#!/bin/bash # 创建结果目录 RESULTS_DIR="./clustering_results" mkdir -p $RESULTS_DIR # 数据库路径 DB_PATH="/home/dyvm6xra/dyvm6xrauser11/workspace/projects/HKU/Chatbot/Data/database" # 定义日志文件 LOG_FILE="${RESULTS_DIR}/experiments_$(date +%Y%m%d_%H%M%S).log" # 函数:运行实验并记录日志 run_experiment() { echo "运行实验: $1" | tee -a $LOG_FILE echo "命令: $2" | tee -a $LOG_FILE echo "开始时间: $(date)" | tee -a $LOG_FILE # 运行命令并将输出同时写入日志 eval $2 | tee -a $LOG_FILE echo "结束时间: $(date)" | tee -a $LOG_FILE echo "==========================================" | tee -a $LOG_FILE echo "" | tee -a $LOG_FILE } echo "================ 聚类实验 ================" | tee -a $LOG_FILE echo "开始时间: $(date)" | tee -a $LOG_FILE echo "==========================================" | tee -a $LOG_FILE echo "" | tee -a $LOG_FILE # ==== 实验1:单独PCA降维 + 不同聚类方法 ==== # # PCA(50) + HDBSCAN # run_experiment "PCA(50) + HDBSCAN" \ # "python cluster_topic_exp.py --name pca50_hdbscan --dim_reduction pca --pca_components 50 --clustering hdbscan --db_path $DB_PATH --output_dir $RESULTS_DIR --use_gpu" # PCA(8) + KMEANS(自动寻找最佳K) run_experiment "PCA(4) + KMEANS(自动寻找最佳K)" \ "python cluster_topic_exp.py --name pca4_kmeans_auto --dim_reduction pca --pca_components 4 --clustering kmeans --kmeans_min_k 4 --kmeans_max_k 31 --kmeans_step 2 --db_path $DB_PATH --output_dir $RESULTS_DIR --use_gpu" # # # ==== 实验2:单独UMAP降维 + 不同聚类方法 ==== # # UMAP(2, n_neighbors=50) + HDBSCAN # run_experiment "UMAP(2, n_neighbors=50) + HDBSCAN" \ # "python cluster_topic_exp.py --name umap2_nn50_hdbscan --dim_reduction umap --umap_components 2 --umap_neighbors 50 --umap_min_dist 0.2 --clustering hdbscan --db_path $DB_PATH --output_dir $RESULTS_DIR --use_gpu" # # UMAP(2, n_neighbors=30) + HDBSCAN # run_experiment "UMAP(2, n_neighbors=30) + HDBSCAN" \ # "python cluster_topic_exp.py --name umap2_nn30_hdbscan --dim_reduction umap --umap_components 2 --umap_neighbors 30 --umap_min_dist 0.2 --clustering hdbscan --db_path $DB_PATH --output_dir $RESULTS_DIR --use_gpu" # # # UMAP(2, n_neighbors=50) + KMEANS(自动寻找最佳K) # run_experiment "UMAP(2, n_neighbors=50) + KMEANS(自动寻找最佳K)" \ # "python cluster_topic_exp.py --name umap2_nn50_kmeans_auto --dim_reduction umap --umap_components 2 --umap_neighbors 50 --umap_min_dist 0.2 --clustering kmeans --db_path $DB_PATH --output_dir $RESULTS_DIR --use_gpu --kmeans_min_k 10 --kmeans_max_k 210 --kmeans_step 20" # run_experiment "UMAP(4, n_neighbors=50) + KMEANS(自动寻找最佳K)" \ # "python cluster_topic_exp.py --name umap4_nn50_kmeans_auto --dim_reduction umap --umap_components 4 --umap_neighbors 50 --umap_min_dist 0.2 --clustering kmeans --db_path $DB_PATH --output_dir $RESULTS_DIR --use_gpu --kmeans_min_k 10 --kmeans_max_k 210 --kmeans_step 20" # run_experiment "UMAP(16, n_neighbors=50) + KMEANS(自动寻找最佳K)" \ # "python cluster_topic_exp.py --name umap16_nn50_kmeans_auto --dim_reduction umap --umap_components 16 --umap_neighbors 50 --umap_min_dist 0.2 --clustering kmeans --db_path $DB_PATH --output_dir $RESULTS_DIR --use_gpu --kmeans_min_k 10 --kmeans_max_k 210 --kmeans_step 20" # run_experiment "UMAP(32, n_neighbors=50) + KMEANS(自动寻找最佳K)" \ # "python cluster_topic_exp.py --name umap32_nn50_kmeans_auto --dim_reduction umap --umap_components 32 --umap_neighbors 50 --umap_min_dist 0.2 --clustering kmeans --db_path $DB_PATH --output_dir $RESULTS_DIR --use_gpu --kmeans_min_k 10 --kmeans_max_k 210 --kmeans_step 20" # # # UMAP(100, n_neighbors=50) + KMEANS(自动寻找最佳K) # run_experiment "UMAP(100, n_neighbors=50) + KMEANS(自动寻找最佳K)" \ # "python cluster_topic_exp.py --name umap100_nn50_kmeans_auto --dim_reduction umap --umap_components 100 --umap_neighbors 50 --umap_min_dist 0.2 --clustering kmeans --db_path $DB_PATH --output_dir $RESULTS_DIR --use_gpu" # # UMAP(64, n_neighbors=50) + KMEANS(自动寻找最佳K) # run_experiment "UMAP(64, n_neighbors=50) + KMEANS(自动寻找最佳K)" \ # "python cluster_topic_exp.py --name umap64_nn50_kmeans_auto --dim_reduction umap --umap_components 64 --umap_neighbors 50 --umap_min_dist 0.2 --clustering kmeans --db_path $DB_PATH --output_dir $RESULTS_DIR --use_gpu" # # ==== 实验3:两步降维 PCA+UMAP + 不同聚类方法 ==== # PCA(50) + UMAP(2) + HDBSCAN(min_cluster_size=100) # run_experiment "PCA(50) + UMAP(2) + HDBSCAN(min_cluster_size=100)" \ # "python cluster_topic_exp.py --name pca50_umap2_hdbscan100 --dim_reduction pca_umap --pca_components 50 --umap_components 2 --clustering hdbscan --hdbscan_min_cluster_size 100 --hdbscan_min_samples 10 --db_path $DB_PATH --output_dir $RESULTS_DIR --use_gpu" # # PCA(50) + UMAP(2) + HDBSCAN(min_cluster_size=50) # run_experiment "PCA(50) + UMAP(2) + HDBSCAN(min_cluster_size=50)" \ # "python cluster_topic_exp.py --name pca50_umap2_hdbscan50 --dim_reduction pca_umap --pca_components 50 --umap_components 2 --clustering hdbscan --hdbscan_min_cluster_size 50 --hdbscan_min_samples 5 --db_path $DB_PATH --output_dir $RESULTS_DIR --use_gpu" # # PCA(50) + UMAP(2) + KMEANS(自动寻找最佳K) # run_experiment "PCA(50) + UMAP(2) + KMEANS(自动寻找最佳K)" \ # "python cluster_topic_exp.py --name pca50_umap2_kmeans_auto --dim_reduction pca_umap --pca_components 50 --umap_components 2 --clustering kmeans --db_path $DB_PATH --output_dir $RESULTS_DIR --use_gpu" # # PCA(100) + UMAP(2) + HDBSCAN # run_experiment "PCA(100) + UMAP(2) + HDBSCAN" \ # "python cluster_topic_exp.py --name pca100_umap2_hdbscan --dim_reduction pca_umap --pca_components 100 --umap_components 2 --clustering hdbscan --db_path $DB_PATH --output_dir $RESULTS_DIR --use_gpu" # # ==== 实验4:不同UMAP参数 + HDBSCAN ==== # # PCA(50) + UMAP(2, min_dist=0.1) + HDBSCAN # run_experiment "PCA(50) + UMAP(2, min_dist=0.1) + HDBSCAN" \ # "python cluster_topic_exp.py --name pca50_umap2_md01_hdbscan --dim_reduction pca_umap --pca_components 50 --umap_components 2 --umap_min_dist 0.1 --clustering hdbscan --db_path $DB_PATH --output_dir $RESULTS_DIR --use_gpu" # # PCA(50) + UMAP(2, min_dist=0.5) + HDBSCAN # run_experiment "PCA(50) + UMAP(2, min_dist=0.5) + HDBSCAN" \ # "python cluster_topic_exp.py --name pca50_umap2_md05_hdbscan --dim_reduction pca_umap --pca_components 50 --umap_components 2 --umap_min_dist 0.5 --clustering hdbscan --db_path $DB_PATH --output_dir $RESULTS_DIR --use_gpu" # ==== 实验5:结果分析脚本 ==== echo "所有实验完成,生成分析报告..." | tee -a $LOG_FILE cat > ${RESULTS_DIR}/analyze_results.py << 'EOL' #!/usr/bin/env python import os import json import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from tabulate import tabulate # 结果目录 results_dir = "./clustering_results" # 加载所有实验结果 results = [] for filename in os.listdir(results_dir): if filename.endswith("_results.json"): with open(os.path.join(results_dir, filename), 'r') as f: try: data = json.load(f) results.append(data) except json.JSONDecodeError: print(f"无法解析: {filename}") if not results: print("未找到任何结果文件") exit(1) # 提取关键指标到DataFrame data = [] for res in results: row = { "实验名称": res.get("experiment_name", "未知"), "降维方法": res.get("parameters", {}).get("dimension_reduction", {}).get("method", "未知"), "降维维度": res.get("parameters", {}).get("dimension_reduction", {}).get("n_components", "未知"), "聚类方法": res.get("parameters", {}).get("clustering", {}).get("method", "未知"), } # 添加聚类特定参数 if row["聚类方法"] == "hdbscan": row["min_cluster_size"] = res.get("parameters", {}).get("clustering", {}).get("min_cluster_size", "未知") row["min_samples"] = res.get("parameters", {}).get("clustering", {}).get("min_samples", "未知") elif row["聚类方法"] == "kmeans": row["n_clusters"] = res.get("parameters", {}).get("clustering", {}).get("n_clusters", "未知") # 添加UMAP特定参数 if row["降维方法"] == "umap": row["umap_n_neighbors"] = res.get("parameters", {}).get("dimension_reduction", {}).get("umap_n_neighbors", "未知") row["umap_min_dist"] = res.get("parameters", {}).get("dimension_reduction", {}).get("umap_min_dist", "未知") # 添加指标 row["聚类数量"] = res.get("metrics", {}).get("n_clusters", "未知") row["噪声比例"] = res.get("metrics", {}).get("noise_ratio", "未知") row["轮廓系数"] = res.get("metrics", {}).get("silhouette_score", "未知") row["CH指数"] = res.get("metrics", {}).get("calinski_harabasz_score", "未知") row["最佳K值"] = res.get("metrics", {}).get("best_k", "未适用") data.append(row) df = pd.DataFrame(data) # 生成结果报告 print("=" * 80) print("实验结果分析") print("=" * 80) # 打印表格 print("\n实验结果概览:") print(tabulate(df, headers="keys", tablefmt="pipe", showindex=False)) # 保存到Excel excel_file = os.path.join(results_dir, "实验结果分析.xlsx") df.to_excel(excel_file, index=False) print(f"\n详细结果已保存到: {excel_file}") # 绘制轮廓系数对比 plt.figure(figsize=(12, 6)) sns.barplot(x="实验名称", y="轮廓系数", data=df) plt.xticks(rotation=90) plt.title("不同实验的轮廓系数对比") plt.tight_layout() plt.savefig(os.path.join(results_dir, "轮廓系数对比.png")) # 绘制CH指数对比 plt.figure(figsize=(12, 6)) sns.barplot(x="实验名称", y="CH指数", data=df) plt.xticks(rotation=90) plt.title("不同实验的Calinski-Harabasz指数对比") plt.tight_layout() plt.savefig(os.path.join(results_dir, "CH指数对比.png")) print("\n分析图表已生成") EOL # 设置脚本执行权限 chmod +x ${RESULTS_DIR}/analyze_results.py echo "实验全部完成!" | tee -a $LOG_FILE echo "总结果保存在: ${RESULTS_DIR}" | tee -a $LOG_FILE echo "您可以运行以下命令分析结果:" | tee -a $LOG_FILE echo "python ${RESULTS_DIR}/analyze_results.py" | tee -a $LOG_FILE