Fill-Mask
Transformers
Safetensors
Japanese
English
modernbert
hpprc commited on
Commit
f3f8aac
·
verified ·
1 Parent(s): b03fe4c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -8
README.md CHANGED
@@ -14,8 +14,7 @@ This repository provides Japanese ModernBERT trained by [SB Intuitions](https://
14
  [ModernBERT](https://arxiv.org/abs/2412.13663) is a new variant of the BERT model that combines local and global attention, allowing it to handle long sequences while maintaining high computational efficiency.
15
  It also incorporates modern architectural improvements, such as [RoPE](https://arxiv.org/abs/2104.09864).
16
 
17
- Our ModernBERT-Ja-130M is trained on a high-quality Japanese and English corpus, featuring a vocabulary size of 102,400 and a **sequence length of 8,192**.
18
-
19
 
20
 
21
  ## How to Use
@@ -24,13 +23,13 @@ Our ModernBERT-Ja-130M is trained on a high-quality Japanese and English corpus,
24
  You can use our models directly with the transformers library v4.48.0 or higher:
25
 
26
  ```bash
27
- pip install -U transformers>=4.48.0
28
  ```
29
 
30
  Additionally, if your GPUs support Flash Attention 2, we recommend using our models with Flash Attention 2.
31
 
32
  ```
33
- pip install flash-attn
34
  ```
35
 
36
  ### Example Usage
@@ -54,6 +53,25 @@ for result in results:
54
  # {'score': 0.0223388671875, 'token': 52525, 'token_str': '快晴', 'sequence': 'おはようございます、今日の天気は快晴です。'}
55
  ```
56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  ## Model Description
58
 
59
 
@@ -136,23 +154,31 @@ we treated the `validation` set as the `test` set and performed 5-fold cross-val
136
  For datasets with predefined `train`, `validation`, and `test` sets, we simply trained and evaluated the model five times with different random seeds and used the model with the best average evaluation score on the `validation` set to measure the final score on the `test` set.
137
 
138
 
 
139
  ### Evaluation Results
140
 
141
  | Model | #Param. | #Param.<br>w/o Emb. | **Avg.** | [JComQA](https://github.com/yahoojapan/JGLUE)<br>(Acc.) | [RCQA](https://www.cl.ecei.tohoku.ac.jp/rcqa/)<br>(Acc.) | [JCoLA](https://github.com/osekilab/JCoLA)<br>(Acc.) | [JNLI](https://github.com/yahoojapan/JGLUE)<br>(Acc.) | [JSICK](https://github.com/verypluming/JSICK)<br>(Acc.) | [JSNLI](https://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88)<br>(Acc.) | [KU RTE](https://nlp.ist.i.kyoto-u.ac.jp/index.php?Textual+Entailment+%E8%A9%95%E4%BE%A1%E3%83%87%E3%83%BC%E3%82%BF)<br>(Acc.) | [JSTS](https://github.com/yahoojapan/JGLUE)<br>(Spearman's ρ) | [Livedoor](https://www.rondhuit.com/download.html)<br>(Acc.) | [Toxicity](https://llm-jp.nii.ac.jp/llm/2024/08/07/llm-jp-toxicity-dataset.html)<br>(Acc.) | [MARC-ja](https://github.com/yahoojapan/JGLUE)<br>(Acc.) | [WRIME](https://github.com/ids-cv/wrime)<br>(Acc.) |
142
  | ------ | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
143
- | **ModernBERT-Ja-130M<br>(this model)** | **132M** | 80M | <u>**88.95**</u> | **91.01** | **85.28** | 84.18 | 92.03 | 86.61 | 94.01 | 65.56 | 89.20 | 97.42 | 91.57 | 96.48 | 93.99 |
 
 
 
 
 
144
  | [Tohoku BERT-base v3](https://huggingface.co/tohoku-nlp/bert-base-japanese-v3)| 111M | 86M | 86.74 | 82.82 | 83.65 | 81.50 | 89.68 | 84.96 | 92.32 | 60.56 | 87.31 | 96.91 | 93.15 | 96.13 | 91.91 |
145
  | [LUKE-japanese-base-lite](https://huggingface.co/studio-ousia/luke-japanese-base-lite)| 133M | 107M | 87.15 | 82.95 | 83.53 | 82.39 | 90.36 | 85.26 | 92.78 | 60.89 | 86.68 | 97.12 | 93.48 | 96.30 | 94.05 |
146
  | [Kyoto DeBERTa-v3](https://huggingface.co/ku-nlp/deberta-v3-base-japanese)| 160M | 86M | 88.31 | 87.44 | 84.90 | 84.35 | 91.91 | 86.22 | 93.41 | 63.31 | 88.51 | 97.10 | 92.58 | 96.32 | 93.64 |
147
  | [KoichiYasuoka/modernbert-base-japanese-wikipedia](https://huggingface.co/KoichiYasuoka/modernbert-base-japanese-wikipedia)| 160M | 110M | 82.41 | 62.59 | 81.19 | 76.80 | 84.11 | 82.01 | 90.51 | 60.48 | 81.74 | 97.10 | 90.34 | 94.85 | 87.25 |
148
  | | | | | | | | | | | | | | | | |
149
- | [Tohoku BERT-large v2](https://huggingface.co/tohoku-nlp/bert-large-japanese-v2)| 337M | 303M | 88.36 | 86.93 | 84.81 | 82.89 | 92.05 | 85.33 | 93.32 | 64.60 | 89.11 | 97.64 | 94.38 | 96.46 | 92.77 |
150
  | [Tohoku BERT-large char v2](https://huggingface.co/cl-tohoku/bert-large-japanese-char-v2)| 311M | 303M | 87.23 | 85.08 | 84.20 | 81.79 | 90.55 | 85.25 | 92.63 | 61.29 | 87.64 | 96.55 | 93.26 | 96.25 | 92.29 |
 
151
  | [Waseda RoBERTa-large (Seq. 512)](https://huggingface.co/nlp-waseda/roberta-large-japanese-seq512-with-auto-jumanpp)| 337M | 303M | 88.37 | 88.81 | 84.50 | 82.34 | 91.37 | 85.49 | 93.97 | 61.53 | 88.95 | 96.99 | 95.06 | 96.38 | 95.09 |
152
  | [Waseda RoBERTa-large (Seq. 128)](https://huggingface.co/nlp-waseda/roberta-large-japanese-with-auto-jumanpp)| 337M | 303M | 88.36 | 89.35 | 83.63 | 84.26 | 91.53 | 85.30 | 94.05 | 62.82 | 88.67 | 95.82 | 93.60 | 96.05 | 95.23 |
153
- | [LUKE-japanese-large-lite](https://huggingface.co/studio-ousia/luke-japanese-large-lite)| 414M | 379M | **88.94** | 88.01 | 84.84 | 84.34 | 92.37 | 86.14 | 94.32 | 64.68 | 89.30 | 97.53 | 93.71 | 96.49 | 95.59 |
154
  | [RetrievaBERT](https://huggingface.co/retrieva-jp/bert-1.3b)| 1.30B | 1.15B | 86.79 | 80.55 | 84.35 | 80.67 | 89.86 | 85.24 | 93.46 | 60.48 | 87.30 | 97.04 | 92.70 | 96.18 | 93.61 |
155
  | | | | | | | | | | | | | | | | |
 
 
156
  | [mBERT](https://huggingface.co/google-bert/bert-base-multilingual-cased)| 178M | 86M | 83.48 | 66.08 | 82.76 | 77.32 | 88.15 | 84.20 | 91.25 | 60.56 | 84.18 | 97.01 | 89.21 | 95.05 | 85.99 |
157
  | [XLM-RoBERTa-base](https://huggingface.co/FacebookAI/xlm-roberta-base)| 278M | 86M | 84.36 | 69.44 | 82.86 | 78.71 | 88.14 | 83.17 | 91.27 | 60.48 | 83.34 | 95.93 | 91.91 | 95.82 | 91.20 |
158
  | [XLM-RoBERTa-large](https://huggingface.co/FacebookAI/xlm-roberta-large)| 560M | 303M | 86.95 | 80.07 | 84.47 | 80.42 | 92.16 | 84.74 | 93.87 | 60.48 | 88.03 | 97.01 | 93.37 | 96.03 | 92.72 |
@@ -172,4 +198,18 @@ When you use this model for masked language modeling, it may generate biases or
172
 
173
  ## License
174
 
175
- [MIT License](https://huggingface.co/sbintuitions/modernbert-ja-130m/blob/main/LICENSE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  [ModernBERT](https://arxiv.org/abs/2412.13663) is a new variant of the BERT model that combines local and global attention, allowing it to handle long sequences while maintaining high computational efficiency.
15
  It also incorporates modern architectural improvements, such as [RoPE](https://arxiv.org/abs/2104.09864).
16
 
17
+ Our ModernBERT-Ja-130M is trained on a high-quality corpus of Japanese and English text comprising **4.39T tokens**, featuring a vocabulary size of 102,400 and a sequence length of **8,192** tokens.
 
18
 
19
 
20
  ## How to Use
 
23
  You can use our models directly with the transformers library v4.48.0 or higher:
24
 
25
  ```bash
26
+ pip install -U "transformers>=4.48.0"
27
  ```
28
 
29
  Additionally, if your GPUs support Flash Attention 2, we recommend using our models with Flash Attention 2.
30
 
31
  ```
32
+ pip install flash-attn --no-build-isolation
33
  ```
34
 
35
  ### Example Usage
 
53
  # {'score': 0.0223388671875, 'token': 52525, 'token_str': '快晴', 'sequence': 'おはようございます、今日の天気は快晴です。'}
54
  ```
55
 
56
+ ## Model Series
57
+
58
+ We provide ModernBERT-Ja in several model sizes. Below is a summary of each model.
59
+
60
+ |ID| #Param. | #Param.<br>w/o Emb.|Dim.|Inter. Dim.|#Layers|
61
+ |-|-|-|-|-|-|
62
+ |[sbintuitions/modernbert-ja-30m](https://huggingface.co/sbintuitions/modernbert-ja-30m)|37M|10M|256|1024|10|
63
+ |[sbintuitions/modernbert-ja-70m](https://huggingface.co/sbintuitions/modernbert-ja-70m)|70M|31M|384|1536|13|
64
+ |[**sbintuitions/modernbert-ja-130m**](https://huggingface.co/sbintuitions/modernbert-ja-130m)|132M|80M|512|2048|19|
65
+ |[sbintuitions/modernbert-ja-310m](https://huggingface.co/sbintuitions/modernbert-ja-310m)|315M|236M|768|3072|25|
66
+
67
+ For all models,
68
+ the vocabulary size is 102,400,
69
+ the head dimension is 64,
70
+ and the activation function is GELU.
71
+ The configuration for global attention and sliding window attention consists of 1 layer + 2 layers (global–local–local).
72
+ The sliding window attention window context size is 128, with global_rope_theta set to 160,000 and local_rope_theta set to 10,000.
73
+
74
+
75
  ## Model Description
76
 
77
 
 
154
  For datasets with predefined `train`, `validation`, and `test` sets, we simply trained and evaluated the model five times with different random seeds and used the model with the best average evaluation score on the `validation` set to measure the final score on the `test` set.
155
 
156
 
157
+
158
  ### Evaluation Results
159
 
160
  | Model | #Param. | #Param.<br>w/o Emb. | **Avg.** | [JComQA](https://github.com/yahoojapan/JGLUE)<br>(Acc.) | [RCQA](https://www.cl.ecei.tohoku.ac.jp/rcqa/)<br>(Acc.) | [JCoLA](https://github.com/osekilab/JCoLA)<br>(Acc.) | [JNLI](https://github.com/yahoojapan/JGLUE)<br>(Acc.) | [JSICK](https://github.com/verypluming/JSICK)<br>(Acc.) | [JSNLI](https://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88)<br>(Acc.) | [KU RTE](https://nlp.ist.i.kyoto-u.ac.jp/index.php?Textual+Entailment+%E8%A9%95%E4%BE%A1%E3%83%87%E3%83%BC%E3%82%BF)<br>(Acc.) | [JSTS](https://github.com/yahoojapan/JGLUE)<br>(Spearman's ρ) | [Livedoor](https://www.rondhuit.com/download.html)<br>(Acc.) | [Toxicity](https://llm-jp.nii.ac.jp/llm/2024/08/07/llm-jp-toxicity-dataset.html)<br>(Acc.) | [MARC-ja](https://github.com/yahoojapan/JGLUE)<br>(Acc.) | [WRIME](https://github.com/ids-cv/wrime)<br>(Acc.) |
161
  | ------ | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
162
+ | [ModernBERT-Ja-30M](https://huggingface.co/sbintuitions/modernbert-ja-30m) | 37M | 10M | 85.67 | 80.95 | 82.35 | 78.85 | 88.69 | 84.39 | 91.79 | 61.13 | 85.94 | 97.20 | 89.33 | 95.87 | 91.61 |
163
+ | [ModernBERT-Ja-70M](https://huggingface.co/sbintuitions/modernbert-ja-70m) | 70M | 31M | 86.77 | 85.65 | 83.51 | 80.26 | 90.33 | 85.01 | 92.73 | 60.08 | 87.59 | 96.34 | 91.01 | 96.13 | 92.59 |
164
+ | [**ModernBERT-Ja-130M**](https://huggingface.co/sbintuitions/modernbert-ja-130m)<br>(this model) | 132M | 80M | <u>88.95</u> | 91.01 | 85.28 | 84.18 | 92.03 | 86.61 | 94.01 | 65.56 | 89.20 | 97.42 | 91.57 | 96.48 | 93.99 |
165
+ | [ModernBERT-Ja-310M](https://huggingface.co/sbintuitions/modernbert-ja-310m) | 315M | 236M | 89.83 | 93.53 | 86.18 | 84.81 | 92.93 | 86.87 | 94.48 | 68.79 | 90.53 | 96.99 | 91.24 | 96.39 | 95.23 |
166
+ | | | | | | | | | | | | | | | | |
167
+ | [LINE DistillBERT](https://huggingface.co/line-corporation/line-distilbert-base-japanese)| 68M | 43M | 85.32 | 76.39 | 82.17 | 81.04 | 87.49 | 83.66 | 91.42 | 60.24 | 84.57 | 97.26 | 91.46 | 95.91 | 92.16 |
168
  | [Tohoku BERT-base v3](https://huggingface.co/tohoku-nlp/bert-base-japanese-v3)| 111M | 86M | 86.74 | 82.82 | 83.65 | 81.50 | 89.68 | 84.96 | 92.32 | 60.56 | 87.31 | 96.91 | 93.15 | 96.13 | 91.91 |
169
  | [LUKE-japanese-base-lite](https://huggingface.co/studio-ousia/luke-japanese-base-lite)| 133M | 107M | 87.15 | 82.95 | 83.53 | 82.39 | 90.36 | 85.26 | 92.78 | 60.89 | 86.68 | 97.12 | 93.48 | 96.30 | 94.05 |
170
  | [Kyoto DeBERTa-v3](https://huggingface.co/ku-nlp/deberta-v3-base-japanese)| 160M | 86M | 88.31 | 87.44 | 84.90 | 84.35 | 91.91 | 86.22 | 93.41 | 63.31 | 88.51 | 97.10 | 92.58 | 96.32 | 93.64 |
171
  | [KoichiYasuoka/modernbert-base-japanese-wikipedia](https://huggingface.co/KoichiYasuoka/modernbert-base-japanese-wikipedia)| 160M | 110M | 82.41 | 62.59 | 81.19 | 76.80 | 84.11 | 82.01 | 90.51 | 60.48 | 81.74 | 97.10 | 90.34 | 94.85 | 87.25 |
172
  | | | | | | | | | | | | | | | | |
 
173
  | [Tohoku BERT-large char v2](https://huggingface.co/cl-tohoku/bert-large-japanese-char-v2)| 311M | 303M | 87.23 | 85.08 | 84.20 | 81.79 | 90.55 | 85.25 | 92.63 | 61.29 | 87.64 | 96.55 | 93.26 | 96.25 | 92.29 |
174
+ | [Tohoku BERT-large v2](https://huggingface.co/tohoku-nlp/bert-large-japanese-v2)| 337M | 303M | 88.36 | 86.93 | 84.81 | 82.89 | 92.05 | 85.33 | 93.32 | 64.60 | 89.11 | 97.64 | 94.38 | 96.46 | 92.77 |
175
  | [Waseda RoBERTa-large (Seq. 512)](https://huggingface.co/nlp-waseda/roberta-large-japanese-seq512-with-auto-jumanpp)| 337M | 303M | 88.37 | 88.81 | 84.50 | 82.34 | 91.37 | 85.49 | 93.97 | 61.53 | 88.95 | 96.99 | 95.06 | 96.38 | 95.09 |
176
  | [Waseda RoBERTa-large (Seq. 128)](https://huggingface.co/nlp-waseda/roberta-large-japanese-with-auto-jumanpp)| 337M | 303M | 88.36 | 89.35 | 83.63 | 84.26 | 91.53 | 85.30 | 94.05 | 62.82 | 88.67 | 95.82 | 93.60 | 96.05 | 95.23 |
177
+ | [LUKE-japanese-large-lite](https://huggingface.co/studio-ousia/luke-japanese-large-lite)| 414M | 379M | 88.94 | 88.01 | 84.84 | 84.34 | 92.37 | 86.14 | 94.32 | 64.68 | 89.30 | 97.53 | 93.71 | 96.49 | 95.59 |
178
  | [RetrievaBERT](https://huggingface.co/retrieva-jp/bert-1.3b)| 1.30B | 1.15B | 86.79 | 80.55 | 84.35 | 80.67 | 89.86 | 85.24 | 93.46 | 60.48 | 87.30 | 97.04 | 92.70 | 96.18 | 93.61 |
179
  | | | | | | | | | | | | | | | | |
180
+ | [hotchpotch/mMiniLMv2-L6-H384](https://huggingface.co/hotchpotch/mMiniLMv2-L6-H384)| 107M | 11M | 81.53 | 60.34 | 82.83 | 78.61 | 86.24 | 77.94 | 87.32 | 60.48 | 80.48 | 95.55 | 86.40 | 94.97 | 87.20 |
181
+ | [hotchpotch/mMiniLMv2-L12-H384](https://huggingface.co/hotchpotch/mMiniLMv2-L12-H384)| 118M | 21M | 82.59 | 62.70 | 83.77 | 78.61 | 87.69 | 79.58 | 87.65 | 60.48 | 81.55 | 95.88 | 90.00 | 94.89 | 88.28 |
182
  | [mBERT](https://huggingface.co/google-bert/bert-base-multilingual-cased)| 178M | 86M | 83.48 | 66.08 | 82.76 | 77.32 | 88.15 | 84.20 | 91.25 | 60.56 | 84.18 | 97.01 | 89.21 | 95.05 | 85.99 |
183
  | [XLM-RoBERTa-base](https://huggingface.co/FacebookAI/xlm-roberta-base)| 278M | 86M | 84.36 | 69.44 | 82.86 | 78.71 | 88.14 | 83.17 | 91.27 | 60.48 | 83.34 | 95.93 | 91.91 | 95.82 | 91.20 |
184
  | [XLM-RoBERTa-large](https://huggingface.co/FacebookAI/xlm-roberta-large)| 560M | 303M | 86.95 | 80.07 | 84.47 | 80.42 | 92.16 | 84.74 | 93.87 | 60.48 | 88.03 | 97.01 | 93.37 | 96.03 | 92.72 |
 
198
 
199
  ## License
200
 
201
+ [MIT License](https://huggingface.co/sbintuitions/modernbert-ja-130m/blob/main/LICENSE)
202
+
203
+
204
+ ## Citation
205
+
206
+ ```bibtex
207
+ @misc{
208
+ modernbert-ja,
209
+ author = {Tsukagoshi, Hayato and Li, Shengzhe and Fukuchi, Akihiko and Shibata, Tomohide},
210
+ title = {{ModernBERT-Ja}},
211
+ howpublished = {\url{https://huggingface.co/collections/sbintuitions/modernbert-ja-67b68fe891132877cf67aa0a}},
212
+ url = {https://huggingface.co/collections/sbintuitions/modernbert-ja-67b68fe891132877cf67aa0a},
213
+ year = {2025},
214
+ }
215
+ ```