samitizerxu commited on
Commit
b379dd8
·
verified ·
1 Parent(s): 52219dd

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 131072,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 10000,
22
+ "sliding_window": 4096,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0",
26
+ "use_cache": false,
27
+ "use_mrope": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 151667
30
+ }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151646,
4
+ "do_sample": true,
5
+ "eos_token_id": 151643,
6
+ "temperature": 0.6,
7
+ "top_p": 0.95,
8
+ "transformers_version": "4.49.0"
9
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d749ff3ee81a57fc00b3e3bfd910cb989be313d1462a389c699d88b4136625b4
3
+ size 4874815080
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a21358c856e849dd48e6c53874fcd9fad5d84dafdcc433da1ee36aacf5588e69
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13953c1e6ebb53ec74fd8773c23060833417e756bc39234688c572a30c0fecf7
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bbd899171f5a77c0095a75b56186863c2712c9888b27f5a87777611f2c38ab1
3
+ size 1087149184
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15225541632
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<keep>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "</keep>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ }
17
+ ],
18
+ "bos_token": {
19
+ "content": "<|begin▁of▁sentence|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "eos_token": {
26
+ "content": "<|end▁of▁sentence|>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "pad_token": {
33
+ "content": "<|end▁of▁sentence|>",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ }
39
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:832238e2761d007875cf44adf3b2507fbf437a6d78809db951555ddc8c877e15
3
+ size 11423145
tokenizer_config.json ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|end▁of▁sentence|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|User|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "151645": {
23
+ "content": "<|Assistant|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "151646": {
31
+ "content": "<|begin▁of▁sentence|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|EOT|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "151648": {
47
+ "content": "<think>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "151649": {
55
+ "content": "</think>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "151665": {
183
+ "content": "<keep>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ },
190
+ "151666": {
191
+ "content": "</keep>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": true
197
+ }
198
+ },
199
+ "additional_special_tokens": [
200
+ "<keep>",
201
+ "</keep>"
202
+ ],
203
+ "bos_token": "<|begin▁of▁sentence|>",
204
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|><think>\\n'}}{% endif %}",
205
+ "clean_up_tokenization_spaces": false,
206
+ "eos_token": "<|end▁of▁sentence|>",
207
+ "extra_special_tokens": {},
208
+ "legacy": true,
209
+ "model_max_length": 16384,
210
+ "pad_token": "<|end▁of▁sentence|>",
211
+ "padding_side": "left",
212
+ "sp_model_kwargs": {},
213
+ "tokenizer_class": "LlamaTokenizerFast",
214
+ "unk_token": null,
215
+ "use_default_system_prompt": false
216
+ }
trainer_state.json ADDED
@@ -0,0 +1,2497 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9993753903810119,
5
+ "eval_steps": 200,
6
+ "global_step": 800,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.006246096189881324,
13
+ "grad_norm": 116.66677856445312,
14
+ "kl": 0.4583333432674408,
15
+ "learning_rate": 1.5625e-07,
16
+ "logits/chosen": 763024214.0595745,
17
+ "logits/rejected": 257919736.68571427,
18
+ "logps/chosen": -2094.8425531914895,
19
+ "logps/rejected": -1494.726530612245,
20
+ "loss": 0.5016,
21
+ "rewards/chosen": 1.0933048329454786,
22
+ "rewards/margins": -85873591.85363396,
23
+ "rewards/rejected": 85873592.94693878,
24
+ "step": 5
25
+ },
26
+ {
27
+ "epoch": 0.012492192379762648,
28
+ "grad_norm": 110.63726806640625,
29
+ "kl": 0.38749998807907104,
30
+ "learning_rate": 3.125e-07,
31
+ "logits/chosen": 921293980.2033899,
32
+ "logits/rejected": 220243934.4262295,
33
+ "logps/chosen": -2251.3898305084745,
34
+ "logps/rejected": -1449.1803278688524,
35
+ "loss": 0.4946,
36
+ "rewards/chosen": 1.1281716298248807,
37
+ "rewards/margins": -41765219.59313984,
38
+ "rewards/rejected": 41765220.72131147,
39
+ "step": 10
40
+ },
41
+ {
42
+ "epoch": 0.018738288569643973,
43
+ "grad_norm": 121.6174087524414,
44
+ "kl": 1.6833332777023315,
45
+ "learning_rate": 4.6875000000000006e-07,
46
+ "logits/chosen": 587306067.5021459,
47
+ "logits/rejected": 338677312.2591093,
48
+ "logps/chosen": -2082.74678111588,
49
+ "logps/rejected": -1634.7206477732793,
50
+ "loss": 0.4687,
51
+ "rewards/chosen": 2.346424020922747,
52
+ "rewards/margins": -31779756.811470717,
53
+ "rewards/rejected": 31779759.157894738,
54
+ "step": 15
55
+ },
56
+ {
57
+ "epoch": 0.024984384759525295,
58
+ "grad_norm": 68.7260971069336,
59
+ "kl": 4.829166889190674,
60
+ "learning_rate": 6.25e-07,
61
+ "logits/chosen": 647625703.424,
62
+ "logits/rejected": 289995090.3652174,
63
+ "logps/chosen": -1992.704,
64
+ "logps/rejected": -1608.904347826087,
65
+ "loss": 0.4112,
66
+ "rewards/chosen": 2.184742919921875,
67
+ "rewards/margins": -24643590.719604906,
68
+ "rewards/rejected": 24643592.904347826,
69
+ "step": 20
70
+ },
71
+ {
72
+ "epoch": 0.03123048094940662,
73
+ "grad_norm": 51.2025260925293,
74
+ "kl": 9.495833396911621,
75
+ "learning_rate": 7.8125e-07,
76
+ "logits/chosen": 728003276.3408072,
77
+ "logits/rejected": 248500271.81322956,
78
+ "logps/chosen": -2006.2421524663678,
79
+ "logps/rejected": -1371.8910505836575,
80
+ "loss": 0.2966,
81
+ "rewards/chosen": 3.2302421261911434,
82
+ "rewards/margins": 6841244.132965862,
83
+ "rewards/rejected": -6841240.902723735,
84
+ "step": 25
85
+ },
86
+ {
87
+ "epoch": 0.037476577139287946,
88
+ "grad_norm": 27.76913070678711,
89
+ "kl": 22.079166412353516,
90
+ "learning_rate": 9.375000000000001e-07,
91
+ "logits/chosen": 918946912.2735043,
92
+ "logits/rejected": 535911848.58536583,
93
+ "logps/chosen": -2157.948717948718,
94
+ "logps/rejected": -1666.081300813008,
95
+ "loss": 0.1937,
96
+ "rewards/chosen": 5.411676912226229,
97
+ "rewards/margins": -80127611.6289735,
98
+ "rewards/rejected": 80127617.04065041,
99
+ "step": 30
100
+ },
101
+ {
102
+ "epoch": 0.04372267332916927,
103
+ "grad_norm": 33.331947326660156,
104
+ "kl": 38.80833435058594,
105
+ "learning_rate": 1.0937500000000001e-06,
106
+ "logits/chosen": 992420333.4939759,
107
+ "logits/rejected": 541292180.5021645,
108
+ "logps/chosen": -2068.9477911646586,
109
+ "logps/rejected": -1451.3593073593074,
110
+ "loss": 0.1621,
111
+ "rewards/chosen": 7.359968193084839,
112
+ "rewards/margins": -22775727.497174665,
113
+ "rewards/rejected": 22775734.85714286,
114
+ "step": 35
115
+ },
116
+ {
117
+ "epoch": 0.04996876951905059,
118
+ "grad_norm": 19.21103286743164,
119
+ "kl": 66.71666717529297,
120
+ "learning_rate": 1.25e-06,
121
+ "logits/chosen": 1329413437.2392156,
122
+ "logits/rejected": 860745746.2044444,
123
+ "logps/chosen": -2012.3607843137254,
124
+ "logps/rejected": -1481.9555555555555,
125
+ "loss": 0.1239,
126
+ "rewards/chosen": 10.802983302696079,
127
+ "rewards/margins": -30159119.365905587,
128
+ "rewards/rejected": 30159130.16888889,
129
+ "step": 40
130
+ },
131
+ {
132
+ "epoch": 0.056214865708931916,
133
+ "grad_norm": 10.822747230529785,
134
+ "kl": 82.54166412353516,
135
+ "learning_rate": 1.40625e-06,
136
+ "logits/chosen": 1361087192.9491525,
137
+ "logits/rejected": 947972868.1967213,
138
+ "logps/chosen": -1899.3898305084747,
139
+ "logps/rejected": -1508.983606557377,
140
+ "loss": 0.1131,
141
+ "rewards/chosen": 13.423981230137711,
142
+ "rewards/margins": -74581901.85470729,
143
+ "rewards/rejected": 74581915.27868852,
144
+ "step": 45
145
+ },
146
+ {
147
+ "epoch": 0.06246096189881324,
148
+ "grad_norm": 7.292627811431885,
149
+ "kl": 118.73332977294922,
150
+ "learning_rate": 1.5625e-06,
151
+ "logits/chosen": 1479708155.697479,
152
+ "logits/rejected": 1002230673.983471,
153
+ "logps/chosen": -1897.546218487395,
154
+ "logps/rejected": -1337.9173553719008,
155
+ "loss": 0.11,
156
+ "rewards/chosen": 17.611668690913866,
157
+ "rewards/margins": -83405586.35527346,
158
+ "rewards/rejected": 83405603.96694215,
159
+ "step": 50
160
+ },
161
+ {
162
+ "epoch": 0.06870705808869457,
163
+ "grad_norm": 7.088067054748535,
164
+ "kl": 150.61666870117188,
165
+ "learning_rate": 1.71875e-06,
166
+ "logits/chosen": 1500882604.119149,
167
+ "logits/rejected": 1047514584.2938776,
168
+ "logps/chosen": -1893.1744680851064,
169
+ "logps/rejected": -1392.3265306122448,
170
+ "loss": 0.1315,
171
+ "rewards/chosen": 22.309776013962765,
172
+ "rewards/margins": -67494124.82491787,
173
+ "rewards/rejected": 67494147.13469388,
174
+ "step": 55
175
+ },
176
+ {
177
+ "epoch": 0.07495315427857589,
178
+ "grad_norm": 10.061450958251953,
179
+ "kl": 160.98333740234375,
180
+ "learning_rate": 1.8750000000000003e-06,
181
+ "logits/chosen": 1491436649.9310346,
182
+ "logits/rejected": 1136318133.6774194,
183
+ "logps/chosen": -1901.5172413793102,
184
+ "logps/rejected": -1438.0645161290322,
185
+ "loss": 0.1269,
186
+ "rewards/chosen": 22.11644245016164,
187
+ "rewards/margins": -68507179.94807367,
188
+ "rewards/rejected": 68507202.06451613,
189
+ "step": 60
190
+ },
191
+ {
192
+ "epoch": 0.08119925046845722,
193
+ "grad_norm": 5.119268417358398,
194
+ "kl": 169.3000030517578,
195
+ "learning_rate": 2.0312500000000002e-06,
196
+ "logits/chosen": 1529824284.1834862,
197
+ "logits/rejected": 1174020908.946565,
198
+ "logps/chosen": -1950.0183486238532,
199
+ "logps/rejected": -1506.6870229007634,
200
+ "loss": 0.1184,
201
+ "rewards/chosen": 21.517562446244266,
202
+ "rewards/margins": -64286292.00915511,
203
+ "rewards/rejected": 64286313.52671756,
204
+ "step": 65
205
+ },
206
+ {
207
+ "epoch": 0.08744534665833854,
208
+ "grad_norm": 7.102128028869629,
209
+ "kl": 189.86666870117188,
210
+ "learning_rate": 2.1875000000000002e-06,
211
+ "logits/chosen": 1418054483.2263374,
212
+ "logits/rejected": 1115578679.0886075,
213
+ "logps/chosen": -1872.625514403292,
214
+ "logps/rejected": -1406.649789029536,
215
+ "loss": 0.1345,
216
+ "rewards/chosen": 25.48732076260288,
217
+ "rewards/margins": -91184910.47892396,
218
+ "rewards/rejected": 91184935.96624473,
219
+ "step": 70
220
+ },
221
+ {
222
+ "epoch": 0.09369144284821987,
223
+ "grad_norm": 6.652032852172852,
224
+ "kl": 205.64999389648438,
225
+ "learning_rate": 2.3437500000000002e-06,
226
+ "logits/chosen": 1280121794.313253,
227
+ "logits/rejected": 1075884368.9004328,
228
+ "logps/chosen": -1890.8273092369477,
229
+ "logps/rejected": -1434.874458874459,
230
+ "loss": 0.1308,
231
+ "rewards/chosen": 25.247278175200805,
232
+ "rewards/margins": -58559015.0297781,
233
+ "rewards/rejected": 58559040.27705628,
234
+ "step": 75
235
+ },
236
+ {
237
+ "epoch": 0.09993753903810118,
238
+ "grad_norm": 7.803961277008057,
239
+ "kl": 215.3000030517578,
240
+ "learning_rate": 2.5e-06,
241
+ "logits/chosen": 1125117697.0622406,
242
+ "logits/rejected": 1087781335.2970712,
243
+ "logps/chosen": -1695.8672199170123,
244
+ "logps/rejected": -1510.2928870292887,
245
+ "loss": 0.1215,
246
+ "rewards/chosen": 27.956099260892117,
247
+ "rewards/margins": -64467297.36607647,
248
+ "rewards/rejected": 64467325.322175734,
249
+ "step": 80
250
+ },
251
+ {
252
+ "epoch": 0.1061836352279825,
253
+ "grad_norm": 2.8079729080200195,
254
+ "kl": 220.39999389648438,
255
+ "learning_rate": 2.65625e-06,
256
+ "logits/chosen": 1052407833.2839506,
257
+ "logits/rejected": 1024613604.9957806,
258
+ "logps/chosen": -1662.0246913580247,
259
+ "logps/rejected": -1444.3206751054852,
260
+ "loss": 0.1301,
261
+ "rewards/chosen": 28.417864261831276,
262
+ "rewards/margins": -75106206.45133404,
263
+ "rewards/rejected": 75106234.8691983,
264
+ "step": 85
265
+ },
266
+ {
267
+ "epoch": 0.11242973141786383,
268
+ "grad_norm": 8.319477081298828,
269
+ "kl": 240.06666564941406,
270
+ "learning_rate": 2.8125e-06,
271
+ "logits/chosen": 995378244.2666667,
272
+ "logits/rejected": 974057198.9333333,
273
+ "logps/chosen": -1697.0666666666666,
274
+ "logps/rejected": -1485.6,
275
+ "loss": 0.1139,
276
+ "rewards/chosen": 30.144661458333335,
277
+ "rewards/margins": -43094211.98867188,
278
+ "rewards/rejected": 43094242.13333333,
279
+ "step": 90
280
+ },
281
+ {
282
+ "epoch": 0.11867582760774516,
283
+ "grad_norm": 7.453002452850342,
284
+ "kl": 252.8333282470703,
285
+ "learning_rate": 2.96875e-06,
286
+ "logits/chosen": 1268567244.8,
287
+ "logits/rejected": 996391867.7333333,
288
+ "logps/chosen": -1984.1333333333334,
289
+ "logps/rejected": -1418.2666666666667,
290
+ "loss": 0.1239,
291
+ "rewards/chosen": 33.62305908203125,
292
+ "rewards/margins": -149487650.6436076,
293
+ "rewards/rejected": 149487684.26666668,
294
+ "step": 95
295
+ },
296
+ {
297
+ "epoch": 0.12492192379762648,
298
+ "grad_norm": 2.9787914752960205,
299
+ "kl": 253.6666717529297,
300
+ "learning_rate": 3.125e-06,
301
+ "logits/chosen": 1126902571.1686275,
302
+ "logits/rejected": 1192673644.088889,
303
+ "logps/chosen": -1734.650980392157,
304
+ "logps/rejected": -1441.9911111111112,
305
+ "loss": 0.1281,
306
+ "rewards/chosen": 28.739571844362747,
307
+ "rewards/margins": -46898356.61153927,
308
+ "rewards/rejected": 46898385.351111114,
309
+ "step": 100
310
+ },
311
+ {
312
+ "epoch": 0.1311680199875078,
313
+ "grad_norm": 5.351078987121582,
314
+ "kl": 260.0333251953125,
315
+ "learning_rate": 3.28125e-06,
316
+ "logits/chosen": 1035580677.3556485,
317
+ "logits/rejected": 1086481369.759336,
318
+ "logps/chosen": -1673.2384937238494,
319
+ "logps/rejected": -1407.734439834025,
320
+ "loss": 0.0947,
321
+ "rewards/chosen": 30.54708543083159,
322
+ "rewards/margins": -57016977.784864776,
323
+ "rewards/rejected": 57017008.33195021,
324
+ "step": 105
325
+ },
326
+ {
327
+ "epoch": 0.13741411617738913,
328
+ "grad_norm": 2.6211190223693848,
329
+ "kl": 257.4333190917969,
330
+ "learning_rate": 3.4375e-06,
331
+ "logits/chosen": 992500800.5765766,
332
+ "logits/rejected": 1126154367.007752,
333
+ "logps/chosen": -1670.1981981981983,
334
+ "logps/rejected": -1532.8992248062016,
335
+ "loss": 0.086,
336
+ "rewards/chosen": 30.3542700415259,
337
+ "rewards/margins": -29103875.38216407,
338
+ "rewards/rejected": 29103905.73643411,
339
+ "step": 110
340
+ },
341
+ {
342
+ "epoch": 0.14366021236727045,
343
+ "grad_norm": 6.189810752868652,
344
+ "kl": 277.76666259765625,
345
+ "learning_rate": 3.59375e-06,
346
+ "logits/chosen": 1039450317.6569037,
347
+ "logits/rejected": 1082791774.5394192,
348
+ "logps/chosen": -1658.510460251046,
349
+ "logps/rejected": -1438.3402489626556,
350
+ "loss": 0.1093,
351
+ "rewards/chosen": 35.08254609048117,
352
+ "rewards/margins": -68647662.9755452,
353
+ "rewards/rejected": 68647698.05809128,
354
+ "step": 115
355
+ },
356
+ {
357
+ "epoch": 0.14990630855715179,
358
+ "grad_norm": 2.9020302295684814,
359
+ "kl": 283.3666687011719,
360
+ "learning_rate": 3.7500000000000005e-06,
361
+ "logits/chosen": 1015666845.5384616,
362
+ "logits/rejected": 921090759.9656652,
363
+ "logps/chosen": -1648.582995951417,
364
+ "logps/rejected": -1456.6866952789699,
365
+ "loss": 0.1231,
366
+ "rewards/chosen": 38.58084514170041,
367
+ "rewards/margins": -49614536.938468166,
368
+ "rewards/rejected": 49614575.519313306,
369
+ "step": 120
370
+ },
371
+ {
372
+ "epoch": 0.1561524047470331,
373
+ "grad_norm": 3.2500624656677246,
374
+ "kl": 274.9333190917969,
375
+ "learning_rate": 3.90625e-06,
376
+ "logits/chosen": 739230529.0847458,
377
+ "logits/rejected": 916730460.3278688,
378
+ "logps/chosen": -1657.7627118644068,
379
+ "logps/rejected": -1521.1803278688524,
380
+ "loss": 0.1015,
381
+ "rewards/chosen": 39.418812897245765,
382
+ "rewards/margins": -48657276.25331825,
383
+ "rewards/rejected": 48657315.67213115,
384
+ "step": 125
385
+ },
386
+ {
387
+ "epoch": 0.16239850093691444,
388
+ "grad_norm": 2.6585230827331543,
389
+ "kl": 280.6000061035156,
390
+ "learning_rate": 4.0625000000000005e-06,
391
+ "logits/chosen": 573097664.2700422,
392
+ "logits/rejected": 1011293297.7777778,
393
+ "logps/chosen": -1583.5274261603377,
394
+ "logps/rejected": -1520.0658436213992,
395
+ "loss": 0.1055,
396
+ "rewards/chosen": 37.8720703125,
397
+ "rewards/margins": -6502969.469493474,
398
+ "rewards/rejected": 6503007.341563786,
399
+ "step": 130
400
+ },
401
+ {
402
+ "epoch": 0.16864459712679575,
403
+ "grad_norm": 4.475651741027832,
404
+ "kl": 298.6333312988281,
405
+ "learning_rate": 4.21875e-06,
406
+ "logits/chosen": 636761140.2039216,
407
+ "logits/rejected": 859953488.7822223,
408
+ "logps/chosen": -1657.349019607843,
409
+ "logps/rejected": -1411.9822222222222,
410
+ "loss": 0.0988,
411
+ "rewards/chosen": 39.78631663602941,
412
+ "rewards/margins": -48714953.422572255,
413
+ "rewards/rejected": 48714993.20888889,
414
+ "step": 135
415
+ },
416
+ {
417
+ "epoch": 0.1748906933166771,
418
+ "grad_norm": 2.648059606552124,
419
+ "kl": 290.9333190917969,
420
+ "learning_rate": 4.3750000000000005e-06,
421
+ "logits/chosen": 607103567.2635983,
422
+ "logits/rejected": 967892210.1908714,
423
+ "logps/chosen": -1529.5732217573222,
424
+ "logps/rejected": -1455.9336099585062,
425
+ "loss": 0.0941,
426
+ "rewards/chosen": 39.2620211166318,
427
+ "rewards/margins": -50780460.65499133,
428
+ "rewards/rejected": 50780499.917012446,
429
+ "step": 140
430
+ },
431
+ {
432
+ "epoch": 0.1811367895065584,
433
+ "grad_norm": 4.189403533935547,
434
+ "kl": 297.6333312988281,
435
+ "learning_rate": 4.53125e-06,
436
+ "logits/chosen": 732500241.0666667,
437
+ "logits/rejected": 973196492.8,
438
+ "logps/chosen": -1670.4,
439
+ "logps/rejected": -1503.0666666666666,
440
+ "loss": 0.1089,
441
+ "rewards/chosen": 35.4449462890625,
442
+ "rewards/margins": -47891689.35505371,
443
+ "rewards/rejected": 47891724.8,
444
+ "step": 145
445
+ },
446
+ {
447
+ "epoch": 0.18738288569643974,
448
+ "grad_norm": 1.987473726272583,
449
+ "kl": 320.6000061035156,
450
+ "learning_rate": 4.6875000000000004e-06,
451
+ "logits/chosen": 786999262.4262295,
452
+ "logits/rejected": 786822994.440678,
453
+ "logps/chosen": -1613.311475409836,
454
+ "logps/rejected": -1424.677966101695,
455
+ "loss": 0.1051,
456
+ "rewards/chosen": 43.21544409579918,
457
+ "rewards/margins": -41480495.90319997,
458
+ "rewards/rejected": 41480539.118644066,
459
+ "step": 150
460
+ },
461
+ {
462
+ "epoch": 0.19362898188632105,
463
+ "grad_norm": 2.4980077743530273,
464
+ "kl": 303.5,
465
+ "learning_rate": 4.84375e-06,
466
+ "logits/chosen": 865481696.4229075,
467
+ "logits/rejected": 753880553.7391304,
468
+ "logps/chosen": -1596.9691629955946,
469
+ "logps/rejected": -1416.7272727272727,
470
+ "loss": 0.0884,
471
+ "rewards/chosen": 35.61597647645925,
472
+ "rewards/margins": -22194391.324734986,
473
+ "rewards/rejected": 22194426.94071146,
474
+ "step": 155
475
+ },
476
+ {
477
+ "epoch": 0.19987507807620236,
478
+ "grad_norm": 2.3918511867523193,
479
+ "kl": 324.6000061035156,
480
+ "learning_rate": 5e-06,
481
+ "logits/chosen": 928669237.248,
482
+ "logits/rejected": 849364796.1043478,
483
+ "logps/chosen": -1578.88,
484
+ "logps/rejected": -1521.6695652173912,
485
+ "loss": 0.0844,
486
+ "rewards/chosen": 37.32334375,
487
+ "rewards/margins": -24807967.6853519,
488
+ "rewards/rejected": 24808005.00869565,
489
+ "step": 160
490
+ },
491
+ {
492
+ "epoch": 0.2061211742660837,
493
+ "grad_norm": 3.1913163661956787,
494
+ "kl": 323.3666687011719,
495
+ "learning_rate": 4.999851262500375e-06,
496
+ "logits/chosen": 989165542.0759493,
497
+ "logits/rejected": 743453329.3827161,
498
+ "logps/chosen": -1582.3122362869199,
499
+ "logps/rejected": -1438.6172839506173,
500
+ "loss": 0.0912,
501
+ "rewards/chosen": 43.50049034150844,
502
+ "rewards/margins": -5548838.145600193,
503
+ "rewards/rejected": 5548881.6460905345,
504
+ "step": 165
505
+ },
506
+ {
507
+ "epoch": 0.212367270455965,
508
+ "grad_norm": 1.8797273635864258,
509
+ "kl": 319.6000061035156,
510
+ "learning_rate": 4.999405067699773e-06,
511
+ "logits/chosen": 816467482.0338984,
512
+ "logits/rejected": 570425344.0,
513
+ "logps/chosen": -1562.7796610169491,
514
+ "logps/rejected": -1319.4754098360656,
515
+ "loss": 0.0781,
516
+ "rewards/chosen": 46.163491459216104,
517
+ "rewards/margins": -39313294.688967556,
518
+ "rewards/rejected": 39313340.85245901,
519
+ "step": 170
520
+ },
521
+ {
522
+ "epoch": 0.21861336664584635,
523
+ "grad_norm": 3.3823835849761963,
524
+ "kl": 350.0,
525
+ "learning_rate": 4.998661468690914e-06,
526
+ "logits/chosen": 859967620.1290323,
527
+ "logits/rejected": 695513229.2413793,
528
+ "logps/chosen": -1611.8709677419354,
529
+ "logps/rejected": -1512.8275862068965,
530
+ "loss": 0.1091,
531
+ "rewards/chosen": 46.6678466796875,
532
+ "rewards/margins": -36436881.33215332,
533
+ "rewards/rejected": 36436928.0,
534
+ "step": 175
535
+ },
536
+ {
537
+ "epoch": 0.22485946283572766,
538
+ "grad_norm": 5.648082733154297,
539
+ "kl": 328.3999938964844,
540
+ "learning_rate": 4.997620553954645e-06,
541
+ "logits/chosen": 589463686.8477366,
542
+ "logits/rejected": 560731546.464135,
543
+ "logps/chosen": -1461.7283950617284,
544
+ "logps/rejected": -1366.6835443037974,
545
+ "loss": 0.0899,
546
+ "rewards/chosen": 48.1337890625,
547
+ "rewards/margins": -25789452.355662413,
548
+ "rewards/rejected": 25789500.489451475,
549
+ "step": 180
550
+ },
551
+ {
552
+ "epoch": 0.231105559025609,
553
+ "grad_norm": 2.2540504932403564,
554
+ "kl": 370.29998779296875,
555
+ "learning_rate": 4.996282447349408e-06,
556
+ "logits/chosen": 559837283.902439,
557
+ "logits/rejected": 561749945.982906,
558
+ "logps/chosen": -1595.4471544715448,
559
+ "logps/rejected": -1394.940170940171,
560
+ "loss": 0.0976,
561
+ "rewards/chosen": 53.93244648755081,
562
+ "rewards/margins": -43921896.700032145,
563
+ "rewards/rejected": 43921950.63247863,
564
+ "step": 185
565
+ },
566
+ {
567
+ "epoch": 0.23735165521549031,
568
+ "grad_norm": 2.868093490600586,
569
+ "kl": 339.73333740234375,
570
+ "learning_rate": 4.994647308096509e-06,
571
+ "logits/chosen": 453137114.8215768,
572
+ "logits/rejected": 583618097.2719666,
573
+ "logps/chosen": -1479.6348547717841,
574
+ "logps/rejected": -1402.3096234309623,
575
+ "loss": 0.116,
576
+ "rewards/chosen": 47.16783097769709,
577
+ "rewards/margins": -11266927.359365676,
578
+ "rewards/rejected": 11266974.527196653,
579
+ "step": 190
580
+ },
581
+ {
582
+ "epoch": 0.24359775140537165,
583
+ "grad_norm": 2.977546215057373,
584
+ "kl": 345.9666748046875,
585
+ "learning_rate": 4.992715330761167e-06,
586
+ "logits/chosen": 526250719.17948717,
587
+ "logits/rejected": 581422604.4878049,
588
+ "logps/chosen": -1470.5641025641025,
589
+ "logps/rejected": -1387.0569105691056,
590
+ "loss": 0.1131,
591
+ "rewards/chosen": 51.28399188701923,
592
+ "rewards/margins": -30845854.927390225,
593
+ "rewards/rejected": 30845906.211382113,
594
+ "step": 195
595
+ },
596
+ {
597
+ "epoch": 0.24984384759525297,
598
+ "grad_norm": 4.593957424163818,
599
+ "kl": 341.76666259765625,
600
+ "learning_rate": 4.990486745229364e-06,
601
+ "logits/chosen": 636709686.7008547,
602
+ "logits/rejected": 676817445.4634147,
603
+ "logps/chosen": -1580.854700854701,
604
+ "logps/rejected": -1433.4959349593496,
605
+ "loss": 0.0944,
606
+ "rewards/chosen": 44.716037326388886,
607
+ "rewards/margins": -2637613.8205480394,
608
+ "rewards/rejected": 2637658.536585366,
609
+ "step": 200
610
+ },
611
+ {
612
+ "epoch": 0.24984384759525297,
613
+ "eval_kl": 358.7391357421875,
614
+ "eval_logits/chosen": 631036890.3675048,
615
+ "eval_logits/rejected": 673337517.769697,
616
+ "eval_logps/chosen": -1513.725338491296,
617
+ "eval_logps/rejected": -1423.1353535353535,
618
+ "eval_loss": 0.0891943946480751,
619
+ "eval_rewards/chosen": 50.3120164410058,
620
+ "eval_rewards/margins": -21855587.15060982,
621
+ "eval_rewards/rejected": 21855637.462626263,
622
+ "eval_runtime": 640.4487,
623
+ "eval_samples_per_second": 6.316,
624
+ "eval_steps_per_second": 0.395,
625
+ "step": 200
626
+ },
627
+ {
628
+ "epoch": 0.2560899437851343,
629
+ "grad_norm": 4.819016933441162,
630
+ "kl": 377.70001220703125,
631
+ "learning_rate": 4.987961816680493e-06,
632
+ "logits/chosen": 683028876.3870968,
633
+ "logits/rejected": 758753209.3793104,
634
+ "logps/chosen": -1516.774193548387,
635
+ "logps/rejected": -1466.7586206896551,
636
+ "loss": 0.0996,
637
+ "rewards/chosen": 56.12273185483871,
638
+ "rewards/margins": -41749567.04968194,
639
+ "rewards/rejected": 41749623.172413796,
640
+ "step": 205
641
+ },
642
+ {
643
+ "epoch": 0.2623360399750156,
644
+ "grad_norm": 2.632314682006836,
645
+ "kl": 348.29998779296875,
646
+ "learning_rate": 4.985140845555799e-06,
647
+ "logits/chosen": 697918600.8097166,
648
+ "logits/rejected": 637678218.4377682,
649
+ "logps/chosen": -1600.1943319838056,
650
+ "logps/rejected": -1350.0429184549357,
651
+ "loss": 0.1253,
652
+ "rewards/chosen": 54.92004443952429,
653
+ "rewards/margins": -39001740.650771014,
654
+ "rewards/rejected": 39001795.57081545,
655
+ "step": 210
656
+ },
657
+ {
658
+ "epoch": 0.26858213616489696,
659
+ "grad_norm": 2.870805263519287,
660
+ "kl": 350.8333435058594,
661
+ "learning_rate": 4.982024167522638e-06,
662
+ "logits/chosen": 527803308.06557375,
663
+ "logits/rejected": 660025274.5762712,
664
+ "logps/chosen": -1443.016393442623,
665
+ "logps/rejected": -1426.4406779661017,
666
+ "loss": 0.1019,
667
+ "rewards/chosen": 50.20684314164959,
668
+ "rewards/margins": -13903121.047394147,
669
+ "rewards/rejected": 13903171.254237289,
670
+ "step": 215
671
+ },
672
+ {
673
+ "epoch": 0.27482823235477827,
674
+ "grad_norm": 7.444933891296387,
675
+ "kl": 368.73333740234375,
676
+ "learning_rate": 4.978612153434527e-06,
677
+ "logits/chosen": 546643296.5245901,
678
+ "logits/rejected": 507599646.37288135,
679
+ "logps/chosen": -1576.2622950819673,
680
+ "logps/rejected": -1438.1016949152543,
681
+ "loss": 0.0991,
682
+ "rewards/chosen": 47.69948290215164,
683
+ "rewards/margins": -18468254.402212013,
684
+ "rewards/rejected": 18468302.101694915,
685
+ "step": 220
686
+ },
687
+ {
688
+ "epoch": 0.2810743285446596,
689
+ "grad_norm": 0.719657838344574,
690
+ "kl": 369.5,
691
+ "learning_rate": 4.97490520928702e-06,
692
+ "logits/chosen": 393574952.3651452,
693
+ "logits/rejected": 569064717.9246862,
694
+ "logps/chosen": -1517.5435684647302,
695
+ "logps/rejected": -1512.3012552301254,
696
+ "loss": 0.108,
697
+ "rewards/chosen": 46.48416023729253,
698
+ "rewards/margins": -8972016.043036416,
699
+ "rewards/rejected": 8972062.527196653,
700
+ "step": 225
701
+ },
702
+ {
703
+ "epoch": 0.2873204247345409,
704
+ "grad_norm": 4.509027481079102,
705
+ "kl": 349.29998779296875,
706
+ "learning_rate": 4.970903776169403e-06,
707
+ "logits/chosen": 381775766.974359,
708
+ "logits/rejected": 486850426.796748,
709
+ "logps/chosen": -1601.6410256410256,
710
+ "logps/rejected": -1370.4065040650407,
711
+ "loss": 0.0894,
712
+ "rewards/chosen": 49.49356887686966,
713
+ "rewards/margins": -17199426.018626243,
714
+ "rewards/rejected": 17199475.51219512,
715
+ "step": 230
716
+ },
717
+ {
718
+ "epoch": 0.29356652092442226,
719
+ "grad_norm": 3.1007473468780518,
720
+ "kl": 356.6000061035156,
721
+ "learning_rate": 4.966608330212198e-06,
722
+ "logits/chosen": 246713048.94915253,
723
+ "logits/rejected": 590331098.2295082,
724
+ "logps/chosen": -1364.2033898305085,
725
+ "logps/rejected": -1417.967213114754,
726
+ "loss": 0.0745,
727
+ "rewards/chosen": 53.196975966631356,
728
+ "rewards/margins": -17711701.294827312,
729
+ "rewards/rejected": 17711754.491803277,
730
+ "step": 235
731
+ },
732
+ {
733
+ "epoch": 0.29981261711430357,
734
+ "grad_norm": 1.0693767070770264,
735
+ "kl": 363.70001220703125,
736
+ "learning_rate": 4.962019382530521e-06,
737
+ "logits/chosen": 238992315.73333332,
738
+ "logits/rejected": 727606886.4,
739
+ "logps/chosen": -1513.1291666666666,
740
+ "logps/rejected": -1630.2666666666667,
741
+ "loss": 0.1331,
742
+ "rewards/chosen": 52.389933268229164,
743
+ "rewards/margins": -38082861.74340007,
744
+ "rewards/rejected": 38082914.13333333,
745
+ "step": 240
746
+ },
747
+ {
748
+ "epoch": 0.3060587133041849,
749
+ "grad_norm": 1.2437098026275635,
750
+ "kl": 341.76666259765625,
751
+ "learning_rate": 4.957137479163253e-06,
752
+ "logits/chosen": 186218359.46666667,
753
+ "logits/rejected": 268291276.8,
754
+ "logps/chosen": -1443.6,
755
+ "logps/rejected": -1312.8666666666666,
756
+ "loss": 0.0924,
757
+ "rewards/chosen": 49.6269287109375,
758
+ "rewards/margins": -20172466.639737956,
759
+ "rewards/rejected": 20172516.266666666,
760
+ "step": 245
761
+ },
762
+ {
763
+ "epoch": 0.3123048094940662,
764
+ "grad_norm": 1.5108606815338135,
765
+ "kl": 359.4333190917969,
766
+ "learning_rate": 4.9519632010080765e-06,
767
+ "logits/chosen": 545861161.9672132,
768
+ "logits/rejected": 418665072.8135593,
769
+ "logps/chosen": -1472.9180327868853,
770
+ "logps/rejected": -1367.7288135593221,
771
+ "loss": 0.1153,
772
+ "rewards/chosen": 42.937391937756146,
773
+ "rewards/margins": -10470006.689726705,
774
+ "rewards/rejected": 10470049.627118643,
775
+ "step": 250
776
+ },
777
+ {
778
+ "epoch": 0.3185509056839475,
779
+ "grad_norm": 2.7949297428131104,
780
+ "kl": 338.8333435058594,
781
+ "learning_rate": 4.9464971637523465e-06,
782
+ "logits/chosen": 841517825.1583711,
783
+ "logits/rejected": 609372452.5714285,
784
+ "logps/chosen": -1627.2217194570135,
785
+ "logps/rejected": -1443.7065637065637,
786
+ "loss": 0.0885,
787
+ "rewards/chosen": 48.748851102941174,
788
+ "rewards/margins": -26131600.98087863,
789
+ "rewards/rejected": 26131649.72972973,
790
+ "step": 255
791
+ },
792
+ {
793
+ "epoch": 0.32479700187382887,
794
+ "grad_norm": 1.7337244749069214,
795
+ "kl": 370.8666687011719,
796
+ "learning_rate": 4.9407400177998335e-06,
797
+ "logits/chosen": 640891377.2510288,
798
+ "logits/rejected": 656771374.4472574,
799
+ "logps/chosen": -1558.2551440329219,
800
+ "logps/rejected": -1530.1940928270042,
801
+ "loss": 0.1031,
802
+ "rewards/chosen": 46.06944846322016,
803
+ "rewards/margins": -44654921.82928571,
804
+ "rewards/rejected": 44654967.898734175,
805
+ "step": 260
806
+ },
807
+ {
808
+ "epoch": 0.3310430980637102,
809
+ "grad_norm": 1.5853413343429565,
810
+ "kl": 369.3333435058594,
811
+ "learning_rate": 4.9346924481933345e-06,
812
+ "logits/chosen": 461213069.5529412,
813
+ "logits/rejected": 386304719.07555556,
814
+ "logps/chosen": -1592.2196078431373,
815
+ "logps/rejected": -1394.8444444444444,
816
+ "loss": 0.1039,
817
+ "rewards/chosen": 47.77142693014706,
818
+ "rewards/margins": -23714219.81968418,
819
+ "rewards/rejected": 23714267.591111112,
820
+ "step": 265
821
+ },
822
+ {
823
+ "epoch": 0.3372891942535915,
824
+ "grad_norm": 5.782619953155518,
825
+ "kl": 337.1666564941406,
826
+ "learning_rate": 4.928355174533153e-06,
827
+ "logits/chosen": 341149324.5023256,
828
+ "logits/rejected": 302084853.3735849,
829
+ "logps/chosen": -1583.739534883721,
830
+ "logps/rejected": -1379.622641509434,
831
+ "loss": 0.0806,
832
+ "rewards/chosen": 50.5806640625,
833
+ "rewards/margins": 121700.19575840211,
834
+ "rewards/rejected": -121649.61509433962,
835
+ "step": 270
836
+ },
837
+ {
838
+ "epoch": 0.3435352904434728,
839
+ "grad_norm": 2.3726727962493896,
840
+ "kl": 349.76666259765625,
841
+ "learning_rate": 4.9217289508914836e-06,
842
+ "logits/chosen": 311504913.88646287,
843
+ "logits/rejected": 560720794.0079681,
844
+ "logps/chosen": -1507.8427947598254,
845
+ "logps/rejected": -1589.9282868525897,
846
+ "loss": 0.0565,
847
+ "rewards/chosen": 49.57000972298035,
848
+ "rewards/margins": -21957986.318436492,
849
+ "rewards/rejected": 21958035.888446216,
850
+ "step": 275
851
+ },
852
+ {
853
+ "epoch": 0.3497813866333542,
854
+ "grad_norm": 0.7196549773216248,
855
+ "kl": 324.1666564941406,
856
+ "learning_rate": 4.914814565722671e-06,
857
+ "logits/chosen": 295960576.0,
858
+ "logits/rejected": 450128081.63779527,
859
+ "logps/chosen": -1468.7433628318583,
860
+ "logps/rejected": -1489.5118110236222,
861
+ "loss": 0.0737,
862
+ "rewards/chosen": 47.86092194413717,
863
+ "rewards/margins": -10037388.611519001,
864
+ "rewards/rejected": 10037436.472440945,
865
+ "step": 280
866
+ },
867
+ {
868
+ "epoch": 0.3560274828232355,
869
+ "grad_norm": 1.9283077716827393,
870
+ "kl": 367.9333190917969,
871
+ "learning_rate": 4.907612841769407e-06,
872
+ "logits/chosen": 423632864.1245136,
873
+ "logits/rejected": 392181530.40358746,
874
+ "logps/chosen": -1474.739299610895,
875
+ "logps/rejected": -1542.6726457399104,
876
+ "loss": 0.091,
877
+ "rewards/chosen": 51.97092731639105,
878
+ "rewards/margins": -1841733.7151713383,
879
+ "rewards/rejected": 1841785.6860986548,
880
+ "step": 285
881
+ },
882
+ {
883
+ "epoch": 0.3622735790131168,
884
+ "grad_norm": 1.7306408882141113,
885
+ "kl": 331.0666809082031,
886
+ "learning_rate": 4.900124635964823e-06,
887
+ "logits/chosen": 253768665.11392406,
888
+ "logits/rejected": 425903091.3580247,
889
+ "logps/chosen": -1416.5738396624472,
890
+ "logps/rejected": -1596.4444444444443,
891
+ "loss": 0.1082,
892
+ "rewards/chosen": 47.69798259493671,
893
+ "rewards/margins": -4647375.2485194625,
894
+ "rewards/rejected": 4647422.946502058,
895
+ "step": 290
896
+ },
897
+ {
898
+ "epoch": 0.3685196752029981,
899
+ "grad_norm": 1.1886324882507324,
900
+ "kl": 312.8833312988281,
901
+ "learning_rate": 4.8923508393305224e-06,
902
+ "logits/chosen": 333225353.84615386,
903
+ "logits/rejected": 267209547.29411766,
904
+ "logps/chosen": -1454.076923076923,
905
+ "logps/rejected": -1452.5294117647059,
906
+ "loss": 0.0691,
907
+ "rewards/chosen": 46.84036020132211,
908
+ "rewards/margins": -18551674.571404506,
909
+ "rewards/rejected": 18551721.411764707,
910
+ "step": 295
911
+ },
912
+ {
913
+ "epoch": 0.3747657713928795,
914
+ "grad_norm": 1.4832735061645508,
915
+ "kl": 345.0333251953125,
916
+ "learning_rate": 4.884292376870567e-06,
917
+ "logits/chosen": 251636303.26359832,
918
+ "logits/rejected": 135267391.73443982,
919
+ "logps/chosen": -1426.3430962343095,
920
+ "logps/rejected": -1469.609958506224,
921
+ "loss": 0.0914,
922
+ "rewards/chosen": 49.49623676124477,
923
+ "rewards/margins": -1139935.89795411,
924
+ "rewards/rejected": 1139985.3941908714,
925
+ "step": 300
926
+ },
927
+ {
928
+ "epoch": 0.3810118675827608,
929
+ "grad_norm": 2.8397765159606934,
930
+ "kl": 313.3333435058594,
931
+ "learning_rate": 4.875950207461403e-06,
932
+ "logits/chosen": 39220267.02521008,
933
+ "logits/rejected": -187643108.49586776,
934
+ "logps/chosen": -1383.6638655462184,
935
+ "logps/rejected": -1436.1652892561983,
936
+ "loss": 0.0686,
937
+ "rewards/chosen": 51.476660976890756,
938
+ "rewards/margins": -7085320.820859684,
939
+ "rewards/rejected": 7085372.297520661,
940
+ "step": 305
941
+ },
942
+ {
943
+ "epoch": 0.3872579637726421,
944
+ "grad_norm": 1.789415717124939,
945
+ "kl": 348.8333435058594,
946
+ "learning_rate": 4.867325323737765e-06,
947
+ "logits/chosen": 47862690.167330675,
948
+ "logits/rejected": -399679166.04366815,
949
+ "logps/chosen": -1544.5418326693227,
950
+ "logps/rejected": -1370.480349344978,
951
+ "loss": 0.1215,
952
+ "rewards/chosen": 53.38380073456175,
953
+ "rewards/margins": -2953413.0266796146,
954
+ "rewards/rejected": 2953466.4104803493,
955
+ "step": 310
956
+ },
957
+ {
958
+ "epoch": 0.3935040599625234,
959
+ "grad_norm": 2.056408643722534,
960
+ "kl": 353.8999938964844,
961
+ "learning_rate": 4.858418751974564e-06,
962
+ "logits/chosen": 163274429.48031497,
963
+ "logits/rejected": -516202133.5221239,
964
+ "logps/chosen": -1566.1102362204724,
965
+ "logps/rejected": -1494.4424778761063,
966
+ "loss": 0.1019,
967
+ "rewards/chosen": 53.50947342519685,
968
+ "rewards/margins": -18813197.322384983,
969
+ "rewards/rejected": 18813250.831858408,
970
+ "step": 315
971
+ },
972
+ {
973
+ "epoch": 0.3997501561524047,
974
+ "grad_norm": 1.931511402130127,
975
+ "kl": 337.4333190917969,
976
+ "learning_rate": 4.849231551964771e-06,
977
+ "logits/chosen": 35473859.25423729,
978
+ "logits/rejected": -309613551.21311474,
979
+ "logps/chosen": -1304.7457627118645,
980
+ "logps/rejected": -1470.0983606557377,
981
+ "loss": 0.0629,
982
+ "rewards/chosen": 45.01601810778602,
983
+ "rewards/margins": -11103810.197096646,
984
+ "rewards/rejected": 11103855.213114753,
985
+ "step": 320
986
+ },
987
+ {
988
+ "epoch": 0.4059962523422861,
989
+ "grad_norm": 1.5798239707946777,
990
+ "kl": 345.73333740234375,
991
+ "learning_rate": 4.839764816893315e-06,
992
+ "logits/chosen": 356868378.48275864,
993
+ "logits/rejected": -383262984.2580645,
994
+ "logps/chosen": -1635.3103448275863,
995
+ "logps/rejected": -1358.967741935484,
996
+ "loss": 0.0973,
997
+ "rewards/chosen": 44.951710668103445,
998
+ "rewards/margins": -22694117.628934495,
999
+ "rewards/rejected": 22694162.580645163,
1000
+ "step": 325
1001
+ },
1002
+ {
1003
+ "epoch": 0.4122423485321674,
1004
+ "grad_norm": 2.102696418762207,
1005
+ "kl": 361.3666687011719,
1006
+ "learning_rate": 4.830019673206997e-06,
1007
+ "logits/chosen": 375195714.0645161,
1008
+ "logits/rejected": -311598821.51724136,
1009
+ "logps/chosen": -1594.3225806451612,
1010
+ "logps/rejected": -1432.8275862068965,
1011
+ "loss": 0.0887,
1012
+ "rewards/chosen": 51.812842584425404,
1013
+ "rewards/margins": -5921475.911295347,
1014
+ "rewards/rejected": 5921527.724137931,
1015
+ "step": 330
1016
+ },
1017
+ {
1018
+ "epoch": 0.4184884447220487,
1019
+ "grad_norm": 2.166639566421509,
1020
+ "kl": 345.79998779296875,
1021
+ "learning_rate": 4.8199972804804615e-06,
1022
+ "logits/chosen": 103189217.94331984,
1023
+ "logits/rejected": -472300231.9656652,
1024
+ "logps/chosen": -1557.5060728744938,
1025
+ "logps/rejected": -1455.519313304721,
1026
+ "loss": 0.1055,
1027
+ "rewards/chosen": 48.8040193256579,
1028
+ "rewards/margins": -8893623.573663076,
1029
+ "rewards/rejected": 8893672.377682403,
1030
+ "step": 335
1031
+ },
1032
+ {
1033
+ "epoch": 0.42473454091193,
1034
+ "grad_norm": 2.084704875946045,
1035
+ "kl": 367.1666564941406,
1036
+ "learning_rate": 4.809698831278217e-06,
1037
+ "logits/chosen": 46631794.47154471,
1038
+ "logits/rejected": -579562294.7008547,
1039
+ "logps/chosen": -1487.3495934959349,
1040
+ "logps/rejected": -1438.4957264957266,
1041
+ "loss": 0.1104,
1042
+ "rewards/chosen": 54.046732088414636,
1043
+ "rewards/margins": 3384455.551005593,
1044
+ "rewards/rejected": -3384401.5042735045,
1045
+ "step": 340
1046
+ },
1047
+ {
1048
+ "epoch": 0.4309806371018114,
1049
+ "grad_norm": 1.7686203718185425,
1050
+ "kl": 361.9333190917969,
1051
+ "learning_rate": 4.799125551012731e-06,
1052
+ "logits/chosen": 187324373.1548117,
1053
+ "logits/rejected": -473956352.0,
1054
+ "logps/chosen": -1488.4686192468619,
1055
+ "logps/rejected": -1503.1369294605809,
1056
+ "loss": 0.0718,
1057
+ "rewards/chosen": 51.36217802039749,
1058
+ "rewards/margins": -14683061.268527374,
1059
+ "rewards/rejected": 14683112.630705394,
1060
+ "step": 345
1061
+ },
1062
+ {
1063
+ "epoch": 0.4372267332916927,
1064
+ "grad_norm": 1.8258565664291382,
1065
+ "kl": 373.1333312988281,
1066
+ "learning_rate": 4.788278697798619e-06,
1067
+ "logits/chosen": 254064045.41935483,
1068
+ "logits/rejected": -444822210.20689654,
1069
+ "logps/chosen": -1586.1935483870968,
1070
+ "logps/rejected": -1342.0689655172414,
1071
+ "loss": 0.1023,
1072
+ "rewards/chosen": 57.96908470892137,
1073
+ "rewards/margins": -6941889.617122187,
1074
+ "rewards/rejected": 6941947.586206896,
1075
+ "step": 350
1076
+ },
1077
+ {
1078
+ "epoch": 0.443472829481574,
1079
+ "grad_norm": 2.480158567428589,
1080
+ "kl": 339.4333190917969,
1081
+ "learning_rate": 4.77715956230294e-06,
1082
+ "logits/chosen": -27441811.525423728,
1083
+ "logits/rejected": -414471151.21311474,
1084
+ "logps/chosen": -1416.915254237288,
1085
+ "logps/rejected": -1494.950819672131,
1086
+ "loss": 0.1236,
1087
+ "rewards/chosen": 53.628765558792374,
1088
+ "rewards/margins": -2121243.682709851,
1089
+ "rewards/rejected": 2121297.3114754097,
1090
+ "step": 355
1091
+ },
1092
+ {
1093
+ "epoch": 0.4497189256714553,
1094
+ "grad_norm": 2.491856813430786,
1095
+ "kl": 345.29998779296875,
1096
+ "learning_rate": 4.765769467591626e-06,
1097
+ "logits/chosen": 31055325.866666667,
1098
+ "logits/rejected": -794077866.6666666,
1099
+ "logps/chosen": -1370.2666666666667,
1100
+ "logps/rejected": -1355.0666666666666,
1101
+ "loss": 0.0978,
1102
+ "rewards/chosen": 55.763850911458334,
1103
+ "rewards/margins": 1939260.5638509116,
1104
+ "rewards/rejected": -1939204.8,
1105
+ "step": 360
1106
+ },
1107
+ {
1108
+ "epoch": 0.45596502186133664,
1109
+ "grad_norm": 1.9237349033355713,
1110
+ "kl": 356.79998779296875,
1111
+ "learning_rate": 4.75410976897204e-06,
1112
+ "logits/chosen": 18777031.83122363,
1113
+ "logits/rejected": -744350875.9176955,
1114
+ "logps/chosen": -1626.464135021097,
1115
+ "logps/rejected": -1527.3086419753085,
1116
+ "loss": 0.0933,
1117
+ "rewards/chosen": 58.655549512130804,
1118
+ "rewards/margins": -8199585.525520447,
1119
+ "rewards/rejected": 8199644.181069959,
1120
+ "step": 365
1121
+ },
1122
+ {
1123
+ "epoch": 0.462211118051218,
1124
+ "grad_norm": 1.0969043970108032,
1125
+ "kl": 337.0666809082031,
1126
+ "learning_rate": 4.742181853831721e-06,
1127
+ "logits/chosen": -78409220.23140496,
1128
+ "logits/rejected": -775291981.4453782,
1129
+ "logps/chosen": -1493.0247933884298,
1130
+ "logps/rejected": -1540.5042016806722,
1131
+ "loss": 0.0874,
1132
+ "rewards/chosen": 53.18406185433884,
1133
+ "rewards/margins": 5562913.822717316,
1134
+ "rewards/rejected": -5562860.638655462,
1135
+ "step": 370
1136
+ },
1137
+ {
1138
+ "epoch": 0.4684572142410993,
1139
+ "grad_norm": 0.9217363595962524,
1140
+ "kl": 320.29998779296875,
1141
+ "learning_rate": 4.729987141473286e-06,
1142
+ "logits/chosen": -225435484.812749,
1143
+ "logits/rejected": -1214406691.7729259,
1144
+ "logps/chosen": -1473.1474103585658,
1145
+ "logps/rejected": -1494.2183406113538,
1146
+ "loss": 0.1034,
1147
+ "rewards/chosen": 45.022698269422314,
1148
+ "rewards/margins": -20387059.396515705,
1149
+ "rewards/rejected": 20387104.419213973,
1150
+ "step": 375
1151
+ },
1152
+ {
1153
+ "epoch": 0.47470331043098063,
1154
+ "grad_norm": 1.943109393119812,
1155
+ "kl": 350.0333251953125,
1156
+ "learning_rate": 4.717527082945555e-06,
1157
+ "logits/chosen": -90390528.0,
1158
+ "logits/rejected": -1083253906.2857144,
1159
+ "logps/chosen": -1475.875,
1160
+ "logps/rejected": -1701.142857142857,
1161
+ "loss": 0.1113,
1162
+ "rewards/chosen": 54.31856155395508,
1163
+ "rewards/margins": -1936764.824295589,
1164
+ "rewards/rejected": 1936819.142857143,
1165
+ "step": 380
1166
+ },
1167
+ {
1168
+ "epoch": 0.48094940662086194,
1169
+ "grad_norm": 2.9538779258728027,
1170
+ "kl": 337.5,
1171
+ "learning_rate": 4.704803160870888e-06,
1172
+ "logits/chosen": -34277903.650655024,
1173
+ "logits/rejected": -937418588.812749,
1174
+ "logps/chosen": -1378.8646288209607,
1175
+ "logps/rejected": -1622.9482071713148,
1176
+ "loss": 0.07,
1177
+ "rewards/chosen": 49.1605016716703,
1178
+ "rewards/margins": -2133147.2060321933,
1179
+ "rewards/rejected": 2133196.3665338648,
1180
+ "step": 385
1181
+ },
1182
+ {
1183
+ "epoch": 0.4871955028107433,
1184
+ "grad_norm": 2.6595630645751953,
1185
+ "kl": 388.5666809082031,
1186
+ "learning_rate": 4.69181688926877e-06,
1187
+ "logits/chosen": -68481698.44176707,
1188
+ "logits/rejected": -716681269.1948051,
1189
+ "logps/chosen": -1465.9598393574297,
1190
+ "logps/rejected": -1529.8354978354978,
1191
+ "loss": 0.1118,
1192
+ "rewards/chosen": 59.72445641942771,
1193
+ "rewards/margins": -2215760.7430760483,
1194
+ "rewards/rejected": 2215820.4675324676,
1195
+ "step": 390
1196
+ },
1197
+ {
1198
+ "epoch": 0.4934415990006246,
1199
+ "grad_norm": 1.581071376800537,
1200
+ "kl": 343.0,
1201
+ "learning_rate": 4.678569813375654e-06,
1202
+ "logits/chosen": -185697343.0900474,
1203
+ "logits/rejected": -681059857.1301116,
1204
+ "logps/chosen": -1491.4881516587677,
1205
+ "logps/rejected": -1469.5018587360594,
1206
+ "loss": 0.0735,
1207
+ "rewards/chosen": 55.95927595527251,
1208
+ "rewards/margins": 8371792.702770379,
1209
+ "rewards/rejected": -8371736.743494424,
1210
+ "step": 395
1211
+ },
1212
+ {
1213
+ "epoch": 0.49968769519050593,
1214
+ "grad_norm": 1.2356195449829102,
1215
+ "kl": 371.3666687011719,
1216
+ "learning_rate": 4.665063509461098e-06,
1217
+ "logits/chosen": -118915627.38983051,
1218
+ "logits/rejected": -537414538.4918033,
1219
+ "logps/chosen": -1546.7796610169491,
1220
+ "logps/rejected": -1465.5081967213114,
1221
+ "loss": 0.0858,
1222
+ "rewards/chosen": 58.09507829051907,
1223
+ "rewards/margins": 6046328.521307799,
1224
+ "rewards/rejected": -6046270.426229509,
1225
+ "step": 400
1226
+ },
1227
+ {
1228
+ "epoch": 0.49968769519050593,
1229
+ "eval_kl": 370.019775390625,
1230
+ "eval_logits/chosen": -210247537.3926499,
1231
+ "eval_logits/rejected": -512924984.37171715,
1232
+ "eval_logps/chosen": -1478.0309477756286,
1233
+ "eval_logps/rejected": -1445.3737373737374,
1234
+ "eval_loss": 0.08667240291833878,
1235
+ "eval_rewards/chosen": 53.16212826402321,
1236
+ "eval_rewards/margins": 7052260.483340385,
1237
+ "eval_rewards/rejected": -7052207.321212121,
1238
+ "eval_runtime": 640.6043,
1239
+ "eval_samples_per_second": 6.314,
1240
+ "eval_steps_per_second": 0.395,
1241
+ "step": 400
1242
+ },
1243
+ {
1244
+ "epoch": 0.5059337913803873,
1245
+ "grad_norm": 1.3852691650390625,
1246
+ "kl": 372.70001220703125,
1247
+ "learning_rate": 4.651299584640198e-06,
1248
+ "logits/chosen": -246257647.3495935,
1249
+ "logits/rejected": -504503969.9145299,
1250
+ "logps/chosen": -1464.1951219512196,
1251
+ "logps/rejected": -1501.8119658119658,
1252
+ "loss": 0.1236,
1253
+ "rewards/chosen": 42.6781035632622,
1254
+ "rewards/margins": 18530582.98579587,
1255
+ "rewards/rejected": -18530540.307692308,
1256
+ "step": 405
1257
+ },
1258
+ {
1259
+ "epoch": 0.5121798875702686,
1260
+ "grad_norm": 2.134881019592285,
1261
+ "kl": 359.29998779296875,
1262
+ "learning_rate": 4.637279676682367e-06,
1263
+ "logits/chosen": -342756045.2320675,
1264
+ "logits/rejected": -462322768.06584364,
1265
+ "logps/chosen": -1523.1729957805908,
1266
+ "logps/rejected": -1381.0041152263375,
1267
+ "loss": 0.0915,
1268
+ "rewards/chosen": 51.85403893064346,
1269
+ "rewards/margins": -1119816.1953437852,
1270
+ "rewards/rejected": 1119868.049382716,
1271
+ "step": 410
1272
+ },
1273
+ {
1274
+ "epoch": 0.5184259837601499,
1275
+ "grad_norm": 1.7998765707015991,
1276
+ "kl": 375.6666564941406,
1277
+ "learning_rate": 4.623005453816447e-06,
1278
+ "logits/chosen": -257030625.40239045,
1279
+ "logits/rejected": -576705352.6637554,
1280
+ "logps/chosen": -1588.398406374502,
1281
+ "logps/rejected": -1496.3842794759826,
1282
+ "loss": 0.1064,
1283
+ "rewards/chosen": 55.176921221364545,
1284
+ "rewards/margins": 15692810.460764015,
1285
+ "rewards/rejected": -15692755.283842795,
1286
+ "step": 415
1287
+ },
1288
+ {
1289
+ "epoch": 0.5246720799500312,
1290
+ "grad_norm": 1.7100578546524048,
1291
+ "kl": 369.79998779296875,
1292
+ "learning_rate": 4.608478614532215e-06,
1293
+ "logits/chosen": -132033194.66666667,
1294
+ "logits/rejected": -565794133.3333334,
1295
+ "logps/chosen": -1572.2666666666667,
1296
+ "logps/rejected": -1489.4666666666667,
1297
+ "loss": 0.0754,
1298
+ "rewards/chosen": 50.544681803385416,
1299
+ "rewards/margins": 18390476.144681804,
1300
+ "rewards/rejected": -18390425.6,
1301
+ "step": 420
1302
+ },
1303
+ {
1304
+ "epoch": 0.5309181761399125,
1305
+ "grad_norm": 2.343752145767212,
1306
+ "kl": 354.6000061035156,
1307
+ "learning_rate": 4.59370088737827e-06,
1308
+ "logits/chosen": -96648747.88571429,
1309
+ "logits/rejected": -456213107.4723404,
1310
+ "logps/chosen": -1476.7020408163266,
1311
+ "logps/rejected": -1570.4510638297872,
1312
+ "loss": 0.09,
1313
+ "rewards/chosen": 49.13263711734694,
1314
+ "rewards/margins": 19609119.702849884,
1315
+ "rewards/rejected": -19609070.570212767,
1316
+ "step": 425
1317
+ },
1318
+ {
1319
+ "epoch": 0.5371642723297939,
1320
+ "grad_norm": 1.4434489011764526,
1321
+ "kl": 314.0666809082031,
1322
+ "learning_rate": 4.578674030756364e-06,
1323
+ "logits/chosen": -89136869.51724137,
1324
+ "logits/rejected": -684162014.967742,
1325
+ "logps/chosen": -1368.1379310344828,
1326
+ "logps/rejected": -1453.4193548387098,
1327
+ "loss": 0.0911,
1328
+ "rewards/chosen": 39.44354037580819,
1329
+ "rewards/margins": 13124843.572572634,
1330
+ "rewards/rejected": -13124804.129032258,
1331
+ "step": 430
1332
+ },
1333
+ {
1334
+ "epoch": 0.5434103685196752,
1335
+ "grad_norm": 1.5906319618225098,
1336
+ "kl": 351.6000061035156,
1337
+ "learning_rate": 4.5633998327121595e-06,
1338
+ "logits/chosen": -210262649.3172691,
1339
+ "logits/rejected": -455542721.93939394,
1340
+ "logps/chosen": -1494.29718875502,
1341
+ "logps/rejected": -1558.5800865800866,
1342
+ "loss": 0.1078,
1343
+ "rewards/chosen": 57.3788827183735,
1344
+ "rewards/margins": 11366640.236025576,
1345
+ "rewards/rejected": -11366582.857142856,
1346
+ "step": 435
1347
+ },
1348
+ {
1349
+ "epoch": 0.5496564647095565,
1350
+ "grad_norm": 0.6508600115776062,
1351
+ "kl": 353.76666259765625,
1352
+ "learning_rate": 4.54788011072248e-06,
1353
+ "logits/chosen": -370147328.0,
1354
+ "logits/rejected": -258707238.66122448,
1355
+ "logps/chosen": -1327.1148936170214,
1356
+ "logps/rejected": -1479.7714285714285,
1357
+ "loss": 0.0935,
1358
+ "rewards/chosen": 56.83659408244681,
1359
+ "rewards/margins": -5150336.110344693,
1360
+ "rewards/rejected": 5150392.9469387755,
1361
+ "step": 440
1362
+ },
1363
+ {
1364
+ "epoch": 0.5559025608994379,
1365
+ "grad_norm": 2.842862606048584,
1366
+ "kl": 358.98333740234375,
1367
+ "learning_rate": 4.532116711479039e-06,
1368
+ "logits/chosen": -289068373.3333333,
1369
+ "logits/rejected": -292463082.1196581,
1370
+ "logps/chosen": -1573.7886178861788,
1371
+ "logps/rejected": -1477.8803418803418,
1372
+ "loss": 0.0997,
1373
+ "rewards/chosen": 52.84806910569106,
1374
+ "rewards/margins": 18087146.454906713,
1375
+ "rewards/rejected": -18087093.606837608,
1376
+ "step": 445
1377
+ },
1378
+ {
1379
+ "epoch": 0.5621486570893192,
1380
+ "grad_norm": 1.5763447284698486,
1381
+ "kl": 379.70001220703125,
1382
+ "learning_rate": 4.516111510668707e-06,
1383
+ "logits/chosen": -332198668.94941634,
1384
+ "logits/rejected": -401510565.30941707,
1385
+ "logps/chosen": -1566.7548638132296,
1386
+ "logps/rejected": -1400.7533632286995,
1387
+ "loss": 0.1167,
1388
+ "rewards/chosen": 60.13694674124513,
1389
+ "rewards/margins": 37355274.77371804,
1390
+ "rewards/rejected": -37355214.6367713,
1391
+ "step": 450
1392
+ },
1393
+ {
1394
+ "epoch": 0.5683947532792005,
1395
+ "grad_norm": 2.1485183238983154,
1396
+ "kl": 345.0,
1397
+ "learning_rate": 4.499866412750324e-06,
1398
+ "logits/chosen": -337919572.59130436,
1399
+ "logits/rejected": -610292203.52,
1400
+ "logps/chosen": -1506.0869565217392,
1401
+ "logps/rejected": -1416.576,
1402
+ "loss": 0.0855,
1403
+ "rewards/chosen": 42.14344429347826,
1404
+ "rewards/margins": 16386423.967444293,
1405
+ "rewards/rejected": -16386381.824,
1406
+ "step": 455
1407
+ },
1408
+ {
1409
+ "epoch": 0.5746408494690818,
1410
+ "grad_norm": 2.107536792755127,
1411
+ "kl": 378.3666687011719,
1412
+ "learning_rate": 4.4833833507280884e-06,
1413
+ "logits/chosen": -258783879.13754648,
1414
+ "logits/rejected": -399432912.6824645,
1415
+ "logps/chosen": -1535.1672862453531,
1416
+ "logps/rejected": -1555.8483412322275,
1417
+ "loss": 0.1178,
1418
+ "rewards/chosen": 57.77426158805762,
1419
+ "rewards/margins": 38428579.328763954,
1420
+ "rewards/rejected": -38428521.55450237,
1421
+ "step": 460
1422
+ },
1423
+ {
1424
+ "epoch": 0.5808869456589631,
1425
+ "grad_norm": 3.102811336517334,
1426
+ "kl": 390.3666687011719,
1427
+ "learning_rate": 4.466664285921543e-06,
1428
+ "logits/chosen": -51058047.02290076,
1429
+ "logits/rejected": -438891585.7614679,
1430
+ "logps/chosen": -1564.824427480916,
1431
+ "logps/rejected": -1454.4587155963302,
1432
+ "loss": 0.1278,
1433
+ "rewards/chosen": 65.5237058683206,
1434
+ "rewards/margins": 23682733.560403116,
1435
+ "rewards/rejected": -23682668.036697246,
1436
+ "step": 465
1437
+ },
1438
+ {
1439
+ "epoch": 0.5871330418488445,
1440
+ "grad_norm": 0.9413681626319885,
1441
+ "kl": 328.9333190917969,
1442
+ "learning_rate": 4.4497112077322045e-06,
1443
+ "logits/chosen": -152921083.60515022,
1444
+ "logits/rejected": -376898862.6396761,
1445
+ "logps/chosen": -1384.6523605150214,
1446
+ "logps/rejected": -1450.1052631578948,
1447
+ "loss": 0.0891,
1448
+ "rewards/chosen": 47.79664028969957,
1449
+ "rewards/margins": 6825927.63469697,
1450
+ "rewards/rejected": -6825879.83805668,
1451
+ "step": 470
1452
+ },
1453
+ {
1454
+ "epoch": 0.5933791380387258,
1455
+ "grad_norm": 2.5080554485321045,
1456
+ "kl": 356.1666564941406,
1457
+ "learning_rate": 4.432526133406843e-06,
1458
+ "logits/chosen": -447649817.70711297,
1459
+ "logits/rejected": -445022615.90041494,
1460
+ "logps/chosen": -1432.1004184100418,
1461
+ "logps/rejected": -1572.5145228215767,
1462
+ "loss": 0.0826,
1463
+ "rewards/chosen": 55.74282492154812,
1464
+ "rewards/margins": 9518347.128717037,
1465
+ "rewards/rejected": -9518291.385892116,
1466
+ "step": 475
1467
+ },
1468
+ {
1469
+ "epoch": 0.5996252342286071,
1470
+ "grad_norm": 1.6492382287979126,
1471
+ "kl": 355.1333312988281,
1472
+ "learning_rate": 4.415111107797445e-06,
1473
+ "logits/chosen": -344561655.84063745,
1474
+ "logits/rejected": -424582846.04366815,
1475
+ "logps/chosen": -1563.6653386454184,
1476
+ "logps/rejected": -1488.9082969432313,
1477
+ "loss": 0.1065,
1478
+ "rewards/chosen": 47.48057768924303,
1479
+ "rewards/margins": 6437849.401975069,
1480
+ "rewards/rejected": -6437801.92139738,
1481
+ "step": 480
1482
+ },
1483
+ {
1484
+ "epoch": 0.6058713304184884,
1485
+ "grad_norm": 3.074094533920288,
1486
+ "kl": 381.9333190917969,
1487
+ "learning_rate": 4.397468203117905e-06,
1488
+ "logits/chosen": -288593281.024,
1489
+ "logits/rejected": -461102177.9478261,
1490
+ "logps/chosen": -1617.92,
1491
+ "logps/rejected": -1586.3652173913044,
1492
+ "loss": 0.0895,
1493
+ "rewards/chosen": 55.55388671875,
1494
+ "rewards/margins": -3992440.5852437164,
1495
+ "rewards/rejected": 3992496.139130435,
1496
+ "step": 485
1497
+ },
1498
+ {
1499
+ "epoch": 0.6121174266083698,
1500
+ "grad_norm": 1.6913539171218872,
1501
+ "kl": 379.4666748046875,
1502
+ "learning_rate": 4.379599518697444e-06,
1503
+ "logits/chosen": -392446512.6692015,
1504
+ "logits/rejected": -512980774.9308756,
1505
+ "logps/chosen": -1402.1596958174905,
1506
+ "logps/rejected": -1331.0230414746543,
1507
+ "loss": 0.1057,
1508
+ "rewards/chosen": 50.04800751544677,
1509
+ "rewards/margins": 4576812.739251755,
1510
+ "rewards/rejected": -4576762.69124424,
1511
+ "step": 490
1512
+ },
1513
+ {
1514
+ "epoch": 0.6183635227982511,
1515
+ "grad_norm": 1.958149790763855,
1516
+ "kl": 344.79998779296875,
1517
+ "learning_rate": 4.3615071807308165e-06,
1518
+ "logits/chosen": -468381422.93333334,
1519
+ "logits/rejected": -774355899.7333333,
1520
+ "logps/chosen": -1462.5333333333333,
1521
+ "logps/rejected": -1496.6,
1522
+ "loss": 0.0993,
1523
+ "rewards/chosen": 55.822733561197914,
1524
+ "rewards/margins": 22640237.156066895,
1525
+ "rewards/rejected": -22640181.333333332,
1526
+ "step": 495
1527
+ },
1528
+ {
1529
+ "epoch": 0.6246096189881324,
1530
+ "grad_norm": 2.8394651412963867,
1531
+ "kl": 323.04998779296875,
1532
+ "learning_rate": 4.34319334202531e-06,
1533
+ "logits/chosen": -594912421.7095436,
1534
+ "logits/rejected": -977983582.2594142,
1535
+ "logps/chosen": -1415.966804979253,
1536
+ "logps/rejected": -1626.8451882845188,
1537
+ "loss": 0.0739,
1538
+ "rewards/chosen": 49.25540553682573,
1539
+ "rewards/margins": 6751152.18427583,
1540
+ "rewards/rejected": -6751102.928870293,
1541
+ "step": 500
1542
+ },
1543
+ {
1544
+ "epoch": 0.6308557151780138,
1545
+ "grad_norm": 1.808105230331421,
1546
+ "kl": 294.4166564941406,
1547
+ "learning_rate": 4.324660181744589e-06,
1548
+ "logits/chosen": -547166021.8181819,
1549
+ "logits/rejected": -1214759128.5286343,
1550
+ "logps/chosen": -1386.1185770750988,
1551
+ "logps/rejected": -1553.057268722467,
1552
+ "loss": 0.0818,
1553
+ "rewards/chosen": 58.81477349925889,
1554
+ "rewards/margins": 42604187.80155764,
1555
+ "rewards/rejected": -42604128.98678414,
1556
+ "step": 505
1557
+ },
1558
+ {
1559
+ "epoch": 0.637101811367895,
1560
+ "grad_norm": 2.6478588581085205,
1561
+ "kl": 282.5,
1562
+ "learning_rate": 4.305909905149389e-06,
1563
+ "logits/chosen": -299325648.97959185,
1564
+ "logits/rejected": -1448980323.1319149,
1565
+ "logps/chosen": -1492.6367346938775,
1566
+ "logps/rejected": -1649.8382978723405,
1567
+ "loss": 0.061,
1568
+ "rewards/chosen": 58.450175382653065,
1569
+ "rewards/margins": 16237909.684217935,
1570
+ "rewards/rejected": -16237851.234042553,
1571
+ "step": 510
1572
+ },
1573
+ {
1574
+ "epoch": 0.6433479075577764,
1575
+ "grad_norm": 2.0377795696258545,
1576
+ "kl": 277.3208312988281,
1577
+ "learning_rate": 4.2869447433351165e-06,
1578
+ "logits/chosen": -297782366.6554622,
1579
+ "logits/rejected": -1797935205.553719,
1580
+ "logps/chosen": -1581.7142857142858,
1581
+ "logps/rejected": -1638.3471074380166,
1582
+ "loss": 0.0794,
1583
+ "rewards/chosen": 51.58574054621849,
1584
+ "rewards/margins": 8687982.296484347,
1585
+ "rewards/rejected": -8687930.710743802,
1586
+ "step": 515
1587
+ },
1588
+ {
1589
+ "epoch": 0.6495940037476577,
1590
+ "grad_norm": 1.192832589149475,
1591
+ "kl": 161.88333129882812,
1592
+ "learning_rate": 4.267766952966369e-06,
1593
+ "logits/chosen": -465031805.15555555,
1594
+ "logits/rejected": -2354600024.345098,
1595
+ "logps/chosen": -1563.0222222222221,
1596
+ "logps/rejected": -1950.6196078431371,
1597
+ "loss": 0.0339,
1598
+ "rewards/chosen": 41.315043402777775,
1599
+ "rewards/margins": 4282941.393474775,
1600
+ "rewards/rejected": -4282900.0784313725,
1601
+ "step": 520
1602
+ },
1603
+ {
1604
+ "epoch": 0.655840099937539,
1605
+ "grad_norm": 2.186739206314087,
1606
+ "kl": 80.5999984741211,
1607
+ "learning_rate": 4.248378816008418e-06,
1608
+ "logits/chosen": -843879312.209607,
1609
+ "logits/rejected": -3130855766.6932273,
1610
+ "logps/chosen": -1512.3144104803494,
1611
+ "logps/rejected": -2192.191235059761,
1612
+ "loss": 0.0387,
1613
+ "rewards/chosen": 47.68359801446506,
1614
+ "rewards/margins": 26062714.13778128,
1615
+ "rewards/rejected": -26062666.454183266,
1616
+ "step": 525
1617
+ },
1618
+ {
1619
+ "epoch": 0.6620861961274204,
1620
+ "grad_norm": 1.2925801277160645,
1621
+ "kl": 111.38333129882812,
1622
+ "learning_rate": 4.228782639455674e-06,
1623
+ "logits/chosen": -785828956.2918454,
1624
+ "logits/rejected": -2260101559.449393,
1625
+ "logps/chosen": -1546.6437768240344,
1626
+ "logps/rejected": -2102.412955465587,
1627
+ "loss": 0.0262,
1628
+ "rewards/chosen": 46.72353641362661,
1629
+ "rewards/margins": 54497844.9421599,
1630
+ "rewards/rejected": -54497798.21862348,
1631
+ "step": 530
1632
+ },
1633
+ {
1634
+ "epoch": 0.6683322923173017,
1635
+ "grad_norm": 1.605604887008667,
1636
+ "kl": 66.55833435058594,
1637
+ "learning_rate": 4.2089807550571786e-06,
1638
+ "logits/chosen": -444578600.8739496,
1639
+ "logits/rejected": -2686018416.132231,
1640
+ "logps/chosen": -1527.5294117647059,
1641
+ "logps/rejected": -2166.7438016528927,
1642
+ "loss": 0.0224,
1643
+ "rewards/chosen": 52.38012900472689,
1644
+ "rewards/margins": 10841648.148724046,
1645
+ "rewards/rejected": -10841595.768595042,
1646
+ "step": 535
1647
+ },
1648
+ {
1649
+ "epoch": 0.674578388507183,
1650
+ "grad_norm": 0.6878402233123779,
1651
+ "kl": 81.24166870117188,
1652
+ "learning_rate": 4.188975519039151e-06,
1653
+ "logits/chosen": -626616434.688,
1654
+ "logits/rejected": -2936158688.8347826,
1655
+ "logps/chosen": -1452.16,
1656
+ "logps/rejected": -2022.9565217391305,
1657
+ "loss": 0.0303,
1658
+ "rewards/chosen": 50.23778515625,
1659
+ "rewards/margins": 3875481.1943068956,
1660
+ "rewards/rejected": -3875430.9565217393,
1661
+ "step": 540
1662
+ },
1663
+ {
1664
+ "epoch": 0.6808244846970644,
1665
+ "grad_norm": 3.325066566467285,
1666
+ "kl": 88.92082977294922,
1667
+ "learning_rate": 4.168769311824619e-06,
1668
+ "logits/chosen": -718940253.4771785,
1669
+ "logits/rejected": -2297285233.539749,
1670
+ "logps/chosen": -1545.0290456431535,
1671
+ "logps/rejected": -1931.6485355648535,
1672
+ "loss": 0.0296,
1673
+ "rewards/chosen": 48.45470532935685,
1674
+ "rewards/margins": 35838846.64717395,
1675
+ "rewards/rejected": -35838798.19246862,
1676
+ "step": 545
1677
+ },
1678
+ {
1679
+ "epoch": 0.6870705808869456,
1680
+ "grad_norm": 1.9588119983673096,
1681
+ "kl": 174.1750030517578,
1682
+ "learning_rate": 4.1483645377501726e-06,
1683
+ "logits/chosen": -284824458.7480916,
1684
+ "logits/rejected": -1198599327.706422,
1685
+ "logps/chosen": -1543.0839694656488,
1686
+ "logps/rejected": -1775.633027522936,
1687
+ "loss": 0.0587,
1688
+ "rewards/chosen": 39.873020783635496,
1689
+ "rewards/margins": -3450648.420557198,
1690
+ "rewards/rejected": 3450688.2935779816,
1691
+ "step": 550
1692
+ },
1693
+ {
1694
+ "epoch": 0.693316677076827,
1695
+ "grad_norm": 0.15676426887512207,
1696
+ "kl": 169.35833740234375,
1697
+ "learning_rate": 4.127763624779873e-06,
1698
+ "logits/chosen": -119682921.28138529,
1699
+ "logits/rejected": -928474042.0883534,
1700
+ "logps/chosen": -1460.5021645021645,
1701
+ "logps/rejected": -1611.9518072289156,
1702
+ "loss": 0.0322,
1703
+ "rewards/chosen": 50.89810775162338,
1704
+ "rewards/margins": -11360139.30269546,
1705
+ "rewards/rejected": 11360190.200803213,
1706
+ "step": 555
1707
+ },
1708
+ {
1709
+ "epoch": 0.6995627732667083,
1710
+ "grad_norm": 0.06072574853897095,
1711
+ "kl": 89.75833129882812,
1712
+ "learning_rate": 4.106969024216348e-06,
1713
+ "logits/chosen": -114480607.59493671,
1714
+ "logits/rejected": -2679107364.872428,
1715
+ "logps/chosen": -1609.3164556962026,
1716
+ "logps/rejected": -1946.732510288066,
1717
+ "loss": 0.0382,
1718
+ "rewards/chosen": 53.48231886207806,
1719
+ "rewards/margins": -20413582.46829842,
1720
+ "rewards/rejected": 20413635.950617284,
1721
+ "step": 560
1722
+ },
1723
+ {
1724
+ "epoch": 0.7058088694565896,
1725
+ "grad_norm": 1.8465758562088013,
1726
+ "kl": 24.049999237060547,
1727
+ "learning_rate": 4.085983210409114e-06,
1728
+ "logits/chosen": -160582556.6244726,
1729
+ "logits/rejected": -4038683239.2427983,
1730
+ "logps/chosen": -1587.9831223628692,
1731
+ "logps/rejected": -2597.135802469136,
1732
+ "loss": 0.0218,
1733
+ "rewards/chosen": 50.0565664556962,
1734
+ "rewards/margins": 1382332.5915458796,
1735
+ "rewards/rejected": -1382282.534979424,
1736
+ "step": 565
1737
+ },
1738
+ {
1739
+ "epoch": 0.712054965646471,
1740
+ "grad_norm": 0.00014929051394574344,
1741
+ "kl": 23.33333396911621,
1742
+ "learning_rate": 4.064808680460149e-06,
1743
+ "logits/chosen": -68750113.39130434,
1744
+ "logits/rejected": -3962644201.472,
1745
+ "logps/chosen": -1610.017391304348,
1746
+ "logps/rejected": -2563.84,
1747
+ "loss": 0.024,
1748
+ "rewards/chosen": 46.589041270380434,
1749
+ "rewards/margins": -8454041.60295873,
1750
+ "rewards/rejected": 8454088.192,
1751
+ "step": 570
1752
+ },
1753
+ {
1754
+ "epoch": 0.7183010618363522,
1755
+ "grad_norm": 0.03587708622217178,
1756
+ "kl": 22.733333587646484,
1757
+ "learning_rate": 4.043447953926763e-06,
1758
+ "logits/chosen": -123084586.29565218,
1759
+ "logits/rejected": -3554890743.808,
1760
+ "logps/chosen": -1611.9652173913043,
1761
+ "logps/rejected": -2491.136,
1762
+ "loss": 0.023,
1763
+ "rewards/chosen": 50.09292629076087,
1764
+ "rewards/margins": 7622541.740926291,
1765
+ "rewards/rejected": -7622491.648,
1766
+ "step": 575
1767
+ },
1768
+ {
1769
+ "epoch": 0.7245471580262336,
1770
+ "grad_norm": 0.06506123393774033,
1771
+ "kl": 25.579166412353516,
1772
+ "learning_rate": 4.021903572521802e-06,
1773
+ "logits/chosen": -45582472.53333333,
1774
+ "logits/rejected": -3599831313.0666666,
1775
+ "logps/chosen": -1660.9333333333334,
1776
+ "logps/rejected": -2363.4666666666667,
1777
+ "loss": 0.0177,
1778
+ "rewards/chosen": 51.65968424479167,
1779
+ "rewards/margins": -18986135.006982423,
1780
+ "rewards/rejected": 18986186.666666668,
1781
+ "step": 580
1782
+ },
1783
+ {
1784
+ "epoch": 0.730793254216115,
1785
+ "grad_norm": 0.004665783606469631,
1786
+ "kl": 13.354166984558105,
1787
+ "learning_rate": 4.000178099811203e-06,
1788
+ "logits/chosen": -82861664.73732719,
1789
+ "logits/rejected": -3341536610.311787,
1790
+ "logps/chosen": -1628.1658986175116,
1791
+ "logps/rejected": -2418.7376425855514,
1792
+ "loss": 0.0169,
1793
+ "rewards/chosen": 44.27093984014977,
1794
+ "rewards/margins": -4328426.603584874,
1795
+ "rewards/rejected": 4328470.874524714,
1796
+ "step": 585
1797
+ },
1798
+ {
1799
+ "epoch": 0.7370393504059962,
1800
+ "grad_norm": 0.7978938817977905,
1801
+ "kl": 21.72916603088379,
1802
+ "learning_rate": 3.978274120908957e-06,
1803
+ "logits/chosen": -186259499.94849786,
1804
+ "logits/rejected": -3371473252.534413,
1805
+ "logps/chosen": -1648.755364806867,
1806
+ "logps/rejected": -2399.093117408907,
1807
+ "loss": 0.0145,
1808
+ "rewards/chosen": 41.02078443535408,
1809
+ "rewards/margins": 4383058.478274315,
1810
+ "rewards/rejected": -4383017.457489879,
1811
+ "step": 590
1812
+ },
1813
+ {
1814
+ "epoch": 0.7432854465958776,
1815
+ "grad_norm": 0.05162600055336952,
1816
+ "kl": 55.141666412353516,
1817
+ "learning_rate": 3.956194242169506e-06,
1818
+ "logits/chosen": -199533438.92436975,
1819
+ "logits/rejected": -3286393170.512397,
1820
+ "logps/chosen": -1541.9159663865546,
1821
+ "logps/rejected": -2091.7685950413224,
1822
+ "loss": 0.0325,
1823
+ "rewards/chosen": 45.741264279149156,
1824
+ "rewards/margins": -4093033.7959258035,
1825
+ "rewards/rejected": 4093079.5371900825,
1826
+ "step": 595
1827
+ },
1828
+ {
1829
+ "epoch": 0.749531542785759,
1830
+ "grad_norm": 1.5164387226104736,
1831
+ "kl": 82.81666564941406,
1832
+ "learning_rate": 3.933941090877615e-06,
1833
+ "logits/chosen": -188560736.9531915,
1834
+ "logits/rejected": -2792379287.5102043,
1835
+ "logps/chosen": -1619.3361702127659,
1836
+ "logps/rejected": -2233.208163265306,
1837
+ "loss": 0.021,
1838
+ "rewards/chosen": 49.129488031914896,
1839
+ "rewards/margins": -826816.7643895191,
1840
+ "rewards/rejected": 826865.8938775511,
1841
+ "step": 600
1842
+ },
1843
+ {
1844
+ "epoch": 0.749531542785759,
1845
+ "eval_kl": 136.79397583007812,
1846
+ "eval_logits/chosen": -320818114.59961313,
1847
+ "eval_logits/rejected": -2315103287.8545456,
1848
+ "eval_logps/chosen": -1513.0328820116054,
1849
+ "eval_logps/rejected": -1956.0080808080809,
1850
+ "eval_loss": 0.02713991515338421,
1851
+ "eval_rewards/chosen": 50.27917976305609,
1852
+ "eval_rewards/margins": 11528678.772109056,
1853
+ "eval_rewards/rejected": -11528628.492929293,
1854
+ "eval_runtime": 640.8536,
1855
+ "eval_samples_per_second": 6.312,
1856
+ "eval_steps_per_second": 0.395,
1857
+ "step": 600
1858
+ },
1859
+ {
1860
+ "epoch": 0.7557776389756402,
1861
+ "grad_norm": 2.8158020973205566,
1862
+ "kl": 138.05416870117188,
1863
+ "learning_rate": 3.911517314935752e-06,
1864
+ "logits/chosen": -266606025.5319149,
1865
+ "logits/rejected": -2278140497.502041,
1866
+ "logps/chosen": -1721.9404255319148,
1867
+ "logps/rejected": -1823.3469387755101,
1868
+ "loss": 0.0452,
1869
+ "rewards/chosen": 49.07104803856383,
1870
+ "rewards/margins": 4880222.001660284,
1871
+ "rewards/rejected": -4880172.930612245,
1872
+ "step": 605
1873
+ },
1874
+ {
1875
+ "epoch": 0.7620237351655216,
1876
+ "grad_norm": 1.02464759349823,
1877
+ "kl": 175.93333435058594,
1878
+ "learning_rate": 3.888925582549006e-06,
1879
+ "logits/chosen": -262432676.79352227,
1880
+ "logits/rejected": -1933484137.476395,
1881
+ "logps/chosen": -1712.1943319838056,
1882
+ "logps/rejected": -1873.854077253219,
1883
+ "loss": 0.0411,
1884
+ "rewards/chosen": 50.334348114878544,
1885
+ "rewards/margins": 2964819.8450777284,
1886
+ "rewards/rejected": -2964769.5107296137,
1887
+ "step": 610
1888
+ },
1889
+ {
1890
+ "epoch": 0.7682698313554028,
1891
+ "grad_norm": 1.6535738706588745,
1892
+ "kl": 211.09165954589844,
1893
+ "learning_rate": 3.866168581907609e-06,
1894
+ "logits/chosen": -351476043.88932806,
1895
+ "logits/rejected": -1097745899.7004406,
1896
+ "logps/chosen": -1526.7667984189723,
1897
+ "logps/rejected": -1907.7004405286343,
1898
+ "loss": 0.0431,
1899
+ "rewards/chosen": 52.42443799407115,
1900
+ "rewards/margins": 19615485.164526097,
1901
+ "rewards/rejected": -19615432.740088105,
1902
+ "step": 615
1903
+ },
1904
+ {
1905
+ "epoch": 0.7745159275452842,
1906
+ "grad_norm": 1.2876919507980347,
1907
+ "kl": 227.76666259765625,
1908
+ "learning_rate": 3.8432490208670605e-06,
1909
+ "logits/chosen": -318065091.2542373,
1910
+ "logits/rejected": -671862179.6721312,
1911
+ "logps/chosen": -1523.2542372881355,
1912
+ "logps/rejected": -1821.377049180328,
1913
+ "loss": 0.0444,
1914
+ "rewards/chosen": 53.57854707362288,
1915
+ "rewards/margins": 4319505.644120844,
1916
+ "rewards/rejected": -4319452.065573771,
1917
+ "step": 620
1918
+ },
1919
+ {
1920
+ "epoch": 0.7807620237351656,
1921
+ "grad_norm": 2.2276229858398438,
1922
+ "kl": 182.30833435058594,
1923
+ "learning_rate": 3.82016962662592e-06,
1924
+ "logits/chosen": -279810331.1336405,
1925
+ "logits/rejected": -645603857.5209125,
1926
+ "logps/chosen": -1435.8709677419354,
1927
+ "logps/rejected": -1685.9011406844106,
1928
+ "loss": 0.0345,
1929
+ "rewards/chosen": 48.26090869815668,
1930
+ "rewards/margins": 16381825.051783223,
1931
+ "rewards/rejected": -16381776.790874524,
1932
+ "step": 625
1933
+ },
1934
+ {
1935
+ "epoch": 0.7870081199250468,
1936
+ "grad_norm": 2.2775721549987793,
1937
+ "kl": 211.5,
1938
+ "learning_rate": 3.796933145401304e-06,
1939
+ "logits/chosen": -10083805.866666667,
1940
+ "logits/rejected": -1062032725.3333334,
1941
+ "logps/chosen": -1574.8,
1942
+ "logps/rejected": -1685.7333333333333,
1943
+ "loss": 0.0462,
1944
+ "rewards/chosen": 56.797526041666664,
1945
+ "rewards/margins": -14378736.802473959,
1946
+ "rewards/rejected": 14378793.6,
1947
+ "step": 630
1948
+ },
1949
+ {
1950
+ "epoch": 0.7932542161149282,
1951
+ "grad_norm": 0.07378248870372772,
1952
+ "kl": 202.61666870117188,
1953
+ "learning_rate": 3.773542342102105e-06,
1954
+ "logits/chosen": -278961709.7886179,
1955
+ "logits/rejected": -1514538080.2735043,
1956
+ "logps/chosen": -1536.260162601626,
1957
+ "logps/rejected": -1685.8803418803418,
1958
+ "loss": 0.0386,
1959
+ "rewards/chosen": 51.39226054369919,
1960
+ "rewards/margins": 21470320.657217808,
1961
+ "rewards/rejected": -21470269.264957264,
1962
+ "step": 635
1963
+ },
1964
+ {
1965
+ "epoch": 0.7995003123048094,
1966
+ "grad_norm": 0.7576724290847778,
1967
+ "kl": 172.5416717529297,
1968
+ "learning_rate": 3.7500000000000005e-06,
1969
+ "logits/chosen": -356179968.0,
1970
+ "logits/rejected": -2250393892.571429,
1971
+ "logps/chosen": -1516.0,
1972
+ "logps/rejected": -1893.4285714285713,
1973
+ "loss": 0.051,
1974
+ "rewards/chosen": 53.19654846191406,
1975
+ "rewards/margins": 14372629.196548462,
1976
+ "rewards/rejected": -14372576.0,
1977
+ "step": 640
1978
+ },
1979
+ {
1980
+ "epoch": 0.8057464084946908,
1981
+ "grad_norm": 0.0,
1982
+ "kl": 102.68333435058594,
1983
+ "learning_rate": 3.7263089203982698e-06,
1984
+ "logits/chosen": 101189978.00913242,
1985
+ "logits/rejected": -2397663436.0153255,
1986
+ "logps/chosen": -1720.109589041096,
1987
+ "logps/rejected": -2050.206896551724,
1988
+ "loss": 0.0174,
1989
+ "rewards/chosen": 55.50405786244292,
1990
+ "rewards/margins": -22854268.971037924,
1991
+ "rewards/rejected": 22854324.475095786,
1992
+ "step": 645
1993
+ },
1994
+ {
1995
+ "epoch": 0.8119925046845722,
1996
+ "grad_norm": 1.2345607280731201,
1997
+ "kl": 101.40833282470703,
1998
+ "learning_rate": 3.7024719222984696e-06,
1999
+ "logits/chosen": 93082681.62770563,
2000
+ "logits/rejected": -2185956701.558233,
2001
+ "logps/chosen": -1410.3549783549784,
2002
+ "logps/rejected": -1973.0763052208836,
2003
+ "loss": 0.0334,
2004
+ "rewards/chosen": 41.46657281520563,
2005
+ "rewards/margins": 485957.8039222128,
2006
+ "rewards/rejected": -485916.3373493976,
2007
+ "step": 650
2008
+ },
2009
+ {
2010
+ "epoch": 0.8182386008744534,
2011
+ "grad_norm": 1.5449272394180298,
2012
+ "kl": 233.19166564941406,
2013
+ "learning_rate": 3.6784918420649952e-06,
2014
+ "logits/chosen": 125160275.22633745,
2015
+ "logits/rejected": -1470731812.7257383,
2016
+ "logps/chosen": -1487.8024691358025,
2017
+ "logps/rejected": -1760.4050632911392,
2018
+ "loss": 0.0414,
2019
+ "rewards/chosen": 51.10508696630659,
2020
+ "rewards/margins": -503803.34217041766,
2021
+ "rewards/rejected": 503854.44725738396,
2022
+ "step": 655
2023
+ },
2024
+ {
2025
+ "epoch": 0.8244846970643348,
2026
+ "grad_norm": 1.7102289199829102,
2027
+ "kl": 210.16250610351562,
2028
+ "learning_rate": 3.654371533087586e-06,
2029
+ "logits/chosen": -153904637.96015936,
2030
+ "logits/rejected": -1703949736.8034935,
2031
+ "logps/chosen": -1523.5059760956176,
2032
+ "logps/rejected": -1825.53711790393,
2033
+ "loss": 0.0511,
2034
+ "rewards/chosen": 51.47202595866534,
2035
+ "rewards/margins": -11561518.903519893,
2036
+ "rewards/rejected": 11561570.375545852,
2037
+ "step": 660
2038
+ },
2039
+ {
2040
+ "epoch": 0.8307307932542161,
2041
+ "grad_norm": 0.10204288363456726,
2042
+ "kl": 212.35833740234375,
2043
+ "learning_rate": 3.6301138654418e-06,
2044
+ "logits/chosen": -389819261.52895755,
2045
+ "logits/rejected": -1877226231.8914027,
2046
+ "logps/chosen": -1590.054054054054,
2047
+ "logps/rejected": -1905.6651583710407,
2048
+ "loss": 0.0442,
2049
+ "rewards/chosen": 55.06306180622587,
2050
+ "rewards/margins": 49894978.64677221,
2051
+ "rewards/rejected": -49894923.58371041,
2052
+ "step": 665
2053
+ },
2054
+ {
2055
+ "epoch": 0.8369768894440974,
2056
+ "grad_norm": 0.03783709183335304,
2057
+ "kl": 169.375,
2058
+ "learning_rate": 3.6057217255475034e-06,
2059
+ "logits/chosen": -503698552.22672063,
2060
+ "logits/rejected": -2175421672.9270387,
2061
+ "logps/chosen": -1393.748987854251,
2062
+ "logps/rejected": -1875.9141630901288,
2063
+ "loss": 0.0245,
2064
+ "rewards/chosen": 55.69806427125506,
2065
+ "rewards/margins": 31500282.170167275,
2066
+ "rewards/rejected": -31500226.472103003,
2067
+ "step": 670
2068
+ },
2069
+ {
2070
+ "epoch": 0.8432229856339788,
2071
+ "grad_norm": 2.866633892059326,
2072
+ "kl": 166.69166564941406,
2073
+ "learning_rate": 3.5811980158254156e-06,
2074
+ "logits/chosen": -492701266.1728395,
2075
+ "logits/rejected": -2529324589.367089,
2076
+ "logps/chosen": -1534.3539094650205,
2077
+ "logps/rejected": -1847.223628691983,
2078
+ "loss": 0.071,
2079
+ "rewards/chosen": 47.784866898148145,
2080
+ "rewards/margins": 21554439.818622172,
2081
+ "rewards/rejected": -21554392.033755273,
2082
+ "step": 675
2083
+ },
2084
+ {
2085
+ "epoch": 0.84946908182386,
2086
+ "grad_norm": 0.18893325328826904,
2087
+ "kl": 127.42500305175781,
2088
+ "learning_rate": 3.556545654351749e-06,
2089
+ "logits/chosen": -482326881.1034483,
2090
+ "logits/rejected": -2595327075.096774,
2091
+ "logps/chosen": -1636.4137931034484,
2092
+ "logps/rejected": -1988.774193548387,
2093
+ "loss": 0.0159,
2094
+ "rewards/chosen": 48.64041453394397,
2095
+ "rewards/margins": 6761048.89847905,
2096
+ "rewards/rejected": -6761000.258064516,
2097
+ "step": 680
2098
+ },
2099
+ {
2100
+ "epoch": 0.8557151780137414,
2101
+ "grad_norm": 0.03448840603232384,
2102
+ "kl": 138.22084045410156,
2103
+ "learning_rate": 3.531767574510987e-06,
2104
+ "logits/chosen": -554006615.5213675,
2105
+ "logits/rejected": -2420829508.6829267,
2106
+ "logps/chosen": -1462.837606837607,
2107
+ "logps/rejected": -2026.1463414634147,
2108
+ "loss": 0.0316,
2109
+ "rewards/chosen": 49.53289847088675,
2110
+ "rewards/margins": 21187200.622329365,
2111
+ "rewards/rejected": -21187151.089430895,
2112
+ "step": 685
2113
+ },
2114
+ {
2115
+ "epoch": 0.8619612742036228,
2116
+ "grad_norm": 1.088128685951233,
2117
+ "kl": 189.2083282470703,
2118
+ "learning_rate": 3.5068667246468437e-06,
2119
+ "logits/chosen": -323208633.2357724,
2120
+ "logits/rejected": -1934111875.2820513,
2121
+ "logps/chosen": -1403.5772357723577,
2122
+ "logps/rejected": -1723.3504273504273,
2123
+ "loss": 0.0325,
2124
+ "rewards/chosen": 49.48591526930894,
2125
+ "rewards/margins": -771720.4969907135,
2126
+ "rewards/rejected": 771769.9829059829,
2127
+ "step": 690
2128
+ },
2129
+ {
2130
+ "epoch": 0.868207370393504,
2131
+ "grad_norm": 2.381688117980957,
2132
+ "kl": 228.81666564941406,
2133
+ "learning_rate": 3.481846067711436e-06,
2134
+ "logits/chosen": -274805228.87966806,
2135
+ "logits/rejected": -1835806497.205021,
2136
+ "logps/chosen": -1443.3858921161825,
2137
+ "logps/rejected": -1687.0292887029289,
2138
+ "loss": 0.0513,
2139
+ "rewards/chosen": 49.824506450985474,
2140
+ "rewards/margins": 6338691.765929045,
2141
+ "rewards/rejected": -6338641.941422594,
2142
+ "step": 695
2143
+ },
2144
+ {
2145
+ "epoch": 0.8744534665833854,
2146
+ "grad_norm": 1.0362893342971802,
2147
+ "kl": 274.10833740234375,
2148
+ "learning_rate": 3.4567085809127247e-06,
2149
+ "logits/chosen": -263217944.77419356,
2150
+ "logits/rejected": -1258797409.1034484,
2151
+ "logps/chosen": -1521.1612903225807,
2152
+ "logps/rejected": -1691.5862068965516,
2153
+ "loss": 0.0462,
2154
+ "rewards/chosen": 50.86510049143145,
2155
+ "rewards/margins": 8044617.4857901465,
2156
+ "rewards/rejected": -8044566.620689655,
2157
+ "step": 700
2158
+ },
2159
+ {
2160
+ "epoch": 0.8806995627732667,
2161
+ "grad_norm": 1.926090121269226,
2162
+ "kl": 289.6333312988281,
2163
+ "learning_rate": 3.4314572553602577e-06,
2164
+ "logits/chosen": -373032056.73362446,
2165
+ "logits/rejected": -826461702.1195219,
2166
+ "logps/chosen": -1489.1877729257642,
2167
+ "logps/rejected": -1553.2749003984063,
2168
+ "loss": 0.0693,
2169
+ "rewards/chosen": 48.6717385371179,
2170
+ "rewards/margins": 10300293.325124992,
2171
+ "rewards/rejected": -10300244.653386455,
2172
+ "step": 705
2173
+ },
2174
+ {
2175
+ "epoch": 0.886945658963148,
2176
+ "grad_norm": 2.2127394676208496,
2177
+ "kl": 309.98333740234375,
2178
+ "learning_rate": 3.406095095709254e-06,
2179
+ "logits/chosen": -449325429.11740893,
2180
+ "logits/rejected": -790185272.0343348,
2181
+ "logps/chosen": -1486.7692307692307,
2182
+ "logps/rejected": -1538.3347639484978,
2183
+ "loss": 0.0561,
2184
+ "rewards/chosen": 56.23212139423077,
2185
+ "rewards/margins": 13225402.978902511,
2186
+ "rewards/rejected": -13225346.746781116,
2187
+ "step": 710
2188
+ },
2189
+ {
2190
+ "epoch": 0.8931917551530294,
2191
+ "grad_norm": 1.1908198595046997,
2192
+ "kl": 275.14166259765625,
2193
+ "learning_rate": 3.3806251198030843e-06,
2194
+ "logits/chosen": -674069715.5702479,
2195
+ "logits/rejected": -1077795142.9915967,
2196
+ "logps/chosen": -1509.9504132231405,
2197
+ "logps/rejected": -1646.2521008403362,
2198
+ "loss": 0.0592,
2199
+ "rewards/chosen": 55.71608664772727,
2200
+ "rewards/margins": 1421531.8841538746,
2201
+ "rewards/rejected": -1421476.168067227,
2202
+ "step": 715
2203
+ },
2204
+ {
2205
+ "epoch": 0.8994378513429107,
2206
+ "grad_norm": 0.20443065464496613,
2207
+ "kl": 221.72500610351562,
2208
+ "learning_rate": 3.3550503583141726e-06,
2209
+ "logits/chosen": -591554614.3716815,
2210
+ "logits/rejected": -1264764299.0866141,
2211
+ "logps/chosen": -1439.2920353982302,
2212
+ "logps/rejected": -1669.9212598425197,
2213
+ "loss": 0.0458,
2214
+ "rewards/chosen": 52.98895101631637,
2215
+ "rewards/margins": 10349140.233045503,
2216
+ "rewards/rejected": -10349087.244094487,
2217
+ "step": 720
2218
+ },
2219
+ {
2220
+ "epoch": 0.905683947532792,
2221
+ "grad_norm": 1.3105542659759521,
2222
+ "kl": 201.68333435058594,
2223
+ "learning_rate": 3.3293738543833807e-06,
2224
+ "logits/chosen": -319022639.3277311,
2225
+ "logits/rejected": -1492478950.6115704,
2226
+ "logps/chosen": -1498.218487394958,
2227
+ "logps/rejected": -1772.4297520661157,
2228
+ "loss": 0.0446,
2229
+ "rewards/chosen": 50.74974149816177,
2230
+ "rewards/margins": 1107236.2704026552,
2231
+ "rewards/rejected": -1107185.520661157,
2232
+ "step": 725
2233
+ },
2234
+ {
2235
+ "epoch": 0.9119300437226733,
2236
+ "grad_norm": 0.8841028213500977,
2237
+ "kl": 197.63333129882812,
2238
+ "learning_rate": 3.303598663257904e-06,
2239
+ "logits/chosen": -220504861.45132744,
2240
+ "logits/rejected": -1356576622.8661418,
2241
+ "logps/chosen": -1498.3362831858408,
2242
+ "logps/rejected": -1776.755905511811,
2243
+ "loss": 0.0464,
2244
+ "rewards/chosen": 44.9149915306969,
2245
+ "rewards/margins": -5135916.785795871,
2246
+ "rewards/rejected": 5135961.700787402,
2247
+ "step": 730
2248
+ },
2249
+ {
2250
+ "epoch": 0.9181761399125546,
2251
+ "grad_norm": 2.0225307941436768,
2252
+ "kl": 190.76666259765625,
2253
+ "learning_rate": 3.277727851927727e-06,
2254
+ "logits/chosen": -65942323.2,
2255
+ "logits/rejected": -1717986918.4,
2256
+ "logps/chosen": -1528.3333333333333,
2257
+ "logps/rejected": -1754.1333333333334,
2258
+ "loss": 0.0349,
2259
+ "rewards/chosen": 54.71465250651042,
2260
+ "rewards/margins": -17492478.618680827,
2261
+ "rewards/rejected": 17492533.333333332,
2262
+ "step": 735
2263
+ },
2264
+ {
2265
+ "epoch": 0.924422236102436,
2266
+ "grad_norm": 2.063528060913086,
2267
+ "kl": 142.30833435058594,
2268
+ "learning_rate": 3.2517644987606827e-06,
2269
+ "logits/chosen": 66764193.18518519,
2270
+ "logits/rejected": -1825793241.2121212,
2271
+ "logps/chosen": -1486.888888888889,
2272
+ "logps/rejected": -1923.2727272727273,
2273
+ "loss": 0.0417,
2274
+ "rewards/chosen": 53.85865614149306,
2275
+ "rewards/margins": -6370393.171646888,
2276
+ "rewards/rejected": 6370447.03030303,
2277
+ "step": 740
2278
+ },
2279
+ {
2280
+ "epoch": 0.9306683322923173,
2281
+ "grad_norm": 1.3004655838012695,
2282
+ "kl": 142.44166564941406,
2283
+ "learning_rate": 3.225711693136156e-06,
2284
+ "logits/chosen": 70914651.79282868,
2285
+ "logits/rejected": -2056784113.467249,
2286
+ "logps/chosen": -1554.4860557768925,
2287
+ "logps/rejected": -1979.9475982532751,
2288
+ "loss": 0.0384,
2289
+ "rewards/chosen": 48.3206937873506,
2290
+ "rewards/margins": -11652987.836511454,
2291
+ "rewards/rejected": 11653036.15720524,
2292
+ "step": 745
2293
+ },
2294
+ {
2295
+ "epoch": 0.9369144284821986,
2296
+ "grad_norm": 1.4171018600463867,
2297
+ "kl": 130.48333740234375,
2298
+ "learning_rate": 3.199572535077481e-06,
2299
+ "logits/chosen": -12038372.532188842,
2300
+ "logits/rejected": -2139264849.8785424,
2301
+ "logps/chosen": -1477.5965665236051,
2302
+ "logps/rejected": -1908.987854251012,
2303
+ "loss": 0.0385,
2304
+ "rewards/chosen": 46.0073598444206,
2305
+ "rewards/margins": 5270583.853513691,
2306
+ "rewards/rejected": -5270537.846153846,
2307
+ "step": 750
2308
+ },
2309
+ {
2310
+ "epoch": 0.94316052467208,
2311
+ "grad_norm": 0.09198802709579468,
2312
+ "kl": 131.65834045410156,
2313
+ "learning_rate": 3.173350134883066e-06,
2314
+ "logits/chosen": -136213255.89427313,
2315
+ "logits/rejected": -1772151463.9683795,
2316
+ "logps/chosen": -1524.7224669603524,
2317
+ "logps/rejected": -1885.3438735177865,
2318
+ "loss": 0.0153,
2319
+ "rewards/chosen": 51.28870543089207,
2320
+ "rewards/margins": 13132515.351946538,
2321
+ "rewards/rejected": -13132464.063241107,
2322
+ "step": 755
2323
+ },
2324
+ {
2325
+ "epoch": 0.9494066208619613,
2326
+ "grad_norm": 1.3991014957427979,
2327
+ "kl": 134.39999389648438,
2328
+ "learning_rate": 3.147047612756302e-06,
2329
+ "logits/chosen": -176903705.25560537,
2330
+ "logits/rejected": -1983824190.7548637,
2331
+ "logps/chosen": -1627.1210762331839,
2332
+ "logps/rejected": -2024.964980544747,
2333
+ "loss": 0.0407,
2334
+ "rewards/chosen": 53.05085569646861,
2335
+ "rewards/margins": -14139337.953035355,
2336
+ "rewards/rejected": 14139391.00389105,
2337
+ "step": 760
2338
+ },
2339
+ {
2340
+ "epoch": 0.9556527170518426,
2341
+ "grad_norm": 1.079622507095337,
2342
+ "kl": 134.00833129882812,
2343
+ "learning_rate": 3.120668098434291e-06,
2344
+ "logits/chosen": -444668686.5691057,
2345
+ "logits/rejected": -2044526031.8632479,
2346
+ "logps/chosen": -1559.219512195122,
2347
+ "logps/rejected": -2039.3846153846155,
2348
+ "loss": 0.0349,
2349
+ "rewards/chosen": 46.08423447027439,
2350
+ "rewards/margins": 484669.26372164977,
2351
+ "rewards/rejected": -484623.1794871795,
2352
+ "step": 765
2353
+ },
2354
+ {
2355
+ "epoch": 0.9618988132417239,
2356
+ "grad_norm": 2.1247825622558594,
2357
+ "kl": 173.84165954589844,
2358
+ "learning_rate": 3.094214730815433e-06,
2359
+ "logits/chosen": -334601040.33472806,
2360
+ "logits/rejected": -1739400493.6763484,
2361
+ "logps/chosen": -1507.7489539748954,
2362
+ "logps/rejected": -1843.1203319502074,
2363
+ "loss": 0.0627,
2364
+ "rewards/chosen": 54.40384741108787,
2365
+ "rewards/margins": 15768593.225424174,
2366
+ "rewards/rejected": -15768538.821576763,
2367
+ "step": 770
2368
+ },
2369
+ {
2370
+ "epoch": 0.9681449094316052,
2371
+ "grad_norm": 1.7619072198867798,
2372
+ "kl": 187.1666717529297,
2373
+ "learning_rate": 3.0676906575859335e-06,
2374
+ "logits/chosen": -414374765.71428573,
2375
+ "logits/rejected": -1798628478.9421487,
2376
+ "logps/chosen": -1502.3865546218487,
2377
+ "logps/rejected": -1810.5123966942149,
2378
+ "loss": 0.0286,
2379
+ "rewards/chosen": 41.90288126969538,
2380
+ "rewards/margins": 6427740.6797407735,
2381
+ "rewards/rejected": -6427698.776859504,
2382
+ "step": 775
2383
+ },
2384
+ {
2385
+ "epoch": 0.9743910056214866,
2386
+ "grad_norm": 1.2919367551803589,
2387
+ "kl": 171.06666564941406,
2388
+ "learning_rate": 3.0410990348452572e-06,
2389
+ "logits/chosen": -272265037.9130435,
2390
+ "logits/rejected": -1723221409.792,
2391
+ "logps/chosen": -1605.7043478260869,
2392
+ "logps/rejected": -1845.248,
2393
+ "loss": 0.044,
2394
+ "rewards/chosen": 47.08596297554348,
2395
+ "rewards/margins": 9132751.853962975,
2396
+ "rewards/rejected": -9132704.768,
2397
+ "step": 780
2398
+ },
2399
+ {
2400
+ "epoch": 0.9806371018113679,
2401
+ "grad_norm": 0.8556254506111145,
2402
+ "kl": 176.6458282470703,
2403
+ "learning_rate": 3.0144430267305874e-06,
2404
+ "logits/chosen": -508988111.07555556,
2405
+ "logits/rejected": -1627455745.0039215,
2406
+ "logps/chosen": -1427.6622222222222,
2407
+ "logps/rejected": -1869.0509803921568,
2408
+ "loss": 0.0208,
2409
+ "rewards/chosen": 53.00231336805555,
2410
+ "rewards/margins": 10830550.633685917,
2411
+ "rewards/rejected": -10830497.631372549,
2412
+ "step": 785
2413
+ },
2414
+ {
2415
+ "epoch": 0.9868831980012492,
2416
+ "grad_norm": 2.9301369190216064,
2417
+ "kl": 212.9499969482422,
2418
+ "learning_rate": 2.9877258050403214e-06,
2419
+ "logits/chosen": -519565405.8015267,
2420
+ "logits/rejected": -1667255079.9266055,
2421
+ "logps/chosen": -1437.1908396946565,
2422
+ "logps/rejected": -1811.9633027522937,
2423
+ "loss": 0.0375,
2424
+ "rewards/chosen": 57.16154281965649,
2425
+ "rewards/margins": 25719160.574386854,
2426
+ "rewards/rejected": -25719103.412844036,
2427
+ "step": 790
2428
+ },
2429
+ {
2430
+ "epoch": 0.9931292941911305,
2431
+ "grad_norm": 1.1394269466400146,
2432
+ "kl": 213.3249969482422,
2433
+ "learning_rate": 2.9609505488566585e-06,
2434
+ "logits/chosen": -600712120.5581396,
2435
+ "logits/rejected": -1835518118.054054,
2436
+ "logps/chosen": -1653.7054263565892,
2437
+ "logps/rejected": -1867.6756756756756,
2438
+ "loss": 0.0498,
2439
+ "rewards/chosen": 51.81218583454457,
2440
+ "rewards/margins": 37509377.07344709,
2441
+ "rewards/rejected": -37509325.26126126,
2442
+ "step": 795
2443
+ },
2444
+ {
2445
+ "epoch": 0.9993753903810119,
2446
+ "grad_norm": 0.3533008396625519,
2447
+ "kl": 138.0500030517578,
2448
+ "learning_rate": 2.9341204441673267e-06,
2449
+ "logits/chosen": -576359643.1091703,
2450
+ "logits/rejected": -1930248779.4741037,
2451
+ "logps/chosen": -1551.3711790393013,
2452
+ "logps/rejected": -1936.0637450199204,
2453
+ "loss": 0.0229,
2454
+ "rewards/chosen": 48.6797983760917,
2455
+ "rewards/margins": 5309753.859081244,
2456
+ "rewards/rejected": -5309705.179282868,
2457
+ "step": 800
2458
+ },
2459
+ {
2460
+ "epoch": 0.9993753903810119,
2461
+ "eval_kl": 164.8888397216797,
2462
+ "eval_logits/chosen": -603077229.926499,
2463
+ "eval_logits/rejected": -2010029103.579798,
2464
+ "eval_logps/chosen": -1488.5996131528047,
2465
+ "eval_logps/rejected": -1886.9171717171716,
2466
+ "eval_loss": 0.03083220310509205,
2467
+ "eval_rewards/chosen": 52.287400265957444,
2468
+ "eval_rewards/margins": 19438170.558107335,
2469
+ "eval_rewards/rejected": -19438118.27070707,
2470
+ "eval_runtime": 640.097,
2471
+ "eval_samples_per_second": 6.319,
2472
+ "eval_steps_per_second": 0.395,
2473
+ "step": 800
2474
+ }
2475
+ ],
2476
+ "logging_steps": 5,
2477
+ "max_steps": 1600,
2478
+ "num_input_tokens_seen": 0,
2479
+ "num_train_epochs": 2,
2480
+ "save_steps": 200,
2481
+ "stateful_callbacks": {
2482
+ "TrainerControl": {
2483
+ "args": {
2484
+ "should_epoch_stop": false,
2485
+ "should_evaluate": false,
2486
+ "should_log": false,
2487
+ "should_save": true,
2488
+ "should_training_stop": false
2489
+ },
2490
+ "attributes": {}
2491
+ }
2492
+ },
2493
+ "total_flos": 0.0,
2494
+ "train_batch_size": 2,
2495
+ "trial_name": null,
2496
+ "trial_params": null
2497
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c78f0cea1d0c545775afb8c43bfab4df333ea88b3693900c31100fe39de03d3b
3
+ size 7160
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)