--- language: zh tags: - chinese - transformer - language-model license: mit --- # MiniMind Pretrained Model Chinese language model trained on pretrain dataset. ## Model Details - Architecture: Transformer - Parameters: 26.878M - Dimensions: 512 - Layers: 8 - Attention Heads: 8 - Vocabulary Size: 32000 - Max Sequence Length: 1024 ## Training Data - Pretrained on Chinese text corpus - Dataset size: 4.33GB ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("samz/minimind-pretrain") tokenizer = AutoTokenizer.from_pretrained("samz/minimind-pretrain") text = "今天天气真不错" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_length=50) result = tokenizer.decode(outputs[0]) print(result) ```