--- library_name: transformers license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: whisper-base-finetuned-bmd results: [] --- # whisper-base-finetuned-bmd This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1213 - Accuracy: 0.2647 - F1: 0.1108 - Precision: 0.0701 - Recall: 0.2647 - Sensitivity: 0.2647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Sensitivity | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-----------:| | No log | 0.8571 | 3 | 1.1212 | 0.2647 | 0.1108 | 0.0701 | 0.2647 | 0.2647 | | No log | 1.7143 | 6 | 1.1213 | 0.2647 | 0.1108 | 0.0701 | 0.2647 | 0.2647 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3