--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image base_model: stabilityai/stable-diffusion-2 tags: - code - safetensors - stable-diffusion - scheduler - text_encoder - tokenizer - unet - vae inference: parameters: num_inference_steps: 7 guidance_scale: 3 negative_prompt: >- (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation --- # **Samim Kumar Patel, Pretrained Model, With proper use of best Hyperparameters for Business UseCases for Production Level* ![preview](samples/4.jpeg) ![preview](samples/5.jpeg) Introducing the pretrained Model from the base Model called stabilityai/stable-diffusion-2, which is very fast and production deployable. It is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. ### Diffusers usage ```bash pip install torch diffusers ``` ```py from diffusers import StableDiffusionPipeline import torch model_id = "samim2024/text-to-image" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ```