File size: 1,994 Bytes
936049a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
base_model: gpt2-medium
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: gmra_model_gpt2-medium_15082023T113143
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gmra_model_gpt2-medium_15082023T113143
This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2694
- Accuracy: 0.9464
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 142 | 0.4750 | 0.8409 |
| No log | 2.0 | 284 | 0.2932 | 0.9033 |
| No log | 2.99 | 426 | 0.2850 | 0.9192 |
| 0.5761 | 4.0 | 569 | 0.2622 | 0.9279 |
| 0.5761 | 5.0 | 711 | 0.2580 | 0.9367 |
| 0.5761 | 6.0 | 853 | 0.2768 | 0.9394 |
| 0.5761 | 6.99 | 995 | 0.2640 | 0.9473 |
| 0.0682 | 8.0 | 1138 | 0.2493 | 0.9464 |
| 0.0682 | 9.0 | 1280 | 0.2739 | 0.9446 |
| 0.0682 | 9.98 | 1420 | 0.2694 | 0.9464 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|