End of training
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: HooshvareLab/albert-fa-zwnj-base-v2
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: albert-fa-zwnj-base-v2-finetuned-bmd-20241021-LOSO-section-out1
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# albert-fa-zwnj-base-v2-finetuned-bmd-20241021-LOSO-section-out1
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [HooshvareLab/albert-fa-zwnj-base-v2](https://huggingface.co/HooshvareLab/albert-fa-zwnj-base-v2) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 3.1964
|
23 |
+
- Accuracy: 0.3103
|
24 |
+
- F1: 0.2745
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 8
|
45 |
+
- eval_batch_size: 8
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 10
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
56 |
+
| 1.1384 | 1.0 | 14 | 1.2494 | 0.3448 | 0.1768 |
|
57 |
+
| 1.1313 | 2.0 | 28 | 1.0923 | 0.3103 | 0.1724 |
|
58 |
+
| 0.9349 | 3.0 | 42 | 1.2456 | 0.3448 | 0.2468 |
|
59 |
+
| 0.6109 | 4.0 | 56 | 1.3296 | 0.2069 | 0.1970 |
|
60 |
+
| 0.3213 | 5.0 | 70 | 1.4808 | 0.3793 | 0.3711 |
|
61 |
+
| 0.1212 | 6.0 | 84 | 1.9444 | 0.2414 | 0.2352 |
|
62 |
+
| 0.0406 | 7.0 | 98 | 2.6696 | 0.4138 | 0.3814 |
|
63 |
+
| 0.0239 | 8.0 | 112 | 2.6279 | 0.2759 | 0.2705 |
|
64 |
+
| 0.005 | 9.0 | 126 | 3.0941 | 0.3103 | 0.2745 |
|
65 |
+
| 0.0041 | 10.0 | 140 | 3.1964 | 0.3103 | 0.2745 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.45.2
|
71 |
+
- Pytorch 2.4.1+cu121
|
72 |
+
- Datasets 3.0.1
|
73 |
+
- Tokenizers 0.20.1
|