--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy training_config: vocab_size: 30000 hidden_size: 256 intermediate_size: 1024 num_hidden_layers: 6 num_attention_heads: 4 num_key_value_heads: 4 sliding_window: 256 max_position_embeddings: 4096 pad_token_id: 0 bos_token_id: 1 eos_token_id: 2 pipeline_tag: other model-index: - name: OKAI-midi-gen-v-004 results: [] --- # OKAI-midi-gen-v-004 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 10.2911 - Accuracy: 0.0003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 16 - seed: 444 - gradient_accumulation_steps: 3 - total_train_batch_size: 24 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.3 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 10.2092 | 3.2283 | 100 | 10.2764 | 0.0004 | | 9.7373 | 6.4565 | 200 | 10.0773 | 0.0020 | | 9.2158 | 9.6848 | 300 | 9.9404 | 0.0023 | | 8.8101 | 12.9130 | 400 | 9.9445 | 0.0027 | | 8.3439 | 16.1304 | 500 | 9.9546 | 0.0016 | | 7.7001 | 19.3587 | 600 | 9.9316 | 0.0012 | | 6.9652 | 22.5870 | 700 | 9.9396 | 0.0007 | | 6.2067 | 25.8152 | 800 | 9.9274 | 0.0007 | | 5.5185 | 29.0326 | 900 | 9.9435 | 0.0007 | | 4.8318 | 32.2609 | 1000 | 9.9918 | 0.0004 | | 4.343 | 35.4891 | 1100 | 10.0255 | 0.0004 | | 3.9477 | 38.7174 | 1200 | 10.0792 | 0.0004 | | 3.5394 | 41.9457 | 1300 | 10.1247 | 0.0002 | | 3.2964 | 45.1630 | 1400 | 10.1824 | 0.0003 | | 3.0237 | 48.3913 | 1500 | 10.2247 | 0.0003 | | 2.8621 | 51.6196 | 1600 | 10.2556 | 0.0003 | | 2.765 | 54.8478 | 1700 | 10.2756 | 0.0001 | | 2.7383 | 58.0652 | 1800 | 10.2867 | 0.0003 | | 2.7324 | 61.2935 | 1900 | 10.2906 | 0.0003 | | 2.6918 | 64.5217 | 2000 | 10.2911 | 0.0003 | ### Framework versions - Transformers 4.52.3 - Pytorch 2.6.0 - Datasets 3.6.0 - Tokenizers 0.21.1