--- library_name: transformers base_model: sandernotenbaert/okai-musiclang-content-t5-small_finetune tags: - generated_from_trainer model-index: - name: okai-musiclang-content-t5-small_finetune results: [] --- # okai-musiclang-content-t5-small_finetune This model is a fine-tuned version of [sandernotenbaert/okai-musiclang-content-t5-small_finetune](https://huggingface.co/sandernotenbaert/okai-musiclang-content-t5-small_finetune) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5041 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 1.7839 | 0.2226 | 500 | 1.6513 | | 1.6576 | 0.4452 | 1000 | 1.6615 | | 1.6396 | 0.6679 | 1500 | 1.6650 | | 1.7168 | 0.8905 | 2000 | 1.6315 | | 1.7366 | 1.1131 | 2500 | 1.6234 | | 1.7171 | 1.3357 | 3000 | 1.6028 | | 1.6238 | 1.5583 | 3500 | 1.6130 | | 1.6217 | 1.7810 | 4000 | 1.6218 | | 1.7077 | 2.0036 | 4500 | 1.5784 | | 1.7034 | 2.2262 | 5000 | 1.5792 | | 1.6049 | 2.4488 | 5500 | 1.5866 | | 1.6018 | 2.6714 | 6000 | 1.5869 | | 1.6628 | 2.8941 | 6500 | 1.5628 | | 1.653 | 3.1171 | 7000 | 1.5606 | | 1.6575 | 3.3397 | 7500 | 1.5381 | | 1.64 | 3.5619 | 8000 | 1.5395 | | 1.6455 | 3.7845 | 8500 | 1.5163 | | 1.6308 | 4.0076 | 9000 | 1.5311 | | 1.6324 | 4.2302 | 9500 | 1.5118 | | 1.5481 | 4.4528 | 10000 | 1.5092 | | 1.547 | 4.6754 | 10500 | 1.5109 | | 1.5584 | 4.8981 | 11000 | 1.5041 | ### Framework versions - Transformers 4.55.0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.2