
6 |
+
}
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f848457d50b90f6e8d036d72892be4ff384af97d966dfe853ea7fefbc81d9b61
|
3 |
+
size 9986932616
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5dc1e07621a0f4d8bcc96ec76492aa0ccc517f7b1a0cacdf6ad6c052bf6ea56
|
3 |
+
size 6000187040
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,691 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15987043328
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"llm.lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"llm.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"llm.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"llm.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"llm.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"llm.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"llm.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"llm.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"llm.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"llm.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"llm.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"llm.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"llm.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"llm.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"llm.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"llm.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"llm.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"llm.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"llm.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"llm.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"llm.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"llm.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"llm.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"llm.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"llm.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"llm.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"llm.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"llm.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"llm.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"llm.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"llm.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"llm.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"llm.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"llm.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"llm.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"llm.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"llm.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"llm.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"llm.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"llm.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"llm.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"llm.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"llm.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"llm.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"llm.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"llm.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"llm.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"llm.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"llm.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"llm.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"llm.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"llm.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"llm.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"llm.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"llm.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"llm.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"llm.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"llm.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"llm.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"llm.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"llm.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"llm.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"llm.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"llm.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"llm.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"llm.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"llm.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"llm.model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"llm.model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"llm.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"llm.model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"llm.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"llm.model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"llm.model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"llm.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"llm.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"llm.model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"llm.model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"llm.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"llm.model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"llm.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"llm.model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"llm.model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"llm.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"llm.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"llm.model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"llm.model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"llm.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"llm.model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"llm.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"llm.model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"llm.model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"llm.model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"llm.model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"llm.model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"llm.model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"llm.model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"llm.model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"llm.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"llm.model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"llm.model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"llm.model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
108 |
+
"llm.model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
109 |
+
"llm.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
110 |
+
"llm.model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
111 |
+
"llm.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
112 |
+
"llm.model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"llm.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
114 |
+
"llm.model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"llm.model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"llm.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"llm.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"llm.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"llm.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"llm.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"llm.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"llm.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"llm.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"llm.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"llm.model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
126 |
+
"llm.model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
127 |
+
"llm.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
128 |
+
"llm.model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
129 |
+
"llm.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
130 |
+
"llm.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
131 |
+
"llm.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
132 |
+
"llm.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
133 |
+
"llm.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
134 |
+
"llm.model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
135 |
+
"llm.model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
136 |
+
"llm.model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
137 |
+
"llm.model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
138 |
+
"llm.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
139 |
+
"llm.model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
140 |
+
"llm.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
141 |
+
"llm.model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
142 |
+
"llm.model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
143 |
+
"llm.model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
144 |
+
"llm.model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
145 |
+
"llm.model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
146 |
+
"llm.model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
147 |
+
"llm.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
148 |
+
"llm.model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
149 |
+
"llm.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
150 |
+
"llm.model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
151 |
+
"llm.model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
152 |
+
"llm.model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
153 |
+
"llm.model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
154 |
+
"llm.model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
155 |
+
"llm.model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
156 |
+
"llm.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
157 |
+
"llm.model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
158 |
+
"llm.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
159 |
+
"llm.model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
160 |
+
"llm.model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
161 |
+
"llm.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
162 |
+
"llm.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
163 |
+
"llm.model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
164 |
+
"llm.model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
165 |
+
"llm.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
166 |
+
"llm.model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
167 |
+
"llm.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
168 |
+
"llm.model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
169 |
+
"llm.model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
170 |
+
"llm.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
171 |
+
"llm.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
172 |
+
"llm.model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
173 |
+
"llm.model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
174 |
+
"llm.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
175 |
+
"llm.model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
176 |
+
"llm.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
177 |
+
"llm.model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
178 |
+
"llm.model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
179 |
+
"llm.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"llm.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
181 |
+
"llm.model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
182 |
+
"llm.model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
183 |
+
"llm.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
184 |
+
"llm.model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
185 |
+
"llm.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
186 |
+
"llm.model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
187 |
+
"llm.model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
188 |
+
"llm.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
189 |
+
"llm.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
190 |
+
"llm.model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
191 |
+
"llm.model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"llm.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
193 |
+
"llm.model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"llm.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"llm.model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
196 |
+
"llm.model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
197 |
+
"llm.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
198 |
+
"llm.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
199 |
+
"llm.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
200 |
+
"llm.model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
201 |
+
"llm.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
202 |
+
"llm.model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
203 |
+
"llm.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
204 |
+
"llm.model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
205 |
+
"llm.model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
206 |
+
"llm.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
207 |
+
"llm.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
208 |
+
"llm.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
209 |
+
"llm.model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
210 |
+
"llm.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
211 |
+
"llm.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
212 |
+
"llm.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
213 |
+
"llm.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
214 |
+
"llm.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
215 |
+
"llm.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"llm.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"llm.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"llm.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"llm.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"llm.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"llm.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"llm.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"llm.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"llm.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
225 |
+
"llm.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"llm.model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
227 |
+
"llm.model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
228 |
+
"llm.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
229 |
+
"llm.model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
230 |
+
"llm.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
231 |
+
"llm.model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
232 |
+
"llm.model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
233 |
+
"llm.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
234 |
+
"llm.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
235 |
+
"llm.model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
236 |
+
"llm.model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
237 |
+
"llm.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
238 |
+
"llm.model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
239 |
+
"llm.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"llm.model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
241 |
+
"llm.model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
242 |
+
"llm.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"llm.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"llm.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"llm.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"llm.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"llm.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"llm.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"llm.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"llm.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"llm.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"llm.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"llm.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"llm.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"llm.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"llm.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"llm.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"llm.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"llm.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"llm.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"llm.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"llm.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"llm.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"llm.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
265 |
+
"llm.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"llm.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"llm.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"llm.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"llm.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"llm.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"llm.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"llm.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
273 |
+
"llm.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
274 |
+
"llm.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
275 |
+
"llm.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
276 |
+
"llm.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
277 |
+
"llm.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
278 |
+
"llm.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
279 |
+
"llm.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
280 |
+
"llm.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
281 |
+
"llm.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
282 |
+
"llm.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
283 |
+
"llm.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"llm.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"llm.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"llm.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"llm.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"llm.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"llm.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"llm.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"llm.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"llm.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"llm.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"llm.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"llm.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"llm.model.norm.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"norm.bias": "model-00001-of-00002.safetensors",
|
298 |
+
"norm.weight": "model-00001-of-00002.safetensors",
|
299 |
+
"visual.blocks.0.attn.proj.bias": "model-00001-of-00002.safetensors",
|
300 |
+
"visual.blocks.0.attn.proj.weight": "model-00001-of-00002.safetensors",
|
301 |
+
"visual.blocks.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
302 |
+
"visual.blocks.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
303 |
+
"visual.blocks.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
304 |
+
"visual.blocks.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
305 |
+
"visual.blocks.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
306 |
+
"visual.blocks.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
307 |
+
"visual.blocks.0.norm1.bias": "model-00001-of-00002.safetensors",
|
308 |
+
"visual.blocks.0.norm1.weight": "model-00001-of-00002.safetensors",
|
309 |
+
"visual.blocks.0.norm2.bias": "model-00001-of-00002.safetensors",
|
310 |
+
"visual.blocks.0.norm2.weight": "model-00001-of-00002.safetensors",
|
311 |
+
"visual.blocks.1.attn.proj.bias": "model-00001-of-00002.safetensors",
|
312 |
+
"visual.blocks.1.attn.proj.weight": "model-00001-of-00002.safetensors",
|
313 |
+
"visual.blocks.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
314 |
+
"visual.blocks.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
315 |
+
"visual.blocks.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
316 |
+
"visual.blocks.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
317 |
+
"visual.blocks.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
318 |
+
"visual.blocks.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
319 |
+
"visual.blocks.1.norm1.bias": "model-00001-of-00002.safetensors",
|
320 |
+
"visual.blocks.1.norm1.weight": "model-00001-of-00002.safetensors",
|
321 |
+
"visual.blocks.1.norm2.bias": "model-00001-of-00002.safetensors",
|
322 |
+
"visual.blocks.1.norm2.weight": "model-00001-of-00002.safetensors",
|
323 |
+
"visual.blocks.10.attn.proj.bias": "model-00001-of-00002.safetensors",
|
324 |
+
"visual.blocks.10.attn.proj.weight": "model-00001-of-00002.safetensors",
|
325 |
+
"visual.blocks.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
326 |
+
"visual.blocks.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
327 |
+
"visual.blocks.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
328 |
+
"visual.blocks.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
329 |
+
"visual.blocks.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
330 |
+
"visual.blocks.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
331 |
+
"visual.blocks.10.norm1.bias": "model-00001-of-00002.safetensors",
|
332 |
+
"visual.blocks.10.norm1.weight": "model-00001-of-00002.safetensors",
|
333 |
+
"visual.blocks.10.norm2.bias": "model-00001-of-00002.safetensors",
|
334 |
+
"visual.blocks.10.norm2.weight": "model-00001-of-00002.safetensors",
|
335 |
+
"visual.blocks.11.attn.proj.bias": "model-00001-of-00002.safetensors",
|
336 |
+
"visual.blocks.11.attn.proj.weight": "model-00001-of-00002.safetensors",
|
337 |
+
"visual.blocks.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
338 |
+
"visual.blocks.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
339 |
+
"visual.blocks.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
340 |
+
"visual.blocks.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
341 |
+
"visual.blocks.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
342 |
+
"visual.blocks.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
343 |
+
"visual.blocks.11.norm1.bias": "model-00001-of-00002.safetensors",
|
344 |
+
"visual.blocks.11.norm1.weight": "model-00001-of-00002.safetensors",
|
345 |
+
"visual.blocks.11.norm2.bias": "model-00001-of-00002.safetensors",
|
346 |
+
"visual.blocks.11.norm2.weight": "model-00001-of-00002.safetensors",
|
347 |
+
"visual.blocks.12.attn.proj.bias": "model-00001-of-00002.safetensors",
|
348 |
+
"visual.blocks.12.attn.proj.weight": "model-00001-of-00002.safetensors",
|
349 |
+
"visual.blocks.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
350 |
+
"visual.blocks.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
351 |
+
"visual.blocks.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
352 |
+
"visual.blocks.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
353 |
+
"visual.blocks.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
354 |
+
"visual.blocks.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
355 |
+
"visual.blocks.12.norm1.bias": "model-00001-of-00002.safetensors",
|
356 |
+
"visual.blocks.12.norm1.weight": "model-00001-of-00002.safetensors",
|
357 |
+
"visual.blocks.12.norm2.bias": "model-00001-of-00002.safetensors",
|
358 |
+
"visual.blocks.12.norm2.weight": "model-00001-of-00002.safetensors",
|
359 |
+
"visual.blocks.13.attn.proj.bias": "model-00001-of-00002.safetensors",
|
360 |
+
"visual.blocks.13.attn.proj.weight": "model-00001-of-00002.safetensors",
|
361 |
+
"visual.blocks.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
362 |
+
"visual.blocks.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
363 |
+
"visual.blocks.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
364 |
+
"visual.blocks.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
365 |
+
"visual.blocks.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
366 |
+
"visual.blocks.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
367 |
+
"visual.blocks.13.norm1.bias": "model-00001-of-00002.safetensors",
|
368 |
+
"visual.blocks.13.norm1.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"visual.blocks.13.norm2.bias": "model-00001-of-00002.safetensors",
|
370 |
+
"visual.blocks.13.norm2.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"visual.blocks.14.attn.proj.bias": "model-00001-of-00002.safetensors",
|
372 |
+
"visual.blocks.14.attn.proj.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"visual.blocks.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
374 |
+
"visual.blocks.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"visual.blocks.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
376 |
+
"visual.blocks.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"visual.blocks.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
378 |
+
"visual.blocks.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
379 |
+
"visual.blocks.14.norm1.bias": "model-00001-of-00002.safetensors",
|
380 |
+
"visual.blocks.14.norm1.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"visual.blocks.14.norm2.bias": "model-00001-of-00002.safetensors",
|
382 |
+
"visual.blocks.14.norm2.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"visual.blocks.15.attn.proj.bias": "model-00001-of-00002.safetensors",
|
384 |
+
"visual.blocks.15.attn.proj.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"visual.blocks.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
386 |
+
"visual.blocks.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"visual.blocks.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
388 |
+
"visual.blocks.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
389 |
+
"visual.blocks.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
390 |
+
"visual.blocks.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
391 |
+
"visual.blocks.15.norm1.bias": "model-00001-of-00002.safetensors",
|
392 |
+
"visual.blocks.15.norm1.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"visual.blocks.15.norm2.bias": "model-00001-of-00002.safetensors",
|
394 |
+
"visual.blocks.15.norm2.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"visual.blocks.16.attn.proj.bias": "model-00001-of-00002.safetensors",
|
396 |
+
"visual.blocks.16.attn.proj.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"visual.blocks.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
398 |
+
"visual.blocks.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"visual.blocks.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
400 |
+
"visual.blocks.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
401 |
+
"visual.blocks.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
402 |
+
"visual.blocks.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
403 |
+
"visual.blocks.16.norm1.bias": "model-00001-of-00002.safetensors",
|
404 |
+
"visual.blocks.16.norm1.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"visual.blocks.16.norm2.bias": "model-00001-of-00002.safetensors",
|
406 |
+
"visual.blocks.16.norm2.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"visual.blocks.17.attn.proj.bias": "model-00001-of-00002.safetensors",
|
408 |
+
"visual.blocks.17.attn.proj.weight": "model-00001-of-00002.safetensors",
|
409 |
+
"visual.blocks.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
410 |
+
"visual.blocks.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"visual.blocks.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
412 |
+
"visual.blocks.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
413 |
+
"visual.blocks.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
414 |
+
"visual.blocks.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
415 |
+
"visual.blocks.17.norm1.bias": "model-00001-of-00002.safetensors",
|
416 |
+
"visual.blocks.17.norm1.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"visual.blocks.17.norm2.bias": "model-00001-of-00002.safetensors",
|
418 |
+
"visual.blocks.17.norm2.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"visual.blocks.18.attn.proj.bias": "model-00001-of-00002.safetensors",
|
420 |
+
"visual.blocks.18.attn.proj.weight": "model-00001-of-00002.safetensors",
|
421 |
+
"visual.blocks.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
422 |
+
"visual.blocks.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"visual.blocks.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
424 |
+
"visual.blocks.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
425 |
+
"visual.blocks.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
426 |
+
"visual.blocks.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
427 |
+
"visual.blocks.18.norm1.bias": "model-00001-of-00002.safetensors",
|
428 |
+
"visual.blocks.18.norm1.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"visual.blocks.18.norm2.bias": "model-00001-of-00002.safetensors",
|
430 |
+
"visual.blocks.18.norm2.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"visual.blocks.19.attn.proj.bias": "model-00001-of-00002.safetensors",
|
432 |
+
"visual.blocks.19.attn.proj.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"visual.blocks.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
434 |
+
"visual.blocks.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"visual.blocks.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
436 |
+
"visual.blocks.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
437 |
+
"visual.blocks.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
438 |
+
"visual.blocks.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
439 |
+
"visual.blocks.19.norm1.bias": "model-00001-of-00002.safetensors",
|
440 |
+
"visual.blocks.19.norm1.weight": "model-00001-of-00002.safetensors",
|
441 |
+
"visual.blocks.19.norm2.bias": "model-00001-of-00002.safetensors",
|
442 |
+
"visual.blocks.19.norm2.weight": "model-00001-of-00002.safetensors",
|
443 |
+
"visual.blocks.2.attn.proj.bias": "model-00001-of-00002.safetensors",
|
444 |
+
"visual.blocks.2.attn.proj.weight": "model-00001-of-00002.safetensors",
|
445 |
+
"visual.blocks.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
446 |
+
"visual.blocks.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
447 |
+
"visual.blocks.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
448 |
+
"visual.blocks.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
449 |
+
"visual.blocks.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
450 |
+
"visual.blocks.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
451 |
+
"visual.blocks.2.norm1.bias": "model-00001-of-00002.safetensors",
|
452 |
+
"visual.blocks.2.norm1.weight": "model-00001-of-00002.safetensors",
|
453 |
+
"visual.blocks.2.norm2.bias": "model-00001-of-00002.safetensors",
|
454 |
+
"visual.blocks.2.norm2.weight": "model-00001-of-00002.safetensors",
|
455 |
+
"visual.blocks.20.attn.proj.bias": "model-00001-of-00002.safetensors",
|
456 |
+
"visual.blocks.20.attn.proj.weight": "model-00001-of-00002.safetensors",
|
457 |
+
"visual.blocks.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
458 |
+
"visual.blocks.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
459 |
+
"visual.blocks.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
460 |
+
"visual.blocks.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
461 |
+
"visual.blocks.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
462 |
+
"visual.blocks.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
463 |
+
"visual.blocks.20.norm1.bias": "model-00001-of-00002.safetensors",
|
464 |
+
"visual.blocks.20.norm1.weight": "model-00001-of-00002.safetensors",
|
465 |
+
"visual.blocks.20.norm2.bias": "model-00001-of-00002.safetensors",
|
466 |
+
"visual.blocks.20.norm2.weight": "model-00001-of-00002.safetensors",
|
467 |
+
"visual.blocks.21.attn.proj.bias": "model-00001-of-00002.safetensors",
|
468 |
+
"visual.blocks.21.attn.proj.weight": "model-00001-of-00002.safetensors",
|
469 |
+
"visual.blocks.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
470 |
+
"visual.blocks.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
471 |
+
"visual.blocks.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
472 |
+
"visual.blocks.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
473 |
+
"visual.blocks.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
474 |
+
"visual.blocks.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
475 |
+
"visual.blocks.21.norm1.bias": "model-00001-of-00002.safetensors",
|
476 |
+
"visual.blocks.21.norm1.weight": "model-00001-of-00002.safetensors",
|
477 |
+
"visual.blocks.21.norm2.bias": "model-00001-of-00002.safetensors",
|
478 |
+
"visual.blocks.21.norm2.weight": "model-00001-of-00002.safetensors",
|
479 |
+
"visual.blocks.22.attn.proj.bias": "model-00001-of-00002.safetensors",
|
480 |
+
"visual.blocks.22.attn.proj.weight": "model-00001-of-00002.safetensors",
|
481 |
+
"visual.blocks.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
482 |
+
"visual.blocks.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
483 |
+
"visual.blocks.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
484 |
+
"visual.blocks.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
485 |
+
"visual.blocks.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
486 |
+
"visual.blocks.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
487 |
+
"visual.blocks.22.norm1.bias": "model-00001-of-00002.safetensors",
|
488 |
+
"visual.blocks.22.norm1.weight": "model-00001-of-00002.safetensors",
|
489 |
+
"visual.blocks.22.norm2.bias": "model-00001-of-00002.safetensors",
|
490 |
+
"visual.blocks.22.norm2.weight": "model-00001-of-00002.safetensors",
|
491 |
+
"visual.blocks.23.attn.proj.bias": "model-00001-of-00002.safetensors",
|
492 |
+
"visual.blocks.23.attn.proj.weight": "model-00001-of-00002.safetensors",
|
493 |
+
"visual.blocks.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
494 |
+
"visual.blocks.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
495 |
+
"visual.blocks.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
496 |
+
"visual.blocks.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
497 |
+
"visual.blocks.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
498 |
+
"visual.blocks.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
499 |
+
"visual.blocks.23.norm1.bias": "model-00001-of-00002.safetensors",
|
500 |
+
"visual.blocks.23.norm1.weight": "model-00001-of-00002.safetensors",
|
501 |
+
"visual.blocks.23.norm2.bias": "model-00001-of-00002.safetensors",
|
502 |
+
"visual.blocks.23.norm2.weight": "model-00001-of-00002.safetensors",
|
503 |
+
"visual.blocks.24.attn.proj.bias": "model-00001-of-00002.safetensors",
|
504 |
+
"visual.blocks.24.attn.proj.weight": "model-00001-of-00002.safetensors",
|
505 |
+
"visual.blocks.24.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
506 |
+
"visual.blocks.24.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
507 |
+
"visual.blocks.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
508 |
+
"visual.blocks.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
509 |
+
"visual.blocks.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
510 |
+
"visual.blocks.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
511 |
+
"visual.blocks.24.norm1.bias": "model-00001-of-00002.safetensors",
|
512 |
+
"visual.blocks.24.norm1.weight": "model-00001-of-00002.safetensors",
|
513 |
+
"visual.blocks.24.norm2.bias": "model-00001-of-00002.safetensors",
|
514 |
+
"visual.blocks.24.norm2.weight": "model-00001-of-00002.safetensors",
|
515 |
+
"visual.blocks.25.attn.proj.bias": "model-00001-of-00002.safetensors",
|
516 |
+
"visual.blocks.25.attn.proj.weight": "model-00001-of-00002.safetensors",
|
517 |
+
"visual.blocks.25.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
518 |
+
"visual.blocks.25.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
519 |
+
"visual.blocks.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
520 |
+
"visual.blocks.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
521 |
+
"visual.blocks.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
522 |
+
"visual.blocks.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
523 |
+
"visual.blocks.25.norm1.bias": "model-00001-of-00002.safetensors",
|
524 |
+
"visual.blocks.25.norm1.weight": "model-00001-of-00002.safetensors",
|
525 |
+
"visual.blocks.25.norm2.bias": "model-00001-of-00002.safetensors",
|
526 |
+
"visual.blocks.25.norm2.weight": "model-00001-of-00002.safetensors",
|
527 |
+
"visual.blocks.26.attn.proj.bias": "model-00001-of-00002.safetensors",
|
528 |
+
"visual.blocks.26.attn.proj.weight": "model-00001-of-00002.safetensors",
|
529 |
+
"visual.blocks.26.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
530 |
+
"visual.blocks.26.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
531 |
+
"visual.blocks.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
532 |
+
"visual.blocks.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
533 |
+
"visual.blocks.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
534 |
+
"visual.blocks.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
535 |
+
"visual.blocks.26.norm1.bias": "model-00001-of-00002.safetensors",
|
536 |
+
"visual.blocks.26.norm1.weight": "model-00001-of-00002.safetensors",
|
537 |
+
"visual.blocks.26.norm2.bias": "model-00001-of-00002.safetensors",
|
538 |
+
"visual.blocks.26.norm2.weight": "model-00001-of-00002.safetensors",
|
539 |
+
"visual.blocks.27.attn.proj.bias": "model-00001-of-00002.safetensors",
|
540 |
+
"visual.blocks.27.attn.proj.weight": "model-00001-of-00002.safetensors",
|
541 |
+
"visual.blocks.27.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
542 |
+
"visual.blocks.27.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
543 |
+
"visual.blocks.27.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
544 |
+
"visual.blocks.27.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
545 |
+
"visual.blocks.27.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
546 |
+
"visual.blocks.27.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
547 |
+
"visual.blocks.27.norm1.bias": "model-00001-of-00002.safetensors",
|
548 |
+
"visual.blocks.27.norm1.weight": "model-00001-of-00002.safetensors",
|
549 |
+
"visual.blocks.27.norm2.bias": "model-00001-of-00002.safetensors",
|
550 |
+
"visual.blocks.27.norm2.weight": "model-00001-of-00002.safetensors",
|
551 |
+
"visual.blocks.28.attn.proj.bias": "model-00001-of-00002.safetensors",
|
552 |
+
"visual.blocks.28.attn.proj.weight": "model-00001-of-00002.safetensors",
|
553 |
+
"visual.blocks.28.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
554 |
+
"visual.blocks.28.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
555 |
+
"visual.blocks.28.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
556 |
+
"visual.blocks.28.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
557 |
+
"visual.blocks.28.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
558 |
+
"visual.blocks.28.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
559 |
+
"visual.blocks.28.norm1.bias": "model-00001-of-00002.safetensors",
|
560 |
+
"visual.blocks.28.norm1.weight": "model-00001-of-00002.safetensors",
|
561 |
+
"visual.blocks.28.norm2.bias": "model-00001-of-00002.safetensors",
|
562 |
+
"visual.blocks.28.norm2.weight": "model-00001-of-00002.safetensors",
|
563 |
+
"visual.blocks.29.attn.proj.bias": "model-00001-of-00002.safetensors",
|
564 |
+
"visual.blocks.29.attn.proj.weight": "model-00001-of-00002.safetensors",
|
565 |
+
"visual.blocks.29.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
566 |
+
"visual.blocks.29.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
567 |
+
"visual.blocks.29.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
568 |
+
"visual.blocks.29.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
569 |
+
"visual.blocks.29.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
570 |
+
"visual.blocks.29.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
571 |
+
"visual.blocks.29.norm1.bias": "model-00001-of-00002.safetensors",
|
572 |
+
"visual.blocks.29.norm1.weight": "model-00001-of-00002.safetensors",
|
573 |
+
"visual.blocks.29.norm2.bias": "model-00001-of-00002.safetensors",
|
574 |
+
"visual.blocks.29.norm2.weight": "model-00001-of-00002.safetensors",
|
575 |
+
"visual.blocks.3.attn.proj.bias": "model-00001-of-00002.safetensors",
|
576 |
+
"visual.blocks.3.attn.proj.weight": "model-00001-of-00002.safetensors",
|
577 |
+
"visual.blocks.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
578 |
+
"visual.blocks.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
579 |
+
"visual.blocks.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
580 |
+
"visual.blocks.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
581 |
+
"visual.blocks.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
582 |
+
"visual.blocks.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
583 |
+
"visual.blocks.3.norm1.bias": "model-00001-of-00002.safetensors",
|
584 |
+
"visual.blocks.3.norm1.weight": "model-00001-of-00002.safetensors",
|
585 |
+
"visual.blocks.3.norm2.bias": "model-00001-of-00002.safetensors",
|
586 |
+
"visual.blocks.3.norm2.weight": "model-00001-of-00002.safetensors",
|
587 |
+
"visual.blocks.30.attn.proj.bias": "model-00001-of-00002.safetensors",
|
588 |
+
"visual.blocks.30.attn.proj.weight": "model-00001-of-00002.safetensors",
|
589 |
+
"visual.blocks.30.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
590 |
+
"visual.blocks.30.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
591 |
+
"visual.blocks.30.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
592 |
+
"visual.blocks.30.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
593 |
+
"visual.blocks.30.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
594 |
+
"visual.blocks.30.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
595 |
+
"visual.blocks.30.norm1.bias": "model-00001-of-00002.safetensors",
|
596 |
+
"visual.blocks.30.norm1.weight": "model-00001-of-00002.safetensors",
|
597 |
+
"visual.blocks.30.norm2.bias": "model-00001-of-00002.safetensors",
|
598 |
+
"visual.blocks.30.norm2.weight": "model-00001-of-00002.safetensors",
|
599 |
+
"visual.blocks.31.attn.proj.bias": "model-00001-of-00002.safetensors",
|
600 |
+
"visual.blocks.31.attn.proj.weight": "model-00001-of-00002.safetensors",
|
601 |
+
"visual.blocks.31.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
602 |
+
"visual.blocks.31.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
603 |
+
"visual.blocks.31.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
604 |
+
"visual.blocks.31.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
605 |
+
"visual.blocks.31.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
606 |
+
"visual.blocks.31.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
607 |
+
"visual.blocks.31.norm1.bias": "model-00001-of-00002.safetensors",
|
608 |
+
"visual.blocks.31.norm1.weight": "model-00001-of-00002.safetensors",
|
609 |
+
"visual.blocks.31.norm2.bias": "model-00001-of-00002.safetensors",
|
610 |
+
"visual.blocks.31.norm2.weight": "model-00001-of-00002.safetensors",
|
611 |
+
"visual.blocks.4.attn.proj.bias": "model-00001-of-00002.safetensors",
|
612 |
+
"visual.blocks.4.attn.proj.weight": "model-00001-of-00002.safetensors",
|
613 |
+
"visual.blocks.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
614 |
+
"visual.blocks.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
615 |
+
"visual.blocks.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
616 |
+
"visual.blocks.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
617 |
+
"visual.blocks.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
618 |
+
"visual.blocks.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
619 |
+
"visual.blocks.4.norm1.bias": "model-00001-of-00002.safetensors",
|
620 |
+
"visual.blocks.4.norm1.weight": "model-00001-of-00002.safetensors",
|
621 |
+
"visual.blocks.4.norm2.bias": "model-00001-of-00002.safetensors",
|
622 |
+
"visual.blocks.4.norm2.weight": "model-00001-of-00002.safetensors",
|
623 |
+
"visual.blocks.5.attn.proj.bias": "model-00001-of-00002.safetensors",
|
624 |
+
"visual.blocks.5.attn.proj.weight": "model-00001-of-00002.safetensors",
|
625 |
+
"visual.blocks.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
626 |
+
"visual.blocks.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
627 |
+
"visual.blocks.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
628 |
+
"visual.blocks.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
629 |
+
"visual.blocks.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
630 |
+
"visual.blocks.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
631 |
+
"visual.blocks.5.norm1.bias": "model-00001-of-00002.safetensors",
|
632 |
+
"visual.blocks.5.norm1.weight": "model-00001-of-00002.safetensors",
|
633 |
+
"visual.blocks.5.norm2.bias": "model-00001-of-00002.safetensors",
|
634 |
+
"visual.blocks.5.norm2.weight": "model-00001-of-00002.safetensors",
|
635 |
+
"visual.blocks.6.attn.proj.bias": "model-00001-of-00002.safetensors",
|
636 |
+
"visual.blocks.6.attn.proj.weight": "model-00001-of-00002.safetensors",
|
637 |
+
"visual.blocks.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
638 |
+
"visual.blocks.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
639 |
+
"visual.blocks.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
640 |
+
"visual.blocks.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
641 |
+
"visual.blocks.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
642 |
+
"visual.blocks.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
643 |
+
"visual.blocks.6.norm1.bias": "model-00001-of-00002.safetensors",
|
644 |
+
"visual.blocks.6.norm1.weight": "model-00001-of-00002.safetensors",
|
645 |
+
"visual.blocks.6.norm2.bias": "model-00001-of-00002.safetensors",
|
646 |
+
"visual.blocks.6.norm2.weight": "model-00001-of-00002.safetensors",
|
647 |
+
"visual.blocks.7.attn.proj.bias": "model-00001-of-00002.safetensors",
|
648 |
+
"visual.blocks.7.attn.proj.weight": "model-00001-of-00002.safetensors",
|
649 |
+
"visual.blocks.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
650 |
+
"visual.blocks.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
651 |
+
"visual.blocks.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
652 |
+
"visual.blocks.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
653 |
+
"visual.blocks.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
654 |
+
"visual.blocks.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
655 |
+
"visual.blocks.7.norm1.bias": "model-00001-of-00002.safetensors",
|
656 |
+
"visual.blocks.7.norm1.weight": "model-00001-of-00002.safetensors",
|
657 |
+
"visual.blocks.7.norm2.bias": "model-00001-of-00002.safetensors",
|
658 |
+
"visual.blocks.7.norm2.weight": "model-00001-of-00002.safetensors",
|
659 |
+
"visual.blocks.8.attn.proj.bias": "model-00001-of-00002.safetensors",
|
660 |
+
"visual.blocks.8.attn.proj.weight": "model-00001-of-00002.safetensors",
|
661 |
+
"visual.blocks.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
662 |
+
"visual.blocks.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
663 |
+
"visual.blocks.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
664 |
+
"visual.blocks.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
665 |
+
"visual.blocks.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
666 |
+
"visual.blocks.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
667 |
+
"visual.blocks.8.norm1.bias": "model-00001-of-00002.safetensors",
|
668 |
+
"visual.blocks.8.norm1.weight": "model-00001-of-00002.safetensors",
|
669 |
+
"visual.blocks.8.norm2.bias": "model-00001-of-00002.safetensors",
|
670 |
+
"visual.blocks.8.norm2.weight": "model-00001-of-00002.safetensors",
|
671 |
+
"visual.blocks.9.attn.proj.bias": "model-00001-of-00002.safetensors",
|
672 |
+
"visual.blocks.9.attn.proj.weight": "model-00001-of-00002.safetensors",
|
673 |
+
"visual.blocks.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
674 |
+
"visual.blocks.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
675 |
+
"visual.blocks.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
676 |
+
"visual.blocks.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
677 |
+
"visual.blocks.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
678 |
+
"visual.blocks.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
679 |
+
"visual.blocks.9.norm1.bias": "model-00001-of-00002.safetensors",
|
680 |
+
"visual.blocks.9.norm1.weight": "model-00001-of-00002.safetensors",
|
681 |
+
"visual.blocks.9.norm2.bias": "model-00001-of-00002.safetensors",
|
682 |
+
"visual.blocks.9.norm2.weight": "model-00001-of-00002.safetensors",
|
683 |
+
"visual.merger.ln_q.bias": "model-00001-of-00002.safetensors",
|
684 |
+
"visual.merger.ln_q.weight": "model-00001-of-00002.safetensors",
|
685 |
+
"visual.merger.mlp.0.bias": "model-00001-of-00002.safetensors",
|
686 |
+
"visual.merger.mlp.0.weight": "model-00001-of-00002.safetensors",
|
687 |
+
"visual.merger.mlp.2.bias": "model-00001-of-00002.safetensors",
|
688 |
+
"visual.merger.mlp.2.weight": "model-00001-of-00002.safetensors",
|
689 |
+
"visual.patch_embed.proj.weight": "model-00001-of-00002.safetensors"
|
690 |
+
}
|
691 |
+
}
|
modeling_sarashina2_vision.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 the SB Intuitions.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
from typing import List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.nn.functional as F
|
20 |
+
from torch.nn import CrossEntropyLoss
|
21 |
+
from transformers import (
|
22 |
+
AutoConfig,
|
23 |
+
AutoModelForCausalLM,
|
24 |
+
GenerationMixin,
|
25 |
+
LlamaForCausalLM,
|
26 |
+
PreTrainedModel,
|
27 |
+
)
|
28 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
29 |
+
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VisionTransformerPretrainedModel
|
30 |
+
from transformers.utils import logging, replace_return_docstrings
|
31 |
+
|
32 |
+
from .configuration_sarashina2_vision import Sarashina2VisionConfig
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__)
|
35 |
+
|
36 |
+
_CONFIG_FOR_DOC = "Sarashina2VisionConfig"
|
37 |
+
|
38 |
+
|
39 |
+
class Sarashina2VisionPreTrainedModel(PreTrainedModel):
|
40 |
+
config_class = Sarashina2VisionConfig
|
41 |
+
base_model_prefix = "model"
|
42 |
+
_supports_flash_attn_2 = True
|
43 |
+
_supports_sdpa = True
|
44 |
+
_supports_cache_class = True
|
45 |
+
_supports_static_cache = True
|
46 |
+
|
47 |
+
def _init_weights(self, module):
|
48 |
+
std = (
|
49 |
+
self.config.initializer_range
|
50 |
+
if hasattr(self.config, "initializer_range")
|
51 |
+
else self.config.text_config.initializer_range
|
52 |
+
)
|
53 |
+
|
54 |
+
if hasattr(module, "class_embedding"):
|
55 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
56 |
+
|
57 |
+
if isinstance(module, (nn.Linear, nn.Conv3d)):
|
58 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
59 |
+
if module.bias is not None:
|
60 |
+
module.bias.data.zero_()
|
61 |
+
elif isinstance(module, nn.Embedding):
|
62 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
63 |
+
if module.padding_idx is not None:
|
64 |
+
module.weight.data[module.padding_idx].zero_()
|
65 |
+
|
66 |
+
|
67 |
+
class Sarashina2VisionForCausalLM(Sarashina2VisionPreTrainedModel, GenerationMixin):
|
68 |
+
def __init__(self, config: Sarashina2VisionConfig):
|
69 |
+
super().__init__(config)
|
70 |
+
self.visual = Qwen2VisionTransformerPretrainedModel._from_config(config.vision_config)
|
71 |
+
self.norm = nn.LayerNorm(config.text_config.hidden_size)
|
72 |
+
self.llm = LlamaForCausalLM._from_config(config.text_config)
|
73 |
+
self._attn_implementation = config._attn_implementation
|
74 |
+
|
75 |
+
# Initialize weights and apply final processing
|
76 |
+
self.post_init()
|
77 |
+
|
78 |
+
def get_input_embeddings(self):
|
79 |
+
return self.llm.get_input_embeddings()
|
80 |
+
|
81 |
+
def get_image_embeds(
|
82 |
+
self,
|
83 |
+
hidden_states: torch.Tensor,
|
84 |
+
grid_thw: torch.Tensor,
|
85 |
+
) -> torch.Tensor:
|
86 |
+
rotary_pos_emb = self.visual.rot_pos_emb(grid_thw)
|
87 |
+
hidden_states = self.visual.patch_embed(hidden_states)
|
88 |
+
|
89 |
+
cu_seqlens = torch.repeat_interleave(
|
90 |
+
grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
|
91 |
+
).cumsum(dim=0, dtype=torch.int32)
|
92 |
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
93 |
+
|
94 |
+
for blk in self.visual.blocks:
|
95 |
+
hidden_states = blk(
|
96 |
+
hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
|
97 |
+
)
|
98 |
+
return self.norm(self.visual.merger(hidden_states))
|
99 |
+
|
100 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
101 |
+
def forward(
|
102 |
+
self,
|
103 |
+
input_ids: torch.LongTensor = None,
|
104 |
+
attention_mask: Optional[torch.Tensor] = None,
|
105 |
+
position_ids: Optional[torch.LongTensor] = None,
|
106 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
107 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
108 |
+
labels: Optional[torch.LongTensor] = None,
|
109 |
+
use_cache: Optional[bool] = None,
|
110 |
+
output_attentions: Optional[bool] = None,
|
111 |
+
output_hidden_states: Optional[bool] = None,
|
112 |
+
return_dict: Optional[bool] = None,
|
113 |
+
pixel_values: torch.FloatTensor = None,
|
114 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
115 |
+
cache_position: Optional[torch.LongTensor] = None,
|
116 |
+
**lm_kwargs,
|
117 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
118 |
+
"""
|
119 |
+
Args:
|
120 |
+
input_ids (torch.LongTensor, optional): Indices of input sequence tokens in the vocabulary. Defaults to None.
|
121 |
+
attention_mask (Optional[torch.Tensor], optional): Mask to avoid performing attention on padding token indices. Defaults to None.
|
122 |
+
position_ids (Optional[torch.LongTensor], optional): Indices of positions of each input sequence tokens in the position embeddings. Defaults to None.
|
123 |
+
past_key_values (Optional[List[torch.FloatTensor]], optional): _description_. Defaults to None.
|
124 |
+
inputs_embeds (Optional[torch.FloatTensor], optional): Instead of passing `input_ids` you can choose to directly pass an embedded representation. Defaults to None.
|
125 |
+
labels (Optional[torch.LongTensor], optional): Labels for computing the masked language modeling loss. Defaults to None.
|
126 |
+
use_cache (Optional[bool], optional): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding. Defaults to None.
|
127 |
+
output_attentions (Optional[bool], optional): Whether or not to return the attentions tensors of all attention layers. Defaults to None.
|
128 |
+
output_hidden_states (Optional[bool], optional): Whether or not to return the hidden states of all layers. Defaults to None.
|
129 |
+
return_dict (Optional[bool], optional): Whether or not to return a `CausalLMOutputWithPast` instead of a plain tuple. Defaults to None.
|
130 |
+
pixel_values (torch.FloatTensor, optional): The tensors corresponding to the input images. Defaults to None.
|
131 |
+
image_grid_thw (Optional[torch.LongTensor], optional): The temporal, height and width of feature shape of each image in LLM. Defaults to None.
|
132 |
+
cache_position (Optional[torch.LongTensor], optional): Indices depicting the position of the input sequence tokens in the sequence. Defaults to None.
|
133 |
+
Returns:
|
134 |
+
CausalLMOutputWithPast: The output of the model.
|
135 |
+
"""
|
136 |
+
output_attentions = (
|
137 |
+
output_attentions if output_attentions is not None else self.config.output_attentions
|
138 |
+
)
|
139 |
+
output_hidden_states = (
|
140 |
+
output_hidden_states
|
141 |
+
if output_hidden_states is not None
|
142 |
+
else self.config.output_hidden_states
|
143 |
+
)
|
144 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
145 |
+
|
146 |
+
if inputs_embeds is None:
|
147 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
148 |
+
if pixel_values is not None:
|
149 |
+
pixel_values = pixel_values.type(self.visual.get_dtype())
|
150 |
+
image_embeds = self.get_image_embeds(pixel_values, image_grid_thw)
|
151 |
+
n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
|
152 |
+
n_image_features = image_embeds.shape[0]
|
153 |
+
if n_image_tokens != n_image_features:
|
154 |
+
raise ValueError(
|
155 |
+
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
156 |
+
)
|
157 |
+
image_mask = (
|
158 |
+
(input_ids == self.config.image_token_index)
|
159 |
+
.unsqueeze(-1)
|
160 |
+
.expand_as(inputs_embeds)
|
161 |
+
.to(inputs_embeds.device)
|
162 |
+
)
|
163 |
+
image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
|
164 |
+
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
|
165 |
+
|
166 |
+
outputs = self.llm(
|
167 |
+
attention_mask=attention_mask,
|
168 |
+
position_ids=position_ids,
|
169 |
+
past_key_values=past_key_values,
|
170 |
+
inputs_embeds=inputs_embeds,
|
171 |
+
use_cache=use_cache,
|
172 |
+
output_attentions=output_attentions,
|
173 |
+
output_hidden_states=output_hidden_states,
|
174 |
+
return_dict=return_dict,
|
175 |
+
cache_position=cache_position,
|
176 |
+
**lm_kwargs,
|
177 |
+
)
|
178 |
+
|
179 |
+
logits = outputs[0]
|
180 |
+
|
181 |
+
loss = None
|
182 |
+
if labels is not None:
|
183 |
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
184 |
+
logits = logits.float()
|
185 |
+
# Shift so that tokens < n predict n
|
186 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
187 |
+
shift_labels = labels[..., 1:].contiguous()
|
188 |
+
# Flatten the tokens
|
189 |
+
loss_fct = CrossEntropyLoss()
|
190 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
191 |
+
shift_labels = shift_labels.view(-1)
|
192 |
+
# Enable model parallelism
|
193 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
194 |
+
loss = loss_fct(shift_logits, shift_labels)
|
195 |
+
|
196 |
+
if not return_dict:
|
197 |
+
output = (logits,) + outputs[1:]
|
198 |
+
return (loss,) + output if loss is not None else output
|
199 |
+
|
200 |
+
return CausalLMOutputWithPast(
|
201 |
+
loss=loss,
|
202 |
+
logits=logits,
|
203 |
+
past_key_values=outputs.past_key_values,
|
204 |
+
hidden_states=outputs.hidden_states,
|
205 |
+
attentions=outputs.attentions,
|
206 |
+
)
|
207 |
+
|
208 |
+
def prepare_inputs_for_generation(
|
209 |
+
self,
|
210 |
+
input_ids,
|
211 |
+
past_key_values=None,
|
212 |
+
inputs_embeds=None,
|
213 |
+
pixel_values=None,
|
214 |
+
attention_mask=None,
|
215 |
+
cache_position=None,
|
216 |
+
logits_to_keep=None,
|
217 |
+
image_grid_thw=None,
|
218 |
+
**kwargs,
|
219 |
+
):
|
220 |
+
model_inputs = self.llm.prepare_inputs_for_generation(
|
221 |
+
input_ids,
|
222 |
+
past_key_values=past_key_values,
|
223 |
+
inputs_embeds=inputs_embeds,
|
224 |
+
attention_mask=attention_mask,
|
225 |
+
cache_position=cache_position,
|
226 |
+
logits_to_keep=logits_to_keep,
|
227 |
+
**kwargs,
|
228 |
+
)
|
229 |
+
|
230 |
+
if cache_position[0] == 0:
|
231 |
+
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
|
232 |
+
# Otherwise we need pixel values to be passed to model
|
233 |
+
model_inputs["pixel_values"] = pixel_values
|
234 |
+
model_inputs["image_grid_thw"] = image_grid_thw
|
235 |
+
|
236 |
+
return model_inputs
|
237 |
+
|
238 |
+
|
239 |
+
AutoConfig.register("sarashina2_vision", Sarashina2VisionConfig)
|
240 |
+
AutoModelForCausalLM.register(Sarashina2VisionConfig, Sarashina2VisionForCausalLM)
|
241 |
+
Sarashina2VisionConfig.register_for_auto_class()
|
242 |
+
Sarashina2VisionForCausalLM.register_for_auto_class("AutoModelForCausalLM")
|
preprocessor_config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_sarashina2_vision.Srashina2VisionProcessor"
|
4 |
+
},
|
5 |
+
"do_convert_rgb": true,
|
6 |
+
"do_normalize": true,
|
7 |
+
"do_rescale": true,
|
8 |
+
"do_resize": true,
|
9 |
+
"image_mean": [
|
10 |
+
0.48145466,
|
11 |
+
0.4578275,
|
12 |
+
0.40821073
|
13 |
+
],
|
14 |
+
"image_processor_type": "Sarashina2VisionImageProcessor",
|
15 |
+
"image_std": [
|
16 |
+
0.26862954,
|
17 |
+
0.26130258,
|
18 |
+
0.27577711
|
19 |
+
],
|
20 |
+
"max_pixels": 1016064,
|
21 |
+
"merge_size": 2,
|
22 |
+
"min_pixels": 3136,
|
23 |
+
"patch_size": 14,
|
24 |
+
"processor_class": "Srashina2VisionProcessor",
|
25 |
+
"resample": 3,
|
26 |
+
"rescale_factor": 0.00392156862745098,
|
27 |
+
"size": {
|
28 |
+
"max_pixels": 1016064,
|
29 |
+
"min_pixels": 3136
|
30 |
+
},
|
31 |
+
"temporal_patch_size": 2
|
32 |
+
}
|
processing_sarashina2_vision.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 the SB Intuitions.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for Srashina2Vision.
|
17 |
+
"""
|
18 |
+
|
19 |
+
from copy import deepcopy
|
20 |
+
from typing import List, Optional, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
from PIL import Image
|
26 |
+
from transformers import (
|
27 |
+
AutoImageProcessor,
|
28 |
+
PreTrainedTokenizer,
|
29 |
+
Qwen2VLImageProcessor,
|
30 |
+
StoppingCriteria,
|
31 |
+
StoppingCriteriaList,
|
32 |
+
)
|
33 |
+
from transformers.feature_extraction_utils import BatchFeature
|
34 |
+
from transformers.image_transforms import (
|
35 |
+
convert_to_rgb,
|
36 |
+
to_channel_dimension_format,
|
37 |
+
)
|
38 |
+
from transformers.image_utils import (
|
39 |
+
ChannelDimension,
|
40 |
+
ImageInput,
|
41 |
+
VideoInput,
|
42 |
+
get_image_size,
|
43 |
+
infer_channel_dimension_format,
|
44 |
+
is_scaled_image,
|
45 |
+
make_list_of_images,
|
46 |
+
to_numpy_array,
|
47 |
+
)
|
48 |
+
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
|
49 |
+
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
|
50 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
51 |
+
from transformers.utils import logging
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
|
56 |
+
class GenerationStopper(StoppingCriteria):
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
stop_str_list: list[str],
|
60 |
+
tokenizer: PreTrainedTokenizer,
|
61 |
+
decode_suffix_length: int = 5,
|
62 |
+
):
|
63 |
+
self.stop_str_list = stop_str_list
|
64 |
+
self.tokenizer = deepcopy(tokenizer)
|
65 |
+
self.decode_suffix_length = decode_suffix_length
|
66 |
+
self.input_ids_end = None
|
67 |
+
|
68 |
+
def __repr__(self):
|
69 |
+
return f"Stopping words: {self.stop_str_list}"
|
70 |
+
|
71 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
72 |
+
if self.input_ids_end is None:
|
73 |
+
length = input_ids.shape[1]
|
74 |
+
self.input_ids_end = length - 1 if (length - 1) > 0 else 0
|
75 |
+
decode_ids = input_ids[0][self.input_ids_end :][-self.decode_suffix_length :]
|
76 |
+
if len(decode_ids) == 0:
|
77 |
+
decoded = ""
|
78 |
+
else:
|
79 |
+
decoded = self.tokenizer.decode(decode_ids)
|
80 |
+
|
81 |
+
for stop_str in self.stop_str_list:
|
82 |
+
if stop_str in decoded:
|
83 |
+
self.input_ids_end = None
|
84 |
+
return True
|
85 |
+
return False
|
86 |
+
|
87 |
+
@property
|
88 |
+
def criteria(self):
|
89 |
+
return StoppingCriteriaList([self])
|
90 |
+
|
91 |
+
def format(self, sentence: str):
|
92 |
+
for w in self.stop_str_list:
|
93 |
+
if w in sentence[-len(w) :]:
|
94 |
+
sentence = sentence[: -len(w)]
|
95 |
+
return sentence
|
96 |
+
|
97 |
+
|
98 |
+
class Sarashina2VisionImageProcessor(Qwen2VLImageProcessor):
|
99 |
+
def _preprocess(
|
100 |
+
self,
|
101 |
+
images: Union[ImageInput, VideoInput],
|
102 |
+
do_resize: bool = None,
|
103 |
+
resample: Image.Resampling = None,
|
104 |
+
do_rescale: bool = None,
|
105 |
+
rescale_factor: float = None,
|
106 |
+
do_normalize: bool = None,
|
107 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
108 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
109 |
+
do_convert_rgb: bool = None,
|
110 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
111 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
112 |
+
):
|
113 |
+
"""
|
114 |
+
Preprocess an image or batch of images. Copy of the `preprocess` method from `Qwen2VLImageProcessor`.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
images (`ImageInput`):
|
118 |
+
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
|
119 |
+
vision_info (`List[Dict]`, *optional*):
|
120 |
+
Optional list of dictionaries containing additional information about vision inputs.
|
121 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
122 |
+
Whether to resize the image.
|
123 |
+
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
124 |
+
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
|
125 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
126 |
+
Whether to rescale the image.
|
127 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
128 |
+
Scale factor to use if rescaling the image.
|
129 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
130 |
+
Whether to normalize the image.
|
131 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
132 |
+
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
133 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
134 |
+
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
135 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
136 |
+
Whether to convert the image to RGB.
|
137 |
+
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
|
138 |
+
The channel dimension format for the output image. Can be one of:
|
139 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
140 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
141 |
+
- Unset: Use the channel dimension format of the input image.
|
142 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
143 |
+
The channel dimension format for the input image. Can be one of:
|
144 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
145 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
146 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
147 |
+
"""
|
148 |
+
images = make_list_of_images(images)
|
149 |
+
|
150 |
+
if do_convert_rgb:
|
151 |
+
images = [convert_to_rgb(image) for image in images]
|
152 |
+
|
153 |
+
# All transformations expect numpy arrays.
|
154 |
+
images = [to_numpy_array(image) for image in images]
|
155 |
+
|
156 |
+
if do_rescale and is_scaled_image(images[0]):
|
157 |
+
logger.warning_once(
|
158 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
159 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
160 |
+
)
|
161 |
+
if input_data_format is None:
|
162 |
+
# We assume that all images have the same channel dimension format.
|
163 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
164 |
+
|
165 |
+
height, width = get_image_size(images[0], channel_dim=input_data_format)
|
166 |
+
resized_height, resized_width = height, width
|
167 |
+
processed_images = []
|
168 |
+
for image in images:
|
169 |
+
if do_rescale:
|
170 |
+
image = self.rescale(
|
171 |
+
image, scale=rescale_factor, input_data_format=input_data_format
|
172 |
+
)
|
173 |
+
|
174 |
+
if do_normalize:
|
175 |
+
image = self.normalize(
|
176 |
+
image=image,
|
177 |
+
mean=image_mean,
|
178 |
+
std=image_std,
|
179 |
+
input_data_format=input_data_format,
|
180 |
+
)
|
181 |
+
|
182 |
+
image = to_channel_dimension_format(
|
183 |
+
image, data_format, input_channel_dim=input_data_format
|
184 |
+
)
|
185 |
+
|
186 |
+
if do_resize:
|
187 |
+
resized_height, resized_width = smart_resize(
|
188 |
+
height,
|
189 |
+
width,
|
190 |
+
factor=self.patch_size * self.merge_size,
|
191 |
+
min_pixels=self.min_pixels,
|
192 |
+
max_pixels=self.max_pixels,
|
193 |
+
)
|
194 |
+
image = (
|
195 |
+
F.interpolate(
|
196 |
+
torch.from_numpy(image).unsqueeze(0),
|
197 |
+
size=(resized_height, resized_width),
|
198 |
+
mode="bicubic",
|
199 |
+
)
|
200 |
+
.squeeze(0)
|
201 |
+
.numpy()
|
202 |
+
)
|
203 |
+
|
204 |
+
processed_images.append(image)
|
205 |
+
|
206 |
+
patches = np.array(processed_images)
|
207 |
+
if data_format == ChannelDimension.LAST:
|
208 |
+
patches = patches.transpose(0, 3, 1, 2)
|
209 |
+
if patches.shape[0] % self.temporal_patch_size != 0:
|
210 |
+
repeats = np.repeat(patches[-1][np.newaxis], self.temporal_patch_size - 1, axis=0)
|
211 |
+
patches = np.concatenate([patches, repeats], axis=0)
|
212 |
+
channel = patches.shape[1]
|
213 |
+
grid_t = patches.shape[0] // self.temporal_patch_size
|
214 |
+
grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size
|
215 |
+
patches = patches.reshape(
|
216 |
+
grid_t,
|
217 |
+
self.temporal_patch_size,
|
218 |
+
channel,
|
219 |
+
grid_h // self.merge_size,
|
220 |
+
self.merge_size,
|
221 |
+
self.patch_size,
|
222 |
+
grid_w // self.merge_size,
|
223 |
+
self.merge_size,
|
224 |
+
self.patch_size,
|
225 |
+
)
|
226 |
+
patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8)
|
227 |
+
flatten_patches = patches.reshape(
|
228 |
+
grid_t * grid_h * grid_w,
|
229 |
+
channel * self.temporal_patch_size * self.patch_size * self.patch_size,
|
230 |
+
)
|
231 |
+
|
232 |
+
return flatten_patches, (grid_t, grid_h, grid_w)
|
233 |
+
|
234 |
+
|
235 |
+
class Srashina2VisionProcessorKwargs(ProcessingKwargs, total=False):
|
236 |
+
_defaults = {
|
237 |
+
"text_kwargs": {
|
238 |
+
"padding": False,
|
239 |
+
},
|
240 |
+
}
|
241 |
+
|
242 |
+
|
243 |
+
class Srashina2VisionProcessor(ProcessorMixin):
|
244 |
+
r"""
|
245 |
+
Constructs Srashina2Vision processor which wraps a Srashina2Vision image processor and a LLama tokenizer into a single processor.
|
246 |
+
[`Srashina2VisionProcessor`] offers all the functionalities of [`Sarashina2VisionImageProcessor`] and [`LlamaTokenizerFast`]. See the
|
247 |
+
[`~Srashina2VisionProcessor.__call__`] and [`~Srashina2VisionProcessor.decode`] for more information.
|
248 |
+
Args:
|
249 |
+
image_processor ([`Sarashina2VisionImageProcessor`], *optional*):
|
250 |
+
The image processor is a required input.
|
251 |
+
tokenizer ([`LlamaTokenizerFast`], *optional*):
|
252 |
+
The tokenizer is a required input.
|
253 |
+
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
|
254 |
+
in a chat into a tokenizable string.
|
255 |
+
"""
|
256 |
+
|
257 |
+
attributes = ["image_processor", "tokenizer"]
|
258 |
+
valid_kwargs = ["chat_template"]
|
259 |
+
image_processor_class = "AutoImageProcessor"
|
260 |
+
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
|
261 |
+
|
262 |
+
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
|
263 |
+
self.image_token = (
|
264 |
+
"<|file|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
|
265 |
+
)
|
266 |
+
self.stop_symbol = "\n###"
|
267 |
+
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
268 |
+
|
269 |
+
def __call__(
|
270 |
+
self,
|
271 |
+
images: ImageInput = None,
|
272 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
273 |
+
**kwargs: Unpack[Srashina2VisionProcessorKwargs],
|
274 |
+
) -> BatchFeature:
|
275 |
+
"""
|
276 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
277 |
+
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
|
278 |
+
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
|
279 |
+
Sarashina2VisionImageProcessor's [`~Sarashina2VisionImageProcessor.__call__`] if `vision_infos` is not `None`.
|
280 |
+
|
281 |
+
Args:
|
282 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
283 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
284 |
+
tensor. Both channels-first and channels-last formats are supported.
|
285 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
286 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
287 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
288 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
289 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
290 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
291 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
292 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
293 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
294 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
295 |
+
|
296 |
+
Returns:
|
297 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
298 |
+
|
299 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
300 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
301 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
302 |
+
`None`).
|
303 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
304 |
+
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
|
305 |
+
"""
|
306 |
+
output_kwargs = self._merge_kwargs(
|
307 |
+
Srashina2VisionProcessorKwargs,
|
308 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
309 |
+
**kwargs,
|
310 |
+
)
|
311 |
+
if images is not None:
|
312 |
+
image_inputs = self.image_processor(
|
313 |
+
images=images, videos=None, **output_kwargs["images_kwargs"]
|
314 |
+
)
|
315 |
+
image_grid_thw = image_inputs["image_grid_thw"]
|
316 |
+
else:
|
317 |
+
image_inputs = {}
|
318 |
+
image_grid_thw = None
|
319 |
+
|
320 |
+
if not isinstance(text, list):
|
321 |
+
text = [text]
|
322 |
+
|
323 |
+
if image_grid_thw is not None:
|
324 |
+
merge_length = self.image_processor.merge_size**2
|
325 |
+
index = 0
|
326 |
+
for i in range(len(text)):
|
327 |
+
while self.image_token in text[i]:
|
328 |
+
text[i] = text[i].replace(
|
329 |
+
self.image_token,
|
330 |
+
"<|placeholder|>" * (image_grid_thw[index].prod() // merge_length),
|
331 |
+
1,
|
332 |
+
)
|
333 |
+
index += 1
|
334 |
+
text[i] = text[i].replace("<|placeholder|>", self.image_token)
|
335 |
+
|
336 |
+
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
337 |
+
|
338 |
+
return BatchFeature(data={**text_inputs, **image_inputs})
|
339 |
+
|
340 |
+
def batch_decode(self, *args, **kwargs):
|
341 |
+
"""
|
342 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
|
343 |
+
"""
|
344 |
+
return [
|
345 |
+
output.replace(self.stop_symbol, "")
|
346 |
+
for output in self.tokenizer.batch_decode(*args, **kwargs)
|
347 |
+
]
|
348 |
+
|
349 |
+
def decode(self, *args, **kwargs):
|
350 |
+
"""
|
351 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`].
|
352 |
+
"""
|
353 |
+
return self.tokenizer.decode(*args, **kwargs).replace(self.stop_symbol, "")
|
354 |
+
|
355 |
+
def post_process_image_text_to_text(self, generated_outputs):
|
356 |
+
"""
|
357 |
+
Post-process the output of the model to decode the text.
|
358 |
+
|
359 |
+
Args:
|
360 |
+
generated_outputs (`torch.Tensor` or `np.ndarray`):
|
361 |
+
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
|
362 |
+
or `(sequence_length,)`.
|
363 |
+
|
364 |
+
Returns:
|
365 |
+
`List[str]`: The decoded text.
|
366 |
+
"""
|
367 |
+
return self.tokenizer.batch_decode(
|
368 |
+
generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
369 |
+
)
|
370 |
+
|
371 |
+
@property
|
372 |
+
def model_input_names(self):
|
373 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
374 |
+
image_processor_input_names = self.image_processor.model_input_names
|
375 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
376 |
+
|
377 |
+
def get_stopping_criteria(self, stop_symbols: List[str]):
|
378 |
+
stopping_criteria = GenerationStopper(stop_str_list=stop_symbols, tokenizer=self.tokenizer)
|
379 |
+
return stopping_criteria.criteria
|
380 |
+
|
381 |
+
|
382 |
+
Srashina2VisionProcessor.register_for_auto_class("AutoProcessor")
|
383 |
+
AutoImageProcessor.register("Sarashina2VisionImageProcessor", Sarashina2VisionImageProcessor)
|
processor_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_sarashina2_vision.Srashina2VisionProcessor"
|
4 |
+
},
|
5 |
+
"processor_class": "Srashina2VisionProcessor"
|
6 |
+
}
|
sample.jpg
ADDED
![]() |
Git LFS Details
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<cls>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "<sep>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:008293028e1a9d9a1038d9b63d989a2319797dfeaa03f171093a57b33a3a8277
|
3 |
+
size 1831879
|
tokenizer_config.json
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_dummy_prefix_space": false,
|
4 |
+
"add_eos_token": false,
|
5 |
+
"add_prefix_space": false,
|
6 |
+
"added_tokens_decoder": {
|
7 |
+
"0": {
|
8 |
+
"content": "<unk>",
|
9 |
+
"lstrip": false,
|
10 |
+
"normalized": false,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false,
|
13 |
+
"special": true
|
14 |
+
},
|
15 |
+
"1": {
|
16 |
+
"content": "<s>",
|
17 |
+
"lstrip": false,
|
18 |
+
"normalized": false,
|
19 |
+
"rstrip": false,
|
20 |
+
"single_word": false,
|
21 |
+
"special": true
|
22 |
+
},
|
23 |
+
"2": {
|
24 |
+
"content": "</s>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false,
|
29 |
+
"special": true
|
30 |
+
},
|
31 |
+
"3": {
|
32 |
+
"content": "<pad>",
|
33 |
+
"lstrip": false,
|
34 |
+
"normalized": false,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false,
|
37 |
+
"special": true
|
38 |
+
},
|
39 |
+
"4": {
|
40 |
+
"content": "<sep>",
|
41 |
+
"lstrip": false,
|
42 |
+
"normalized": false,
|
43 |
+
"rstrip": false,
|
44 |
+
"single_word": false,
|
45 |
+
"special": true
|
46 |
+
},
|
47 |
+
"5": {
|
48 |
+
"content": "<mask>",
|
49 |
+
"lstrip": false,
|
50 |
+
"normalized": false,
|
51 |
+
"rstrip": false,
|
52 |
+
"single_word": false,
|
53 |
+
"special": true
|
54 |
+
},
|
55 |
+
"6": {
|
56 |
+
"content": "<cls>",
|
57 |
+
"lstrip": false,
|
58 |
+
"normalized": false,
|
59 |
+
"rstrip": false,
|
60 |
+
"single_word": false,
|
61 |
+
"special": true
|
62 |
+
},
|
63 |
+
"7": {
|
64 |
+
"content": "<|system|>",
|
65 |
+
"lstrip": false,
|
66 |
+
"normalized": false,
|
67 |
+
"rstrip": false,
|
68 |
+
"single_word": false,
|
69 |
+
"special": false
|
70 |
+
},
|
71 |
+
"8": {
|
72 |
+
"content": "<|assistant|>",
|
73 |
+
"lstrip": false,
|
74 |
+
"normalized": false,
|
75 |
+
"rstrip": false,
|
76 |
+
"single_word": false,
|
77 |
+
"special": false
|
78 |
+
},
|
79 |
+
"9": {
|
80 |
+
"content": "<|user|>",
|
81 |
+
"lstrip": false,
|
82 |
+
"normalized": false,
|
83 |
+
"rstrip": false,
|
84 |
+
"single_word": false,
|
85 |
+
"special": false
|
86 |
+
},
|
87 |
+
"10": {
|
88 |
+
"content": "<|available_tools|>",
|
89 |
+
"lstrip": false,
|
90 |
+
"normalized": false,
|
91 |
+
"rstrip": false,
|
92 |
+
"single_word": false,
|
93 |
+
"special": false
|
94 |
+
},
|
95 |
+
"11": {
|
96 |
+
"content": "<|tool_calls|>",
|
97 |
+
"lstrip": false,
|
98 |
+
"normalized": false,
|
99 |
+
"rstrip": false,
|
100 |
+
"single_word": false,
|
101 |
+
"special": false
|
102 |
+
},
|
103 |
+
"12": {
|
104 |
+
"content": "<|tool_results|>",
|
105 |
+
"lstrip": false,
|
106 |
+
"normalized": false,
|
107 |
+
"rstrip": false,
|
108 |
+
"single_word": false,
|
109 |
+
"special": false
|
110 |
+
},
|
111 |
+
"13": {
|
112 |
+
"content": "<|code|>",
|
113 |
+
"lstrip": false,
|
114 |
+
"normalized": false,
|
115 |
+
"rstrip": false,
|
116 |
+
"single_word": false,
|
117 |
+
"special": false
|
118 |
+
},
|
119 |
+
"14": {
|
120 |
+
"content": "<|file|>",
|
121 |
+
"lstrip": false,
|
122 |
+
"normalized": false,
|
123 |
+
"rstrip": false,
|
124 |
+
"single_word": false,
|
125 |
+
"special": false
|
126 |
+
},
|
127 |
+
"102397": {
|
128 |
+
"content": "<|prefix|>",
|
129 |
+
"lstrip": false,
|
130 |
+
"normalized": false,
|
131 |
+
"rstrip": false,
|
132 |
+
"single_word": false,
|
133 |
+
"special": false
|
134 |
+
},
|
135 |
+
"102398": {
|
136 |
+
"content": "<|suffix|>",
|
137 |
+
"lstrip": false,
|
138 |
+
"normalized": false,
|
139 |
+
"rstrip": false,
|
140 |
+
"single_word": false,
|
141 |
+
"special": false
|
142 |
+
},
|
143 |
+
"102399": {
|
144 |
+
"content": "<|middle|>",
|
145 |
+
"lstrip": false,
|
146 |
+
"normalized": false,
|
147 |
+
"rstrip": false,
|
148 |
+
"single_word": false,
|
149 |
+
"special": false
|
150 |
+
}
|
151 |
+
},
|
152 |
+
"auto_map": {
|
153 |
+
"AutoProcessor": "processing_sarashina2_vision.Srashina2VisionProcessor"
|
154 |
+
},
|
155 |
+
"bos_token": "<s>",
|
156 |
+
"chat_template": "{{ bos_token + '<|prefix|><|file|><|suffix|>A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human\\'s questions.\\n\\n' }}{% for message in messages %}{% if message['role'] == 'user' %}{{ '### Human: ' + message['content'] + '\\n' }}{% elif message['role'] == 'assistant' %}{{ 'Assistant: ' + message['content'] + '\\n' }}{% endif %}{% endfor %}{% if messages[-1]['role'] == 'user' %}{{ '### Assistant:' }}{% endif %}",
|
157 |
+
"clean_up_tokenization_spaces": false,
|
158 |
+
"cls_token": "<cls>",
|
159 |
+
"do_lower_case": false,
|
160 |
+
"eos_token": "</s>",
|
161 |
+
"extra_ids": 0,
|
162 |
+
"extra_special_tokens": {},
|
163 |
+
"keep_accents": true,
|
164 |
+
"legacy": false,
|
165 |
+
"mask_token": "<mask>",
|
166 |
+
"model_max_length": 4096,
|
167 |
+
"pad_token": "<pad>",
|
168 |
+
"padding_side": "left",
|
169 |
+
"processor_class": "Srashina2VisionProcessor",
|
170 |
+
"sep_token": "<sep>",
|
171 |
+
"sp_model_kwargs": {},
|
172 |
+
"spaces_between_special_tokens": false,
|
173 |
+
"tokenizer_class": "LlamaTokenizer",
|
174 |
+
"unk_token": "<unk>",
|
175 |
+
"use_default_system_prompt": false
|
176 |
+
}
|