--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased-finetuned-sst-2-english tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-uncased-finetuned-sst-2-english_07112024T125645 results: [] --- # distilbert-base-uncased-finetuned-sst-2-english_07112024T125645 This model is a fine-tuned version of [distilbert/distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) on the MR Analysis Phase-3 dataset. It achieves the following results on the evaluation set: - Loss: 0.5776 - F1: 0.8426 - Learning Rate: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Rate | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 141 | 1.1776 | 0.5721 | 0.0000 | | No log | 2.0 | 282 | 0.9785 | 0.6619 | 0.0000 | | No log | 3.0 | 423 | 0.8326 | 0.7194 | 0.0000 | | 1.1084 | 4.0 | 564 | 0.6920 | 0.7808 | 0.0000 | | 1.1084 | 5.0 | 705 | 0.6907 | 0.7973 | 0.0000 | | 1.1084 | 6.0 | 846 | 0.6107 | 0.8284 | 0.0000 | | 1.1084 | 7.0 | 987 | 0.5776 | 0.8426 | 0.0000 | | 0.4572 | 8.0 | 1128 | 0.6100 | 0.8523 | 0.0000 | | 0.4572 | 9.0 | 1269 | 0.6279 | 0.8570 | 0.0000 | | 0.4572 | 10.0 | 1410 | 0.6638 | 0.8587 | 0.0000 | | 0.1637 | 11.0 | 1551 | 0.7340 | 0.8568 | 0.0000 | | 0.1637 | 12.0 | 1692 | 0.7564 | 0.8596 | 7e-06 | | 0.1637 | 13.0 | 1833 | 0.8077 | 0.8568 | 0.0000 | | 0.1637 | 14.0 | 1974 | 0.7234 | 0.8667 | 0.0000 | | 0.069 | 15.0 | 2115 | 0.7535 | 0.8664 | 3e-06 | | 0.069 | 16.0 | 2256 | 0.7818 | 0.8659 | 0.0000 | | 0.069 | 17.0 | 2397 | 0.8064 | 0.8646 | 0.0000 | | 0.0376 | 18.0 | 2538 | 0.8203 | 0.8626 | 5e-07 | | 0.0376 | 19.0 | 2679 | 0.8233 | 0.8629 | 1e-07 | | 0.0376 | 20.0 | 2820 | 0.8235 | 0.8632 | 0.0 | ### Testing Results | class | precision | recall | f1-score | |:------------------------:|:---------:|:------:|:--------:| | change_request | 0.918 | 0.651 | 0.762 | | discussion_participation | 0.839 | 0.882 | 0.860 | | discussion_trigger | 0.879 | 0.902 | 0.890 | | acknowledgement | 0.847 | 0.920 | 0.882 | | critical | 0.686 | 0.940 | 0.793 | | reference | 0.802 | 0.947 | 0.869 | | ----------- | ---------- | --------| --------- | | **accuracy** | | | 0.828 | | **macro avg** | 0.828 | 0.874 | 0.843 | | **weighted avg** | 0.845 | 0.828 | 0.825 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.19.1