Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .summary/0/events.out.tfevents.1742512771.60fe6b241b39 +3 -0
- README.md +56 -0
- checkpoint_p0/best_000000922_3776512_reward_25.425.pth +3 -0
- checkpoint_p0/checkpoint_000000912_3735552.pth +3 -0
- checkpoint_p0/checkpoint_000000978_4005888.pth +3 -0
- config.json +142 -0
- replay.mp4 +3 -0
- sf_log.txt +838 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
.summary/0/events.out.tfevents.1742512771.60fe6b241b39
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56c98b74810c5691d03b967fe9ae313811b683c68f081b0a1a8356afb36752c0
|
3 |
+
size 459790
|
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sample-factory
|
3 |
+
tags:
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- sample-factory
|
7 |
+
model-index:
|
8 |
+
- name: APPO
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: reinforcement-learning
|
12 |
+
name: reinforcement-learning
|
13 |
+
dataset:
|
14 |
+
name: doom_health_gathering_supreme
|
15 |
+
type: doom_health_gathering_supreme
|
16 |
+
metrics:
|
17 |
+
- type: mean_reward
|
18 |
+
value: 8.29 +/- 3.75
|
19 |
+
name: mean_reward
|
20 |
+
verified: false
|
21 |
+
---
|
22 |
+
|
23 |
+
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
|
24 |
+
|
25 |
+
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
|
26 |
+
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
|
27 |
+
|
28 |
+
|
29 |
+
## Downloading the model
|
30 |
+
|
31 |
+
After installing Sample-Factory, download the model with:
|
32 |
+
```
|
33 |
+
python -m sample_factory.huggingface.load_from_hub -r salym/rl_course_vizdoom_health_gathering_supreme
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
## Using the model
|
38 |
+
|
39 |
+
To run the model after download, use the `enjoy` script corresponding to this environment:
|
40 |
+
```
|
41 |
+
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
|
42 |
+
```
|
43 |
+
|
44 |
+
|
45 |
+
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
|
46 |
+
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
|
47 |
+
|
48 |
+
## Training with this model
|
49 |
+
|
50 |
+
To continue training with this model, use the `train` script corresponding to this environment:
|
51 |
+
```
|
52 |
+
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
|
53 |
+
```
|
54 |
+
|
55 |
+
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
56 |
+
|
checkpoint_p0/best_000000922_3776512_reward_25.425.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d8323a6c1a0310c01efd0811c4a28209e105d4b6324dc2323a938dc740696fd
|
3 |
+
size 34929051
|
checkpoint_p0/checkpoint_000000912_3735552.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f4c80de1244d6586e2c7cf67dede3f95d33ceee4f453d51fbdd4d580f316278
|
3 |
+
size 34929541
|
checkpoint_p0/checkpoint_000000978_4005888.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23f837bd8f26f89170eb57ebca93c8265d2ef5d633fdbb0e702809871078c561
|
3 |
+
size 34929541
|
config.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"help": false,
|
3 |
+
"algo": "APPO",
|
4 |
+
"env": "doom_health_gathering_supreme",
|
5 |
+
"experiment": "default_experiment",
|
6 |
+
"train_dir": "/kaggle/working/train_dir",
|
7 |
+
"restart_behavior": "resume",
|
8 |
+
"device": "gpu",
|
9 |
+
"seed": null,
|
10 |
+
"num_policies": 1,
|
11 |
+
"async_rl": true,
|
12 |
+
"serial_mode": false,
|
13 |
+
"batched_sampling": false,
|
14 |
+
"num_batches_to_accumulate": 2,
|
15 |
+
"worker_num_splits": 2,
|
16 |
+
"policy_workers_per_policy": 1,
|
17 |
+
"max_policy_lag": 1000,
|
18 |
+
"num_workers": 8,
|
19 |
+
"num_envs_per_worker": 4,
|
20 |
+
"batch_size": 1024,
|
21 |
+
"num_batches_per_epoch": 1,
|
22 |
+
"num_epochs": 1,
|
23 |
+
"rollout": 32,
|
24 |
+
"recurrence": 32,
|
25 |
+
"shuffle_minibatches": false,
|
26 |
+
"gamma": 0.99,
|
27 |
+
"reward_scale": 1.0,
|
28 |
+
"reward_clip": 1000.0,
|
29 |
+
"value_bootstrap": false,
|
30 |
+
"normalize_returns": true,
|
31 |
+
"exploration_loss_coeff": 0.001,
|
32 |
+
"value_loss_coeff": 0.5,
|
33 |
+
"kl_loss_coeff": 0.0,
|
34 |
+
"exploration_loss": "symmetric_kl",
|
35 |
+
"gae_lambda": 0.95,
|
36 |
+
"ppo_clip_ratio": 0.1,
|
37 |
+
"ppo_clip_value": 0.2,
|
38 |
+
"with_vtrace": false,
|
39 |
+
"vtrace_rho": 1.0,
|
40 |
+
"vtrace_c": 1.0,
|
41 |
+
"optimizer": "adam",
|
42 |
+
"adam_eps": 1e-06,
|
43 |
+
"adam_beta1": 0.9,
|
44 |
+
"adam_beta2": 0.999,
|
45 |
+
"max_grad_norm": 4.0,
|
46 |
+
"learning_rate": 0.0001,
|
47 |
+
"lr_schedule": "constant",
|
48 |
+
"lr_schedule_kl_threshold": 0.008,
|
49 |
+
"lr_adaptive_min": 1e-06,
|
50 |
+
"lr_adaptive_max": 0.01,
|
51 |
+
"obs_subtract_mean": 0.0,
|
52 |
+
"obs_scale": 255.0,
|
53 |
+
"normalize_input": true,
|
54 |
+
"normalize_input_keys": null,
|
55 |
+
"decorrelate_experience_max_seconds": 0,
|
56 |
+
"decorrelate_envs_on_one_worker": true,
|
57 |
+
"actor_worker_gpus": [],
|
58 |
+
"set_workers_cpu_affinity": true,
|
59 |
+
"force_envs_single_thread": false,
|
60 |
+
"default_niceness": 0,
|
61 |
+
"log_to_file": true,
|
62 |
+
"experiment_summaries_interval": 10,
|
63 |
+
"flush_summaries_interval": 30,
|
64 |
+
"stats_avg": 100,
|
65 |
+
"summaries_use_frameskip": true,
|
66 |
+
"heartbeat_interval": 20,
|
67 |
+
"heartbeat_reporting_interval": 600,
|
68 |
+
"train_for_env_steps": 4000000,
|
69 |
+
"train_for_seconds": 10000000000,
|
70 |
+
"save_every_sec": 120,
|
71 |
+
"keep_checkpoints": 2,
|
72 |
+
"load_checkpoint_kind": "latest",
|
73 |
+
"save_milestones_sec": -1,
|
74 |
+
"save_best_every_sec": 5,
|
75 |
+
"save_best_metric": "reward",
|
76 |
+
"save_best_after": 100000,
|
77 |
+
"benchmark": false,
|
78 |
+
"encoder_mlp_layers": [
|
79 |
+
512,
|
80 |
+
512
|
81 |
+
],
|
82 |
+
"encoder_conv_architecture": "convnet_simple",
|
83 |
+
"encoder_conv_mlp_layers": [
|
84 |
+
512
|
85 |
+
],
|
86 |
+
"use_rnn": true,
|
87 |
+
"rnn_size": 512,
|
88 |
+
"rnn_type": "gru",
|
89 |
+
"rnn_num_layers": 1,
|
90 |
+
"decoder_mlp_layers": [],
|
91 |
+
"nonlinearity": "elu",
|
92 |
+
"policy_initialization": "orthogonal",
|
93 |
+
"policy_init_gain": 1.0,
|
94 |
+
"actor_critic_share_weights": true,
|
95 |
+
"adaptive_stddev": true,
|
96 |
+
"continuous_tanh_scale": 0.0,
|
97 |
+
"initial_stddev": 1.0,
|
98 |
+
"use_env_info_cache": false,
|
99 |
+
"env_gpu_actions": false,
|
100 |
+
"env_gpu_observations": true,
|
101 |
+
"env_frameskip": 4,
|
102 |
+
"env_framestack": 1,
|
103 |
+
"pixel_format": "CHW",
|
104 |
+
"use_record_episode_statistics": false,
|
105 |
+
"with_wandb": false,
|
106 |
+
"wandb_user": null,
|
107 |
+
"wandb_project": "sample_factory",
|
108 |
+
"wandb_group": null,
|
109 |
+
"wandb_job_type": "SF",
|
110 |
+
"wandb_tags": [],
|
111 |
+
"with_pbt": false,
|
112 |
+
"pbt_mix_policies_in_one_env": true,
|
113 |
+
"pbt_period_env_steps": 5000000,
|
114 |
+
"pbt_start_mutation": 20000000,
|
115 |
+
"pbt_replace_fraction": 0.3,
|
116 |
+
"pbt_mutation_rate": 0.15,
|
117 |
+
"pbt_replace_reward_gap": 0.1,
|
118 |
+
"pbt_replace_reward_gap_absolute": 1e-06,
|
119 |
+
"pbt_optimize_gamma": false,
|
120 |
+
"pbt_target_objective": "true_objective",
|
121 |
+
"pbt_perturb_min": 1.1,
|
122 |
+
"pbt_perturb_max": 1.5,
|
123 |
+
"num_agents": -1,
|
124 |
+
"num_humans": 0,
|
125 |
+
"num_bots": -1,
|
126 |
+
"start_bot_difficulty": null,
|
127 |
+
"timelimit": null,
|
128 |
+
"res_w": 128,
|
129 |
+
"res_h": 72,
|
130 |
+
"wide_aspect_ratio": false,
|
131 |
+
"eval_env_frameskip": 1,
|
132 |
+
"fps": 35,
|
133 |
+
"command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
|
134 |
+
"cli_args": {
|
135 |
+
"env": "doom_health_gathering_supreme",
|
136 |
+
"num_workers": 8,
|
137 |
+
"num_envs_per_worker": 4,
|
138 |
+
"train_for_env_steps": 4000000
|
139 |
+
},
|
140 |
+
"git_hash": "unknown",
|
141 |
+
"git_repo_name": "not a git repository"
|
142 |
+
}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb28de00566213c056958b6c7104fca92ef66097f062d041e19fd3d9a04a51df
|
3 |
+
size 15749053
|
sf_log.txt
ADDED
@@ -0,0 +1,838 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2025-03-20 23:19:36,745][00031] Saving configuration to /kaggle/working/train_dir/default_experiment/config.json...
|
2 |
+
[2025-03-20 23:19:36,747][00031] Rollout worker 0 uses device cpu
|
3 |
+
[2025-03-20 23:19:36,748][00031] Rollout worker 1 uses device cpu
|
4 |
+
[2025-03-20 23:19:36,749][00031] Rollout worker 2 uses device cpu
|
5 |
+
[2025-03-20 23:19:36,751][00031] Rollout worker 3 uses device cpu
|
6 |
+
[2025-03-20 23:19:36,752][00031] Rollout worker 4 uses device cpu
|
7 |
+
[2025-03-20 23:19:36,753][00031] Rollout worker 5 uses device cpu
|
8 |
+
[2025-03-20 23:19:36,753][00031] Rollout worker 6 uses device cpu
|
9 |
+
[2025-03-20 23:19:36,754][00031] Rollout worker 7 uses device cpu
|
10 |
+
[2025-03-20 23:19:36,931][00031] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
11 |
+
[2025-03-20 23:19:36,932][00031] InferenceWorker_p0-w0: min num requests: 2
|
12 |
+
[2025-03-20 23:19:36,981][00031] Starting all processes...
|
13 |
+
[2025-03-20 23:19:36,982][00031] Starting process learner_proc0
|
14 |
+
[2025-03-20 23:19:37,079][00031] Starting all processes...
|
15 |
+
[2025-03-20 23:19:37,090][00031] Starting process inference_proc0-0
|
16 |
+
[2025-03-20 23:19:37,092][00031] Starting process rollout_proc0
|
17 |
+
[2025-03-20 23:19:37,092][00031] Starting process rollout_proc1
|
18 |
+
[2025-03-20 23:19:37,093][00031] Starting process rollout_proc2
|
19 |
+
[2025-03-20 23:19:37,093][00031] Starting process rollout_proc3
|
20 |
+
[2025-03-20 23:19:37,093][00031] Starting process rollout_proc4
|
21 |
+
[2025-03-20 23:19:37,094][00031] Starting process rollout_proc5
|
22 |
+
[2025-03-20 23:19:37,094][00031] Starting process rollout_proc6
|
23 |
+
[2025-03-20 23:19:37,095][00031] Starting process rollout_proc7
|
24 |
+
[2025-03-20 23:19:45,156][00209] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
25 |
+
[2025-03-20 23:19:45,156][00209] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
26 |
+
[2025-03-20 23:19:45,246][00209] Num visible devices: 1
|
27 |
+
[2025-03-20 23:19:45,781][00214] Worker 4 uses CPU cores [0]
|
28 |
+
[2025-03-20 23:19:45,859][00211] Worker 1 uses CPU cores [1]
|
29 |
+
[2025-03-20 23:19:46,024][00196] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
30 |
+
[2025-03-20 23:19:46,024][00196] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
31 |
+
[2025-03-20 23:19:46,055][00196] Num visible devices: 1
|
32 |
+
[2025-03-20 23:19:46,063][00196] Starting seed is not provided
|
33 |
+
[2025-03-20 23:19:46,063][00196] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
34 |
+
[2025-03-20 23:19:46,064][00196] Initializing actor-critic model on device cuda:0
|
35 |
+
[2025-03-20 23:19:46,063][00210] Worker 0 uses CPU cores [0]
|
36 |
+
[2025-03-20 23:19:46,064][00196] RunningMeanStd input shape: (3, 72, 128)
|
37 |
+
[2025-03-20 23:19:46,069][00212] Worker 3 uses CPU cores [3]
|
38 |
+
[2025-03-20 23:19:46,070][00216] Worker 5 uses CPU cores [1]
|
39 |
+
[2025-03-20 23:19:46,074][00196] RunningMeanStd input shape: (1,)
|
40 |
+
[2025-03-20 23:19:46,095][00196] ConvEncoder: input_channels=3
|
41 |
+
[2025-03-20 23:19:46,188][00215] Worker 7 uses CPU cores [3]
|
42 |
+
[2025-03-20 23:19:46,230][00213] Worker 2 uses CPU cores [2]
|
43 |
+
[2025-03-20 23:19:46,266][00217] Worker 6 uses CPU cores [2]
|
44 |
+
[2025-03-20 23:19:46,481][00196] Conv encoder output size: 512
|
45 |
+
[2025-03-20 23:19:46,481][00196] Policy head output size: 512
|
46 |
+
[2025-03-20 23:19:46,563][00196] Created Actor Critic model with architecture:
|
47 |
+
[2025-03-20 23:19:46,563][00196] ActorCriticSharedWeights(
|
48 |
+
(obs_normalizer): ObservationNormalizer(
|
49 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
50 |
+
(running_mean_std): ModuleDict(
|
51 |
+
(obs): RunningMeanStdInPlace()
|
52 |
+
)
|
53 |
+
)
|
54 |
+
)
|
55 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
56 |
+
(encoder): VizdoomEncoder(
|
57 |
+
(basic_encoder): ConvEncoder(
|
58 |
+
(enc): RecursiveScriptModule(
|
59 |
+
original_name=ConvEncoderImpl
|
60 |
+
(conv_head): RecursiveScriptModule(
|
61 |
+
original_name=Sequential
|
62 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
63 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
64 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
65 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
66 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
67 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
68 |
+
)
|
69 |
+
(mlp_layers): RecursiveScriptModule(
|
70 |
+
original_name=Sequential
|
71 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
72 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
73 |
+
)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
)
|
77 |
+
(core): ModelCoreRNN(
|
78 |
+
(core): GRU(512, 512)
|
79 |
+
)
|
80 |
+
(decoder): MlpDecoder(
|
81 |
+
(mlp): Identity()
|
82 |
+
)
|
83 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
84 |
+
(action_parameterization): ActionParameterizationDefault(
|
85 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
86 |
+
)
|
87 |
+
)
|
88 |
+
[2025-03-20 23:19:47,019][00196] Using optimizer <class 'torch.optim.adam.Adam'>
|
89 |
+
[2025-03-20 23:19:49,228][00196] No checkpoints found
|
90 |
+
[2025-03-20 23:19:49,228][00196] Did not load from checkpoint, starting from scratch!
|
91 |
+
[2025-03-20 23:19:49,228][00196] Initialized policy 0 weights for model version 0
|
92 |
+
[2025-03-20 23:19:49,234][00196] LearnerWorker_p0 finished initialization!
|
93 |
+
[2025-03-20 23:19:49,235][00196] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
94 |
+
[2025-03-20 23:19:49,332][00209] RunningMeanStd input shape: (3, 72, 128)
|
95 |
+
[2025-03-20 23:19:49,333][00209] RunningMeanStd input shape: (1,)
|
96 |
+
[2025-03-20 23:19:49,345][00209] ConvEncoder: input_channels=3
|
97 |
+
[2025-03-20 23:19:49,492][00209] Conv encoder output size: 512
|
98 |
+
[2025-03-20 23:19:49,492][00209] Policy head output size: 512
|
99 |
+
[2025-03-20 23:19:49,592][00031] Inference worker 0-0 is ready!
|
100 |
+
[2025-03-20 23:19:49,593][00031] All inference workers are ready! Signal rollout workers to start!
|
101 |
+
[2025-03-20 23:19:49,722][00210] Doom resolution: 160x120, resize resolution: (128, 72)
|
102 |
+
[2025-03-20 23:19:49,724][00213] Doom resolution: 160x120, resize resolution: (128, 72)
|
103 |
+
[2025-03-20 23:19:49,722][00217] Doom resolution: 160x120, resize resolution: (128, 72)
|
104 |
+
[2025-03-20 23:19:49,725][00212] Doom resolution: 160x120, resize resolution: (128, 72)
|
105 |
+
[2025-03-20 23:19:49,726][00216] Doom resolution: 160x120, resize resolution: (128, 72)
|
106 |
+
[2025-03-20 23:19:49,724][00215] Doom resolution: 160x120, resize resolution: (128, 72)
|
107 |
+
[2025-03-20 23:19:49,728][00211] Doom resolution: 160x120, resize resolution: (128, 72)
|
108 |
+
[2025-03-20 23:19:49,725][00214] Doom resolution: 160x120, resize resolution: (128, 72)
|
109 |
+
[2025-03-20 23:19:50,513][00210] Decorrelating experience for 0 frames...
|
110 |
+
[2025-03-20 23:19:50,515][00214] Decorrelating experience for 0 frames...
|
111 |
+
[2025-03-20 23:19:50,833][00216] Decorrelating experience for 0 frames...
|
112 |
+
[2025-03-20 23:19:50,835][00212] Decorrelating experience for 0 frames...
|
113 |
+
[2025-03-20 23:19:50,831][00215] Decorrelating experience for 0 frames...
|
114 |
+
[2025-03-20 23:19:50,838][00211] Decorrelating experience for 0 frames...
|
115 |
+
[2025-03-20 23:19:51,107][00213] Decorrelating experience for 0 frames...
|
116 |
+
[2025-03-20 23:19:51,192][00031] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
117 |
+
[2025-03-20 23:19:51,555][00213] Decorrelating experience for 32 frames...
|
118 |
+
[2025-03-20 23:19:51,582][00214] Decorrelating experience for 32 frames...
|
119 |
+
[2025-03-20 23:19:51,695][00211] Decorrelating experience for 32 frames...
|
120 |
+
[2025-03-20 23:19:51,736][00215] Decorrelating experience for 32 frames...
|
121 |
+
[2025-03-20 23:19:51,740][00212] Decorrelating experience for 32 frames...
|
122 |
+
[2025-03-20 23:19:51,777][00216] Decorrelating experience for 32 frames...
|
123 |
+
[2025-03-20 23:19:52,192][00217] Decorrelating experience for 0 frames...
|
124 |
+
[2025-03-20 23:19:52,479][00211] Decorrelating experience for 64 frames...
|
125 |
+
[2025-03-20 23:19:52,497][00210] Decorrelating experience for 32 frames...
|
126 |
+
[2025-03-20 23:19:52,499][00214] Decorrelating experience for 64 frames...
|
127 |
+
[2025-03-20 23:19:52,797][00212] Decorrelating experience for 64 frames...
|
128 |
+
[2025-03-20 23:19:53,093][00215] Decorrelating experience for 64 frames...
|
129 |
+
[2025-03-20 23:19:53,155][00214] Decorrelating experience for 96 frames...
|
130 |
+
[2025-03-20 23:19:53,177][00213] Decorrelating experience for 64 frames...
|
131 |
+
[2025-03-20 23:19:53,437][00216] Decorrelating experience for 64 frames...
|
132 |
+
[2025-03-20 23:19:53,444][00211] Decorrelating experience for 96 frames...
|
133 |
+
[2025-03-20 23:19:53,506][00217] Decorrelating experience for 32 frames...
|
134 |
+
[2025-03-20 23:19:53,725][00210] Decorrelating experience for 64 frames...
|
135 |
+
[2025-03-20 23:19:53,847][00212] Decorrelating experience for 96 frames...
|
136 |
+
[2025-03-20 23:19:54,128][00216] Decorrelating experience for 96 frames...
|
137 |
+
[2025-03-20 23:19:54,191][00217] Decorrelating experience for 64 frames...
|
138 |
+
[2025-03-20 23:19:54,312][00215] Decorrelating experience for 96 frames...
|
139 |
+
[2025-03-20 23:19:54,337][00210] Decorrelating experience for 96 frames...
|
140 |
+
[2025-03-20 23:19:54,853][00217] Decorrelating experience for 96 frames...
|
141 |
+
[2025-03-20 23:19:54,946][00213] Decorrelating experience for 96 frames...
|
142 |
+
[2025-03-20 23:19:56,191][00031] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 7.2. Samples: 36. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
143 |
+
[2025-03-20 23:19:56,193][00031] Avg episode reward: [(0, '0.480')]
|
144 |
+
[2025-03-20 23:19:56,919][00031] Heartbeat connected on Batcher_0
|
145 |
+
[2025-03-20 23:19:56,938][00031] Heartbeat connected on InferenceWorker_p0-w0
|
146 |
+
[2025-03-20 23:19:56,952][00031] Heartbeat connected on RolloutWorker_w0
|
147 |
+
[2025-03-20 23:19:56,966][00031] Heartbeat connected on RolloutWorker_w3
|
148 |
+
[2025-03-20 23:19:56,975][00031] Heartbeat connected on RolloutWorker_w4
|
149 |
+
[2025-03-20 23:19:56,977][00031] Heartbeat connected on RolloutWorker_w1
|
150 |
+
[2025-03-20 23:19:56,985][00031] Heartbeat connected on RolloutWorker_w5
|
151 |
+
[2025-03-20 23:19:56,993][00031] Heartbeat connected on RolloutWorker_w2
|
152 |
+
[2025-03-20 23:19:57,009][00031] Heartbeat connected on RolloutWorker_w6
|
153 |
+
[2025-03-20 23:19:57,036][00031] Heartbeat connected on RolloutWorker_w7
|
154 |
+
[2025-03-20 23:19:57,477][00196] Signal inference workers to stop experience collection...
|
155 |
+
[2025-03-20 23:19:57,483][00209] InferenceWorker_p0-w0: stopping experience collection
|
156 |
+
[2025-03-20 23:20:01,021][00196] Signal inference workers to resume experience collection...
|
157 |
+
[2025-03-20 23:20:01,022][00209] InferenceWorker_p0-w0: resuming experience collection
|
158 |
+
[2025-03-20 23:20:01,192][00031] Fps is (10 sec: 409.6, 60 sec: 409.6, 300 sec: 409.6). Total num frames: 4096. Throughput: 0: 252.4. Samples: 2524. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
|
159 |
+
[2025-03-20 23:20:01,194][00031] Avg episode reward: [(0, '1.960')]
|
160 |
+
[2025-03-20 23:20:01,673][00031] Heartbeat connected on LearnerWorker_p0
|
161 |
+
[2025-03-20 23:20:05,395][00209] Updated weights for policy 0, policy_version 10 (0.0178)
|
162 |
+
[2025-03-20 23:20:06,191][00031] Fps is (10 sec: 4505.6, 60 sec: 3003.7, 300 sec: 3003.7). Total num frames: 45056. Throughput: 0: 608.5. Samples: 9128. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
163 |
+
[2025-03-20 23:20:06,194][00031] Avg episode reward: [(0, '4.420')]
|
164 |
+
[2025-03-20 23:20:10,073][00209] Updated weights for policy 0, policy_version 20 (0.0015)
|
165 |
+
[2025-03-20 23:20:11,191][00031] Fps is (10 sec: 8601.7, 60 sec: 4505.6, 300 sec: 4505.6). Total num frames: 90112. Throughput: 0: 1101.5. Samples: 22030. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
166 |
+
[2025-03-20 23:20:11,194][00031] Avg episode reward: [(0, '4.262')]
|
167 |
+
[2025-03-20 23:20:15,010][00209] Updated weights for policy 0, policy_version 30 (0.0022)
|
168 |
+
[2025-03-20 23:20:16,191][00031] Fps is (10 sec: 8601.6, 60 sec: 5242.9, 300 sec: 5242.9). Total num frames: 131072. Throughput: 0: 1136.3. Samples: 28408. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
169 |
+
[2025-03-20 23:20:16,193][00031] Avg episode reward: [(0, '4.573')]
|
170 |
+
[2025-03-20 23:20:16,195][00196] Saving new best policy, reward=4.573!
|
171 |
+
[2025-03-20 23:20:20,235][00209] Updated weights for policy 0, policy_version 40 (0.0024)
|
172 |
+
[2025-03-20 23:20:21,193][00031] Fps is (10 sec: 7780.9, 60 sec: 5597.5, 300 sec: 5597.5). Total num frames: 167936. Throughput: 0: 1347.8. Samples: 40438. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
173 |
+
[2025-03-20 23:20:21,195][00031] Avg episode reward: [(0, '4.501')]
|
174 |
+
[2025-03-20 23:20:25,269][00209] Updated weights for policy 0, policy_version 50 (0.0017)
|
175 |
+
[2025-03-20 23:20:26,191][00031] Fps is (10 sec: 7782.4, 60 sec: 5968.5, 300 sec: 5968.5). Total num frames: 208896. Throughput: 0: 1498.4. Samples: 52444. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
176 |
+
[2025-03-20 23:20:26,194][00031] Avg episode reward: [(0, '4.422')]
|
177 |
+
[2025-03-20 23:20:30,023][00209] Updated weights for policy 0, policy_version 60 (0.0017)
|
178 |
+
[2025-03-20 23:20:31,192][00031] Fps is (10 sec: 8603.2, 60 sec: 6348.8, 300 sec: 6348.8). Total num frames: 253952. Throughput: 0: 1472.4. Samples: 58898. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
179 |
+
[2025-03-20 23:20:31,193][00031] Avg episode reward: [(0, '4.313')]
|
180 |
+
[2025-03-20 23:20:34,861][00209] Updated weights for policy 0, policy_version 70 (0.0019)
|
181 |
+
[2025-03-20 23:20:36,192][00031] Fps is (10 sec: 8601.2, 60 sec: 6553.5, 300 sec: 6553.5). Total num frames: 294912. Throughput: 0: 1593.1. Samples: 71690. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
182 |
+
[2025-03-20 23:20:36,196][00031] Avg episode reward: [(0, '4.593')]
|
183 |
+
[2025-03-20 23:20:36,197][00196] Saving new best policy, reward=4.593!
|
184 |
+
[2025-03-20 23:20:39,629][00209] Updated weights for policy 0, policy_version 80 (0.0016)
|
185 |
+
[2025-03-20 23:20:41,191][00031] Fps is (10 sec: 8601.7, 60 sec: 6799.4, 300 sec: 6799.4). Total num frames: 339968. Throughput: 0: 1879.0. Samples: 84592. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
186 |
+
[2025-03-20 23:20:41,197][00031] Avg episode reward: [(0, '4.300')]
|
187 |
+
[2025-03-20 23:20:44,362][00209] Updated weights for policy 0, policy_version 90 (0.0017)
|
188 |
+
[2025-03-20 23:20:46,192][00031] Fps is (10 sec: 8601.9, 60 sec: 6926.0, 300 sec: 6926.0). Total num frames: 380928. Throughput: 0: 1970.7. Samples: 91206. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
189 |
+
[2025-03-20 23:20:46,193][00031] Avg episode reward: [(0, '4.551')]
|
190 |
+
[2025-03-20 23:20:49,156][00209] Updated weights for policy 0, policy_version 100 (0.0020)
|
191 |
+
[2025-03-20 23:20:51,192][00031] Fps is (10 sec: 8601.6, 60 sec: 7099.7, 300 sec: 7099.7). Total num frames: 425984. Throughput: 0: 2106.4. Samples: 103916. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
192 |
+
[2025-03-20 23:20:51,193][00031] Avg episode reward: [(0, '4.711')]
|
193 |
+
[2025-03-20 23:20:51,202][00196] Saving new best policy, reward=4.711!
|
194 |
+
[2025-03-20 23:20:54,724][00209] Updated weights for policy 0, policy_version 110 (0.0021)
|
195 |
+
[2025-03-20 23:20:56,191][00031] Fps is (10 sec: 7782.4, 60 sec: 7645.9, 300 sec: 7057.7). Total num frames: 458752. Throughput: 0: 2068.6. Samples: 115116. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
196 |
+
[2025-03-20 23:20:56,196][00031] Avg episode reward: [(0, '4.548')]
|
197 |
+
[2025-03-20 23:20:59,603][00209] Updated weights for policy 0, policy_version 120 (0.0020)
|
198 |
+
[2025-03-20 23:21:01,191][00031] Fps is (10 sec: 7782.4, 60 sec: 8328.6, 300 sec: 7197.3). Total num frames: 503808. Throughput: 0: 2068.7. Samples: 121498. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
199 |
+
[2025-03-20 23:21:01,194][00031] Avg episode reward: [(0, '4.680')]
|
200 |
+
[2025-03-20 23:21:04,610][00209] Updated weights for policy 0, policy_version 130 (0.0022)
|
201 |
+
[2025-03-20 23:21:06,192][00031] Fps is (10 sec: 8601.6, 60 sec: 8328.5, 300 sec: 7263.6). Total num frames: 544768. Throughput: 0: 2076.4. Samples: 133872. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
202 |
+
[2025-03-20 23:21:06,193][00031] Avg episode reward: [(0, '4.874')]
|
203 |
+
[2025-03-20 23:21:06,196][00196] Saving new best policy, reward=4.874!
|
204 |
+
[2025-03-20 23:21:09,540][00209] Updated weights for policy 0, policy_version 140 (0.0022)
|
205 |
+
[2025-03-20 23:21:11,191][00031] Fps is (10 sec: 8192.0, 60 sec: 8260.3, 300 sec: 7321.6). Total num frames: 585728. Throughput: 0: 2086.2. Samples: 146324. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
206 |
+
[2025-03-20 23:21:11,193][00031] Avg episode reward: [(0, '4.931')]
|
207 |
+
[2025-03-20 23:21:11,200][00196] Saving new best policy, reward=4.931!
|
208 |
+
[2025-03-20 23:21:14,442][00209] Updated weights for policy 0, policy_version 150 (0.0017)
|
209 |
+
[2025-03-20 23:21:16,191][00031] Fps is (10 sec: 8192.0, 60 sec: 8260.3, 300 sec: 7372.8). Total num frames: 626688. Throughput: 0: 2082.4. Samples: 152606. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
210 |
+
[2025-03-20 23:21:16,193][00031] Avg episode reward: [(0, '4.952')]
|
211 |
+
[2025-03-20 23:21:16,196][00196] Saving new best policy, reward=4.952!
|
212 |
+
[2025-03-20 23:21:19,400][00209] Updated weights for policy 0, policy_version 160 (0.0018)
|
213 |
+
[2025-03-20 23:21:21,191][00031] Fps is (10 sec: 8192.0, 60 sec: 8328.8, 300 sec: 7418.3). Total num frames: 667648. Throughput: 0: 2073.3. Samples: 164986. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
214 |
+
[2025-03-20 23:21:21,193][00031] Avg episode reward: [(0, '5.211')]
|
215 |
+
[2025-03-20 23:21:21,200][00196] Saving new best policy, reward=5.211!
|
216 |
+
[2025-03-20 23:21:24,359][00209] Updated weights for policy 0, policy_version 170 (0.0021)
|
217 |
+
[2025-03-20 23:21:26,191][00031] Fps is (10 sec: 7782.4, 60 sec: 8260.3, 300 sec: 7415.9). Total num frames: 704512. Throughput: 0: 2044.7. Samples: 176604. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
218 |
+
[2025-03-20 23:21:26,193][00031] Avg episode reward: [(0, '5.174')]
|
219 |
+
[2025-03-20 23:21:29,762][00209] Updated weights for policy 0, policy_version 180 (0.0019)
|
220 |
+
[2025-03-20 23:21:31,192][00031] Fps is (10 sec: 8192.0, 60 sec: 8260.3, 300 sec: 7495.7). Total num frames: 749568. Throughput: 0: 2028.8. Samples: 182500. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
221 |
+
[2025-03-20 23:21:31,193][00031] Avg episode reward: [(0, '4.908')]
|
222 |
+
[2025-03-20 23:21:31,200][00196] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000183_749568.pth...
|
223 |
+
[2025-03-20 23:21:34,601][00209] Updated weights for policy 0, policy_version 190 (0.0021)
|
224 |
+
[2025-03-20 23:21:36,191][00031] Fps is (10 sec: 8601.6, 60 sec: 8260.3, 300 sec: 7528.8). Total num frames: 790528. Throughput: 0: 2027.7. Samples: 195162. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
225 |
+
[2025-03-20 23:21:36,193][00031] Avg episode reward: [(0, '5.250')]
|
226 |
+
[2025-03-20 23:21:36,195][00196] Saving new best policy, reward=5.250!
|
227 |
+
[2025-03-20 23:21:39,684][00209] Updated weights for policy 0, policy_version 200 (0.0021)
|
228 |
+
[2025-03-20 23:21:41,192][00031] Fps is (10 sec: 8192.0, 60 sec: 8192.0, 300 sec: 7559.0). Total num frames: 831488. Throughput: 0: 2052.2. Samples: 207464. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
229 |
+
[2025-03-20 23:21:41,194][00031] Avg episode reward: [(0, '5.199')]
|
230 |
+
[2025-03-20 23:21:44,560][00209] Updated weights for policy 0, policy_version 210 (0.0019)
|
231 |
+
[2025-03-20 23:21:46,192][00031] Fps is (10 sec: 8192.0, 60 sec: 8192.0, 300 sec: 7586.5). Total num frames: 872448. Throughput: 0: 2048.8. Samples: 213694. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
232 |
+
[2025-03-20 23:21:46,193][00031] Avg episode reward: [(0, '5.217')]
|
233 |
+
[2025-03-20 23:21:49,484][00209] Updated weights for policy 0, policy_version 220 (0.0021)
|
234 |
+
[2025-03-20 23:21:51,192][00031] Fps is (10 sec: 8191.9, 60 sec: 8123.7, 300 sec: 7611.7). Total num frames: 913408. Throughput: 0: 2050.5. Samples: 226144. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
235 |
+
[2025-03-20 23:21:51,193][00031] Avg episode reward: [(0, '5.546')]
|
236 |
+
[2025-03-20 23:21:51,205][00196] Saving new best policy, reward=5.546!
|
237 |
+
[2025-03-20 23:21:54,594][00209] Updated weights for policy 0, policy_version 230 (0.0023)
|
238 |
+
[2025-03-20 23:21:56,191][00031] Fps is (10 sec: 8192.0, 60 sec: 8260.3, 300 sec: 7634.9). Total num frames: 954368. Throughput: 0: 2043.4. Samples: 238276. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
239 |
+
[2025-03-20 23:21:56,194][00031] Avg episode reward: [(0, '5.609')]
|
240 |
+
[2025-03-20 23:21:56,195][00196] Saving new best policy, reward=5.609!
|
241 |
+
[2025-03-20 23:22:00,200][00209] Updated weights for policy 0, policy_version 240 (0.0025)
|
242 |
+
[2025-03-20 23:22:01,192][00031] Fps is (10 sec: 7372.9, 60 sec: 8055.5, 300 sec: 7593.4). Total num frames: 987136. Throughput: 0: 2017.0. Samples: 243372. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
243 |
+
[2025-03-20 23:22:01,195][00031] Avg episode reward: [(0, '5.573')]
|
244 |
+
[2025-03-20 23:22:05,134][00209] Updated weights for policy 0, policy_version 250 (0.0019)
|
245 |
+
[2025-03-20 23:22:06,192][00031] Fps is (10 sec: 7782.3, 60 sec: 8123.7, 300 sec: 7645.9). Total num frames: 1032192. Throughput: 0: 2011.2. Samples: 255490. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
246 |
+
[2025-03-20 23:22:06,194][00031] Avg episode reward: [(0, '6.401')]
|
247 |
+
[2025-03-20 23:22:06,197][00196] Saving new best policy, reward=6.401!
|
248 |
+
[2025-03-20 23:22:09,983][00209] Updated weights for policy 0, policy_version 260 (0.0021)
|
249 |
+
[2025-03-20 23:22:11,192][00031] Fps is (10 sec: 8601.6, 60 sec: 8123.7, 300 sec: 7665.4). Total num frames: 1073152. Throughput: 0: 2037.2. Samples: 268280. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
250 |
+
[2025-03-20 23:22:11,194][00031] Avg episode reward: [(0, '7.509')]
|
251 |
+
[2025-03-20 23:22:11,203][00196] Saving new best policy, reward=7.509!
|
252 |
+
[2025-03-20 23:22:14,833][00209] Updated weights for policy 0, policy_version 270 (0.0017)
|
253 |
+
[2025-03-20 23:22:16,191][00031] Fps is (10 sec: 8192.1, 60 sec: 8123.7, 300 sec: 7683.5). Total num frames: 1114112. Throughput: 0: 2051.2. Samples: 274804. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
254 |
+
[2025-03-20 23:22:16,195][00031] Avg episode reward: [(0, '7.105')]
|
255 |
+
[2025-03-20 23:22:19,669][00209] Updated weights for policy 0, policy_version 280 (0.0017)
|
256 |
+
[2025-03-20 23:22:21,191][00031] Fps is (10 sec: 8601.6, 60 sec: 8192.0, 300 sec: 7727.8). Total num frames: 1159168. Throughput: 0: 2047.6. Samples: 287302. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
257 |
+
[2025-03-20 23:22:21,193][00031] Avg episode reward: [(0, '7.271')]
|
258 |
+
[2025-03-20 23:22:24,373][00209] Updated weights for policy 0, policy_version 290 (0.0022)
|
259 |
+
[2025-03-20 23:22:26,192][00031] Fps is (10 sec: 8601.6, 60 sec: 8260.3, 300 sec: 7742.8). Total num frames: 1200128. Throughput: 0: 2060.4. Samples: 300182. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
260 |
+
[2025-03-20 23:22:26,193][00031] Avg episode reward: [(0, '7.034')]
|
261 |
+
[2025-03-20 23:22:29,294][00209] Updated weights for policy 0, policy_version 300 (0.0019)
|
262 |
+
[2025-03-20 23:22:31,191][00031] Fps is (10 sec: 8192.0, 60 sec: 8192.0, 300 sec: 7756.8). Total num frames: 1241088. Throughput: 0: 2061.0. Samples: 306438. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
263 |
+
[2025-03-20 23:22:31,195][00031] Avg episode reward: [(0, '7.088')]
|
264 |
+
[2025-03-20 23:22:34,891][00209] Updated weights for policy 0, policy_version 310 (0.0023)
|
265 |
+
[2025-03-20 23:22:36,191][00031] Fps is (10 sec: 7782.4, 60 sec: 8123.7, 300 sec: 7745.2). Total num frames: 1277952. Throughput: 0: 2032.4. Samples: 317602. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
266 |
+
[2025-03-20 23:22:36,193][00031] Avg episode reward: [(0, '7.653')]
|
267 |
+
[2025-03-20 23:22:36,195][00196] Saving new best policy, reward=7.653!
|
268 |
+
[2025-03-20 23:22:39,651][00209] Updated weights for policy 0, policy_version 320 (0.0021)
|
269 |
+
[2025-03-20 23:22:41,192][00031] Fps is (10 sec: 8192.0, 60 sec: 8192.0, 300 sec: 7782.4). Total num frames: 1323008. Throughput: 0: 2046.8. Samples: 330384. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
270 |
+
[2025-03-20 23:22:41,193][00031] Avg episode reward: [(0, '8.664')]
|
271 |
+
[2025-03-20 23:22:41,202][00196] Saving new best policy, reward=8.664!
|
272 |
+
[2025-03-20 23:22:44,483][00209] Updated weights for policy 0, policy_version 330 (0.0015)
|
273 |
+
[2025-03-20 23:22:46,191][00031] Fps is (10 sec: 8601.6, 60 sec: 8192.0, 300 sec: 7794.1). Total num frames: 1363968. Throughput: 0: 2076.4. Samples: 336808. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
274 |
+
[2025-03-20 23:22:46,193][00031] Avg episode reward: [(0, '9.296')]
|
275 |
+
[2025-03-20 23:22:46,195][00196] Saving new best policy, reward=9.296!
|
276 |
+
[2025-03-20 23:22:49,110][00209] Updated weights for policy 0, policy_version 340 (0.0020)
|
277 |
+
[2025-03-20 23:22:51,192][00031] Fps is (10 sec: 8601.6, 60 sec: 8260.3, 300 sec: 7827.9). Total num frames: 1409024. Throughput: 0: 2094.7. Samples: 349752. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
278 |
+
[2025-03-20 23:22:51,193][00031] Avg episode reward: [(0, '10.283')]
|
279 |
+
[2025-03-20 23:22:51,200][00196] Saving new best policy, reward=10.283!
|
280 |
+
[2025-03-20 23:22:53,905][00209] Updated weights for policy 0, policy_version 350 (0.0019)
|
281 |
+
[2025-03-20 23:22:56,191][00031] Fps is (10 sec: 8601.6, 60 sec: 8260.3, 300 sec: 7837.8). Total num frames: 1449984. Throughput: 0: 2096.4. Samples: 362618. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
282 |
+
[2025-03-20 23:22:56,195][00031] Avg episode reward: [(0, '10.114')]
|
283 |
+
[2025-03-20 23:22:58,626][00209] Updated weights for policy 0, policy_version 360 (0.0017)
|
284 |
+
[2025-03-20 23:23:01,192][00031] Fps is (10 sec: 8601.6, 60 sec: 8465.1, 300 sec: 7868.6). Total num frames: 1495040. Throughput: 0: 2096.8. Samples: 369158. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
285 |
+
[2025-03-20 23:23:01,193][00031] Avg episode reward: [(0, '9.692')]
|
286 |
+
[2025-03-20 23:23:03,747][00209] Updated weights for policy 0, policy_version 370 (0.0019)
|
287 |
+
[2025-03-20 23:23:06,191][00031] Fps is (10 sec: 8192.0, 60 sec: 8328.5, 300 sec: 7855.9). Total num frames: 1531904. Throughput: 0: 2077.3. Samples: 380780. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
288 |
+
[2025-03-20 23:23:06,194][00031] Avg episode reward: [(0, '9.835')]
|
289 |
+
[2025-03-20 23:23:08,721][00209] Updated weights for policy 0, policy_version 380 (0.0017)
|
290 |
+
[2025-03-20 23:23:11,192][00031] Fps is (10 sec: 8192.0, 60 sec: 8396.8, 300 sec: 7884.8). Total num frames: 1576960. Throughput: 0: 2084.1. Samples: 393968. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
291 |
+
[2025-03-20 23:23:11,193][00031] Avg episode reward: [(0, '10.499')]
|
292 |
+
[2025-03-20 23:23:11,202][00196] Saving new best policy, reward=10.499!
|
293 |
+
[2025-03-20 23:23:13,304][00209] Updated weights for policy 0, policy_version 390 (0.0016)
|
294 |
+
[2025-03-20 23:23:16,192][00031] Fps is (10 sec: 8601.0, 60 sec: 8396.7, 300 sec: 7892.3). Total num frames: 1617920. Throughput: 0: 2092.0. Samples: 400578. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
295 |
+
[2025-03-20 23:23:16,194][00031] Avg episode reward: [(0, '11.811')]
|
296 |
+
[2025-03-20 23:23:16,239][00196] Saving new best policy, reward=11.811!
|
297 |
+
[2025-03-20 23:23:18,148][00209] Updated weights for policy 0, policy_version 400 (0.0019)
|
298 |
+
[2025-03-20 23:23:21,192][00031] Fps is (10 sec: 8601.5, 60 sec: 8396.8, 300 sec: 7918.9). Total num frames: 1662976. Throughput: 0: 2129.4. Samples: 413424. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
299 |
+
[2025-03-20 23:23:21,193][00031] Avg episode reward: [(0, '11.596')]
|
300 |
+
[2025-03-20 23:23:23,052][00209] Updated weights for policy 0, policy_version 410 (0.0022)
|
301 |
+
[2025-03-20 23:23:26,191][00031] Fps is (10 sec: 8602.3, 60 sec: 8396.8, 300 sec: 7925.3). Total num frames: 1703936. Throughput: 0: 2120.6. Samples: 425810. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
302 |
+
[2025-03-20 23:23:26,193][00031] Avg episode reward: [(0, '12.985')]
|
303 |
+
[2025-03-20 23:23:26,196][00196] Saving new best policy, reward=12.985!
|
304 |
+
[2025-03-20 23:23:27,912][00209] Updated weights for policy 0, policy_version 420 (0.0021)
|
305 |
+
[2025-03-20 23:23:31,192][00031] Fps is (10 sec: 8192.1, 60 sec: 8396.8, 300 sec: 7931.3). Total num frames: 1744896. Throughput: 0: 2118.7. Samples: 432148. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
306 |
+
[2025-03-20 23:23:31,193][00031] Avg episode reward: [(0, '13.206')]
|
307 |
+
[2025-03-20 23:23:31,232][00196] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000427_1748992.pth...
|
308 |
+
[2025-03-20 23:23:31,322][00196] Saving new best policy, reward=13.206!
|
309 |
+
[2025-03-20 23:23:32,714][00209] Updated weights for policy 0, policy_version 430 (0.0016)
|
310 |
+
[2025-03-20 23:23:36,191][00031] Fps is (10 sec: 8191.9, 60 sec: 8465.1, 300 sec: 7937.1). Total num frames: 1785856. Throughput: 0: 2114.0. Samples: 444884. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
311 |
+
[2025-03-20 23:23:36,193][00031] Avg episode reward: [(0, '11.918')]
|
312 |
+
[2025-03-20 23:23:38,074][00209] Updated weights for policy 0, policy_version 440 (0.0018)
|
313 |
+
[2025-03-20 23:23:41,192][00031] Fps is (10 sec: 8192.0, 60 sec: 8396.8, 300 sec: 7942.7). Total num frames: 1826816. Throughput: 0: 2090.4. Samples: 456686. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
314 |
+
[2025-03-20 23:23:41,193][00031] Avg episode reward: [(0, '11.875')]
|
315 |
+
[2025-03-20 23:23:42,797][00209] Updated weights for policy 0, policy_version 450 (0.0020)
|
316 |
+
[2025-03-20 23:23:46,192][00031] Fps is (10 sec: 8601.6, 60 sec: 8465.1, 300 sec: 7965.4). Total num frames: 1871872. Throughput: 0: 2091.2. Samples: 463262. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
317 |
+
[2025-03-20 23:23:46,193][00031] Avg episode reward: [(0, '13.640')]
|
318 |
+
[2025-03-20 23:23:46,196][00196] Saving new best policy, reward=13.640!
|
319 |
+
[2025-03-20 23:23:47,534][00209] Updated weights for policy 0, policy_version 460 (0.0015)
|
320 |
+
[2025-03-20 23:23:51,192][00031] Fps is (10 sec: 9011.2, 60 sec: 8465.1, 300 sec: 7987.2). Total num frames: 1916928. Throughput: 0: 2123.5. Samples: 476336. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
321 |
+
[2025-03-20 23:23:51,194][00031] Avg episode reward: [(0, '14.054')]
|
322 |
+
[2025-03-20 23:23:51,204][00196] Saving new best policy, reward=14.054!
|
323 |
+
[2025-03-20 23:23:52,154][00209] Updated weights for policy 0, policy_version 470 (0.0016)
|
324 |
+
[2025-03-20 23:23:56,191][00031] Fps is (10 sec: 8601.7, 60 sec: 8465.1, 300 sec: 7991.4). Total num frames: 1957888. Throughput: 0: 2118.4. Samples: 489294. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
325 |
+
[2025-03-20 23:23:56,193][00031] Avg episode reward: [(0, '14.170')]
|
326 |
+
[2025-03-20 23:23:56,195][00196] Saving new best policy, reward=14.170!
|
327 |
+
[2025-03-20 23:23:56,937][00209] Updated weights for policy 0, policy_version 480 (0.0018)
|
328 |
+
[2025-03-20 23:24:01,192][00031] Fps is (10 sec: 8601.6, 60 sec: 8465.1, 300 sec: 8011.8). Total num frames: 2002944. Throughput: 0: 2119.2. Samples: 495942. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
329 |
+
[2025-03-20 23:24:01,193][00031] Avg episode reward: [(0, '13.687')]
|
330 |
+
[2025-03-20 23:24:01,625][00209] Updated weights for policy 0, policy_version 490 (0.0017)
|
331 |
+
[2025-03-20 23:24:06,192][00031] Fps is (10 sec: 8191.9, 60 sec: 8465.1, 300 sec: 7999.2). Total num frames: 2039808. Throughput: 0: 2105.7. Samples: 508180. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
332 |
+
[2025-03-20 23:24:06,194][00031] Avg episode reward: [(0, '14.986')]
|
333 |
+
[2025-03-20 23:24:06,196][00196] Saving new best policy, reward=14.986!
|
334 |
+
[2025-03-20 23:24:06,870][00209] Updated weights for policy 0, policy_version 500 (0.0021)
|
335 |
+
[2025-03-20 23:24:11,192][00031] Fps is (10 sec: 7372.8, 60 sec: 8328.5, 300 sec: 7987.2). Total num frames: 2076672. Throughput: 0: 2073.6. Samples: 519124. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
336 |
+
[2025-03-20 23:24:11,196][00031] Avg episode reward: [(0, '14.611')]
|
337 |
+
[2025-03-20 23:24:12,423][00209] Updated weights for policy 0, policy_version 510 (0.0018)
|
338 |
+
[2025-03-20 23:24:16,192][00031] Fps is (10 sec: 7782.4, 60 sec: 8328.6, 300 sec: 7991.1). Total num frames: 2117632. Throughput: 0: 2072.4. Samples: 525406. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
339 |
+
[2025-03-20 23:24:16,193][00031] Avg episode reward: [(0, '14.892')]
|
340 |
+
[2025-03-20 23:24:17,366][00209] Updated weights for policy 0, policy_version 520 (0.0018)
|
341 |
+
[2025-03-20 23:24:21,192][00031] Fps is (10 sec: 8192.0, 60 sec: 8260.3, 300 sec: 7994.8). Total num frames: 2158592. Throughput: 0: 2061.6. Samples: 537658. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
|
342 |
+
[2025-03-20 23:24:21,193][00031] Avg episode reward: [(0, '14.450')]
|
343 |
+
[2025-03-20 23:24:22,326][00209] Updated weights for policy 0, policy_version 530 (0.0020)
|
344 |
+
[2025-03-20 23:24:26,192][00031] Fps is (10 sec: 8192.0, 60 sec: 8260.2, 300 sec: 7998.4). Total num frames: 2199552. Throughput: 0: 2080.0. Samples: 550286. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
345 |
+
[2025-03-20 23:24:26,194][00031] Avg episode reward: [(0, '14.373')]
|
346 |
+
[2025-03-20 23:24:27,258][00209] Updated weights for policy 0, policy_version 540 (0.0023)
|
347 |
+
[2025-03-20 23:24:31,193][00031] Fps is (10 sec: 8600.2, 60 sec: 8328.3, 300 sec: 8016.4). Total num frames: 2244608. Throughput: 0: 2073.6. Samples: 556576. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
348 |
+
[2025-03-20 23:24:31,196][00031] Avg episode reward: [(0, '16.230')]
|
349 |
+
[2025-03-20 23:24:31,206][00196] Saving new best policy, reward=16.230!
|
350 |
+
[2025-03-20 23:24:32,038][00209] Updated weights for policy 0, policy_version 550 (0.0021)
|
351 |
+
[2025-03-20 23:24:36,192][00031] Fps is (10 sec: 8601.5, 60 sec: 8328.5, 300 sec: 8019.5). Total num frames: 2285568. Throughput: 0: 2057.7. Samples: 568932. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
352 |
+
[2025-03-20 23:24:36,194][00031] Avg episode reward: [(0, '16.307')]
|
353 |
+
[2025-03-20 23:24:36,196][00196] Saving new best policy, reward=16.307!
|
354 |
+
[2025-03-20 23:24:37,110][00209] Updated weights for policy 0, policy_version 560 (0.0021)
|
355 |
+
[2025-03-20 23:24:41,192][00031] Fps is (10 sec: 7783.6, 60 sec: 8260.3, 300 sec: 8008.4). Total num frames: 2322432. Throughput: 0: 2036.8. Samples: 580950. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
356 |
+
[2025-03-20 23:24:41,193][00031] Avg episode reward: [(0, '17.741')]
|
357 |
+
[2025-03-20 23:24:41,203][00196] Saving new best policy, reward=17.741!
|
358 |
+
[2025-03-20 23:24:42,849][00209] Updated weights for policy 0, policy_version 570 (0.0021)
|
359 |
+
[2025-03-20 23:24:46,192][00031] Fps is (10 sec: 7373.0, 60 sec: 8123.7, 300 sec: 7997.6). Total num frames: 2359296. Throughput: 0: 1999.6. Samples: 585922. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
360 |
+
[2025-03-20 23:24:46,193][00031] Avg episode reward: [(0, '19.315')]
|
361 |
+
[2025-03-20 23:24:46,245][00196] Saving new best policy, reward=19.315!
|
362 |
+
[2025-03-20 23:24:47,822][00209] Updated weights for policy 0, policy_version 580 (0.0019)
|
363 |
+
[2025-03-20 23:24:51,192][00031] Fps is (10 sec: 7782.4, 60 sec: 8055.5, 300 sec: 8136.5). Total num frames: 2400256. Throughput: 0: 2001.3. Samples: 598240. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
364 |
+
[2025-03-20 23:24:51,195][00031] Avg episode reward: [(0, '20.525')]
|
365 |
+
[2025-03-20 23:24:51,243][00196] Saving new best policy, reward=20.525!
|
366 |
+
[2025-03-20 23:24:52,760][00209] Updated weights for policy 0, policy_version 590 (0.0018)
|
367 |
+
[2025-03-20 23:24:56,194][00031] Fps is (10 sec: 8189.6, 60 sec: 8055.1, 300 sec: 8261.3). Total num frames: 2441216. Throughput: 0: 2037.2. Samples: 610804. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
368 |
+
[2025-03-20 23:24:56,196][00031] Avg episode reward: [(0, '17.832')]
|
369 |
+
[2025-03-20 23:24:57,605][00209] Updated weights for policy 0, policy_version 600 (0.0020)
|
370 |
+
[2025-03-20 23:25:01,192][00031] Fps is (10 sec: 8601.1, 60 sec: 8055.4, 300 sec: 8275.3). Total num frames: 2486272. Throughput: 0: 2039.4. Samples: 617180. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
371 |
+
[2025-03-20 23:25:01,195][00031] Avg episode reward: [(0, '18.298')]
|
372 |
+
[2025-03-20 23:25:02,588][00209] Updated weights for policy 0, policy_version 610 (0.0019)
|
373 |
+
[2025-03-20 23:25:06,192][00031] Fps is (10 sec: 8603.6, 60 sec: 8123.7, 300 sec: 8261.4). Total num frames: 2527232. Throughput: 0: 2036.2. Samples: 629288. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
374 |
+
[2025-03-20 23:25:06,194][00031] Avg episode reward: [(0, '19.394')]
|
375 |
+
[2025-03-20 23:25:07,753][00209] Updated weights for policy 0, policy_version 620 (0.0026)
|
376 |
+
[2025-03-20 23:25:11,191][00031] Fps is (10 sec: 7782.9, 60 sec: 8123.7, 300 sec: 8247.5). Total num frames: 2564096. Throughput: 0: 2023.9. Samples: 641360. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
377 |
+
[2025-03-20 23:25:11,195][00031] Avg episode reward: [(0, '19.009')]
|
378 |
+
[2025-03-20 23:25:12,806][00209] Updated weights for policy 0, policy_version 630 (0.0022)
|
379 |
+
[2025-03-20 23:25:16,192][00031] Fps is (10 sec: 7373.2, 60 sec: 8055.5, 300 sec: 8247.6). Total num frames: 2600960. Throughput: 0: 2011.8. Samples: 647102. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
380 |
+
[2025-03-20 23:25:16,193][00031] Avg episode reward: [(0, '19.067')]
|
381 |
+
[2025-03-20 23:25:18,485][00209] Updated weights for policy 0, policy_version 640 (0.0022)
|
382 |
+
[2025-03-20 23:25:21,192][00031] Fps is (10 sec: 7782.1, 60 sec: 8055.4, 300 sec: 8247.5). Total num frames: 2641920. Throughput: 0: 1987.6. Samples: 658372. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
383 |
+
[2025-03-20 23:25:21,194][00031] Avg episode reward: [(0, '20.089')]
|
384 |
+
[2025-03-20 23:25:23,346][00209] Updated weights for policy 0, policy_version 650 (0.0017)
|
385 |
+
[2025-03-20 23:25:26,192][00031] Fps is (10 sec: 8191.9, 60 sec: 8055.5, 300 sec: 8233.7). Total num frames: 2682880. Throughput: 0: 1996.8. Samples: 670804. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
386 |
+
[2025-03-20 23:25:26,194][00031] Avg episode reward: [(0, '19.902')]
|
387 |
+
[2025-03-20 23:25:28,330][00209] Updated weights for policy 0, policy_version 660 (0.0019)
|
388 |
+
[2025-03-20 23:25:31,192][00031] Fps is (10 sec: 8192.2, 60 sec: 7987.4, 300 sec: 8233.7). Total num frames: 2723840. Throughput: 0: 2023.1. Samples: 676962. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
389 |
+
[2025-03-20 23:25:31,193][00031] Avg episode reward: [(0, '17.639')]
|
390 |
+
[2025-03-20 23:25:31,206][00196] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000665_2723840.pth...
|
391 |
+
[2025-03-20 23:25:31,307][00196] Removing /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000183_749568.pth
|
392 |
+
[2025-03-20 23:25:33,342][00209] Updated weights for policy 0, policy_version 670 (0.0019)
|
393 |
+
[2025-03-20 23:25:36,192][00031] Fps is (10 sec: 8192.0, 60 sec: 7987.2, 300 sec: 8219.8). Total num frames: 2764800. Throughput: 0: 2022.0. Samples: 689230. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
394 |
+
[2025-03-20 23:25:36,194][00031] Avg episode reward: [(0, '18.091')]
|
395 |
+
[2025-03-20 23:25:38,362][00209] Updated weights for policy 0, policy_version 680 (0.0021)
|
396 |
+
[2025-03-20 23:25:41,192][00031] Fps is (10 sec: 8192.1, 60 sec: 8055.5, 300 sec: 8219.8). Total num frames: 2805760. Throughput: 0: 2018.4. Samples: 701628. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
397 |
+
[2025-03-20 23:25:41,193][00031] Avg episode reward: [(0, '18.440')]
|
398 |
+
[2025-03-20 23:25:43,264][00209] Updated weights for policy 0, policy_version 690 (0.0016)
|
399 |
+
[2025-03-20 23:25:46,192][00031] Fps is (10 sec: 8601.6, 60 sec: 8192.0, 300 sec: 8219.8). Total num frames: 2850816. Throughput: 0: 2018.3. Samples: 708000. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
400 |
+
[2025-03-20 23:25:46,193][00031] Avg episode reward: [(0, '20.095')]
|
401 |
+
[2025-03-20 23:25:48,113][00209] Updated weights for policy 0, policy_version 700 (0.0021)
|
402 |
+
[2025-03-20 23:25:51,191][00031] Fps is (10 sec: 8601.7, 60 sec: 8192.0, 300 sec: 8247.5). Total num frames: 2891776. Throughput: 0: 2026.8. Samples: 720494. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
403 |
+
[2025-03-20 23:25:51,193][00031] Avg episode reward: [(0, '21.955')]
|
404 |
+
[2025-03-20 23:25:51,203][00196] Saving new best policy, reward=21.955!
|
405 |
+
[2025-03-20 23:25:53,029][00209] Updated weights for policy 0, policy_version 710 (0.0020)
|
406 |
+
[2025-03-20 23:25:56,192][00031] Fps is (10 sec: 8191.8, 60 sec: 8192.4, 300 sec: 8233.6). Total num frames: 2932736. Throughput: 0: 2035.3. Samples: 732950. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
407 |
+
[2025-03-20 23:25:56,195][00031] Avg episode reward: [(0, '21.615')]
|
408 |
+
[2025-03-20 23:25:57,848][00209] Updated weights for policy 0, policy_version 720 (0.0018)
|
409 |
+
[2025-03-20 23:26:01,192][00031] Fps is (10 sec: 8192.0, 60 sec: 8123.8, 300 sec: 8233.7). Total num frames: 2973696. Throughput: 0: 2049.2. Samples: 739316. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
410 |
+
[2025-03-20 23:26:01,193][00031] Avg episode reward: [(0, '19.206')]
|
411 |
+
[2025-03-20 23:26:02,846][00209] Updated weights for policy 0, policy_version 730 (0.0021)
|
412 |
+
[2025-03-20 23:26:06,191][00031] Fps is (10 sec: 8192.2, 60 sec: 8123.8, 300 sec: 8233.7). Total num frames: 3014656. Throughput: 0: 2078.1. Samples: 751888. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
413 |
+
[2025-03-20 23:26:06,193][00031] Avg episode reward: [(0, '20.423')]
|
414 |
+
[2025-03-20 23:26:07,766][00209] Updated weights for policy 0, policy_version 740 (0.0018)
|
415 |
+
[2025-03-20 23:26:11,192][00031] Fps is (10 sec: 8192.0, 60 sec: 8192.0, 300 sec: 8233.7). Total num frames: 3055616. Throughput: 0: 2078.4. Samples: 764330. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
416 |
+
[2025-03-20 23:26:11,195][00031] Avg episode reward: [(0, '19.765')]
|
417 |
+
[2025-03-20 23:26:12,643][00209] Updated weights for policy 0, policy_version 750 (0.0019)
|
418 |
+
[2025-03-20 23:26:16,191][00031] Fps is (10 sec: 8601.6, 60 sec: 8328.5, 300 sec: 8247.5). Total num frames: 3100672. Throughput: 0: 2080.6. Samples: 770590. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
419 |
+
[2025-03-20 23:26:16,193][00031] Avg episode reward: [(0, '19.285')]
|
420 |
+
[2025-03-20 23:26:17,546][00209] Updated weights for policy 0, policy_version 760 (0.0017)
|
421 |
+
[2025-03-20 23:26:21,192][00031] Fps is (10 sec: 8601.6, 60 sec: 8328.6, 300 sec: 8261.4). Total num frames: 3141632. Throughput: 0: 2087.9. Samples: 783184. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
422 |
+
[2025-03-20 23:26:21,193][00031] Avg episode reward: [(0, '18.202')]
|
423 |
+
[2025-03-20 23:26:22,405][00209] Updated weights for policy 0, policy_version 770 (0.0023)
|
424 |
+
[2025-03-20 23:26:26,191][00031] Fps is (10 sec: 8192.0, 60 sec: 8328.5, 300 sec: 8247.5). Total num frames: 3182592. Throughput: 0: 2090.1. Samples: 795684. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
425 |
+
[2025-03-20 23:26:26,193][00031] Avg episode reward: [(0, '19.639')]
|
426 |
+
[2025-03-20 23:26:27,354][00209] Updated weights for policy 0, policy_version 780 (0.0019)
|
427 |
+
[2025-03-20 23:26:31,192][00031] Fps is (10 sec: 8601.5, 60 sec: 8396.8, 300 sec: 8261.4). Total num frames: 3227648. Throughput: 0: 2091.0. Samples: 802096. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
428 |
+
[2025-03-20 23:26:31,193][00031] Avg episode reward: [(0, '21.499')]
|
429 |
+
[2025-03-20 23:26:32,098][00209] Updated weights for policy 0, policy_version 790 (0.0019)
|
430 |
+
[2025-03-20 23:26:36,192][00031] Fps is (10 sec: 8601.6, 60 sec: 8396.8, 300 sec: 8261.4). Total num frames: 3268608. Throughput: 0: 2094.8. Samples: 814762. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
431 |
+
[2025-03-20 23:26:36,193][00031] Avg episode reward: [(0, '23.525')]
|
432 |
+
[2025-03-20 23:26:36,201][00196] Saving new best policy, reward=23.525!
|
433 |
+
[2025-03-20 23:26:37,049][00209] Updated weights for policy 0, policy_version 800 (0.0020)
|
434 |
+
[2025-03-20 23:26:41,192][00031] Fps is (10 sec: 8191.3, 60 sec: 8396.7, 300 sec: 8261.4). Total num frames: 3309568. Throughput: 0: 2091.1. Samples: 827050. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
435 |
+
[2025-03-20 23:26:41,194][00031] Avg episode reward: [(0, '21.924')]
|
436 |
+
[2025-03-20 23:26:42,059][00209] Updated weights for policy 0, policy_version 810 (0.0023)
|
437 |
+
[2025-03-20 23:26:46,191][00031] Fps is (10 sec: 8192.0, 60 sec: 8328.5, 300 sec: 8261.4). Total num frames: 3350528. Throughput: 0: 2086.7. Samples: 833218. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
438 |
+
[2025-03-20 23:26:46,193][00031] Avg episode reward: [(0, '19.798')]
|
439 |
+
[2025-03-20 23:26:47,073][00209] Updated weights for policy 0, policy_version 820 (0.0021)
|
440 |
+
[2025-03-20 23:26:51,192][00031] Fps is (10 sec: 8192.5, 60 sec: 8328.5, 300 sec: 8261.4). Total num frames: 3391488. Throughput: 0: 2090.5. Samples: 845960. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
441 |
+
[2025-03-20 23:26:51,196][00031] Avg episode reward: [(0, '19.309')]
|
442 |
+
[2025-03-20 23:26:51,770][00209] Updated weights for policy 0, policy_version 830 (0.0019)
|
443 |
+
[2025-03-20 23:26:56,191][00031] Fps is (10 sec: 8601.6, 60 sec: 8396.8, 300 sec: 8303.1). Total num frames: 3436544. Throughput: 0: 2102.4. Samples: 858940. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
444 |
+
[2025-03-20 23:26:56,193][00031] Avg episode reward: [(0, '21.041')]
|
445 |
+
[2025-03-20 23:26:56,530][00209] Updated weights for policy 0, policy_version 840 (0.0020)
|
446 |
+
[2025-03-20 23:27:01,192][00031] Fps is (10 sec: 8601.8, 60 sec: 8396.8, 300 sec: 8289.2). Total num frames: 3477504. Throughput: 0: 2107.6. Samples: 865430. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
447 |
+
[2025-03-20 23:27:01,193][00031] Avg episode reward: [(0, '24.327')]
|
448 |
+
[2025-03-20 23:27:01,203][00196] Saving new best policy, reward=24.327!
|
449 |
+
[2025-03-20 23:27:01,392][00209] Updated weights for policy 0, policy_version 850 (0.0017)
|
450 |
+
[2025-03-20 23:27:06,192][00031] Fps is (10 sec: 8191.3, 60 sec: 8396.7, 300 sec: 8289.2). Total num frames: 3518464. Throughput: 0: 2101.7. Samples: 877764. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
451 |
+
[2025-03-20 23:27:06,196][00031] Avg episode reward: [(0, '23.305')]
|
452 |
+
[2025-03-20 23:27:06,279][00209] Updated weights for policy 0, policy_version 860 (0.0017)
|
453 |
+
[2025-03-20 23:27:11,018][00209] Updated weights for policy 0, policy_version 870 (0.0015)
|
454 |
+
[2025-03-20 23:27:11,192][00031] Fps is (10 sec: 8601.6, 60 sec: 8465.1, 300 sec: 8303.1). Total num frames: 3563520. Throughput: 0: 2111.5. Samples: 890700. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
455 |
+
[2025-03-20 23:27:11,193][00031] Avg episode reward: [(0, '22.360')]
|
456 |
+
[2025-03-20 23:27:15,804][00209] Updated weights for policy 0, policy_version 880 (0.0016)
|
457 |
+
[2025-03-20 23:27:16,192][00031] Fps is (10 sec: 8601.5, 60 sec: 8396.7, 300 sec: 8289.2). Total num frames: 3604480. Throughput: 0: 2112.9. Samples: 897176. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
458 |
+
[2025-03-20 23:27:16,194][00031] Avg episode reward: [(0, '23.056')]
|
459 |
+
[2025-03-20 23:27:20,605][00209] Updated weights for policy 0, policy_version 890 (0.0020)
|
460 |
+
[2025-03-20 23:27:21,192][00031] Fps is (10 sec: 8601.2, 60 sec: 8465.0, 300 sec: 8303.1). Total num frames: 3649536. Throughput: 0: 2116.6. Samples: 910010. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
461 |
+
[2025-03-20 23:27:21,196][00031] Avg episode reward: [(0, '22.613')]
|
462 |
+
[2025-03-20 23:27:25,479][00209] Updated weights for policy 0, policy_version 900 (0.0020)
|
463 |
+
[2025-03-20 23:27:26,191][00031] Fps is (10 sec: 8602.4, 60 sec: 8465.1, 300 sec: 8303.1). Total num frames: 3690496. Throughput: 0: 2123.2. Samples: 922590. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
464 |
+
[2025-03-20 23:27:26,193][00031] Avg episode reward: [(0, '22.965')]
|
465 |
+
[2025-03-20 23:27:30,271][00209] Updated weights for policy 0, policy_version 910 (0.0020)
|
466 |
+
[2025-03-20 23:27:31,192][00031] Fps is (10 sec: 8192.4, 60 sec: 8396.8, 300 sec: 8317.0). Total num frames: 3731456. Throughput: 0: 2127.2. Samples: 928940. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
467 |
+
[2025-03-20 23:27:31,193][00031] Avg episode reward: [(0, '24.297')]
|
468 |
+
[2025-03-20 23:27:31,237][00196] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000912_3735552.pth...
|
469 |
+
[2025-03-20 23:27:31,322][00196] Removing /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000427_1748992.pth
|
470 |
+
[2025-03-20 23:27:35,093][00209] Updated weights for policy 0, policy_version 920 (0.0021)
|
471 |
+
[2025-03-20 23:27:36,192][00031] Fps is (10 sec: 8601.1, 60 sec: 8465.0, 300 sec: 8316.9). Total num frames: 3776512. Throughput: 0: 2128.2. Samples: 941728. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
472 |
+
[2025-03-20 23:27:36,194][00031] Avg episode reward: [(0, '25.425')]
|
473 |
+
[2025-03-20 23:27:36,195][00196] Saving new best policy, reward=25.425!
|
474 |
+
[2025-03-20 23:27:39,817][00209] Updated weights for policy 0, policy_version 930 (0.0019)
|
475 |
+
[2025-03-20 23:27:41,192][00031] Fps is (10 sec: 8601.6, 60 sec: 8465.2, 300 sec: 8317.0). Total num frames: 3817472. Throughput: 0: 2127.6. Samples: 954682. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
476 |
+
[2025-03-20 23:27:41,195][00031] Avg episode reward: [(0, '22.033')]
|
477 |
+
[2025-03-20 23:27:44,639][00209] Updated weights for policy 0, policy_version 940 (0.0019)
|
478 |
+
[2025-03-20 23:27:46,192][00031] Fps is (10 sec: 8602.1, 60 sec: 8533.3, 300 sec: 8317.0). Total num frames: 3862528. Throughput: 0: 2124.6. Samples: 961036. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
479 |
+
[2025-03-20 23:27:46,194][00031] Avg episode reward: [(0, '20.078')]
|
480 |
+
[2025-03-20 23:27:49,426][00209] Updated weights for policy 0, policy_version 950 (0.0019)
|
481 |
+
[2025-03-20 23:27:51,192][00031] Fps is (10 sec: 8601.4, 60 sec: 8533.3, 300 sec: 8317.0). Total num frames: 3903488. Throughput: 0: 2132.5. Samples: 973726. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
482 |
+
[2025-03-20 23:27:51,193][00031] Avg episode reward: [(0, '20.908')]
|
483 |
+
[2025-03-20 23:27:54,319][00209] Updated weights for policy 0, policy_version 960 (0.0016)
|
484 |
+
[2025-03-20 23:27:56,191][00031] Fps is (10 sec: 8192.0, 60 sec: 8465.1, 300 sec: 8303.1). Total num frames: 3944448. Throughput: 0: 2130.8. Samples: 986588. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
485 |
+
[2025-03-20 23:27:56,193][00031] Avg episode reward: [(0, '20.571')]
|
486 |
+
[2025-03-20 23:27:58,948][00209] Updated weights for policy 0, policy_version 970 (0.0023)
|
487 |
+
[2025-03-20 23:28:01,192][00031] Fps is (10 sec: 8601.8, 60 sec: 8533.3, 300 sec: 8330.8). Total num frames: 3989504. Throughput: 0: 2133.2. Samples: 993166. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
488 |
+
[2025-03-20 23:28:01,196][00031] Avg episode reward: [(0, '20.051')]
|
489 |
+
[2025-03-20 23:28:02,703][00196] Stopping Batcher_0...
|
490 |
+
[2025-03-20 23:28:02,704][00031] Component Batcher_0 stopped!
|
491 |
+
[2025-03-20 23:28:02,703][00196] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
492 |
+
[2025-03-20 23:28:02,704][00196] Loop batcher_evt_loop terminating...
|
493 |
+
[2025-03-20 23:28:02,742][00209] Weights refcount: 2 0
|
494 |
+
[2025-03-20 23:28:02,744][00209] Stopping InferenceWorker_p0-w0...
|
495 |
+
[2025-03-20 23:28:02,745][00209] Loop inference_proc0-0_evt_loop terminating...
|
496 |
+
[2025-03-20 23:28:02,744][00031] Component InferenceWorker_p0-w0 stopped!
|
497 |
+
[2025-03-20 23:28:02,789][00196] Removing /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000665_2723840.pth
|
498 |
+
[2025-03-20 23:28:02,805][00196] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
499 |
+
[2025-03-20 23:28:02,832][00031] Component RolloutWorker_w1 stopped!
|
500 |
+
[2025-03-20 23:28:02,831][00211] Stopping RolloutWorker_w1...
|
501 |
+
[2025-03-20 23:28:02,836][00211] Loop rollout_proc1_evt_loop terminating...
|
502 |
+
[2025-03-20 23:28:02,843][00217] Stopping RolloutWorker_w6...
|
503 |
+
[2025-03-20 23:28:02,843][00031] Component RolloutWorker_w5 stopped!
|
504 |
+
[2025-03-20 23:28:02,844][00217] Loop rollout_proc6_evt_loop terminating...
|
505 |
+
[2025-03-20 23:28:02,845][00031] Component RolloutWorker_w6 stopped!
|
506 |
+
[2025-03-20 23:28:02,847][00213] Stopping RolloutWorker_w2...
|
507 |
+
[2025-03-20 23:28:02,848][00031] Component RolloutWorker_w2 stopped!
|
508 |
+
[2025-03-20 23:28:02,848][00213] Loop rollout_proc2_evt_loop terminating...
|
509 |
+
[2025-03-20 23:28:02,849][00216] Stopping RolloutWorker_w5...
|
510 |
+
[2025-03-20 23:28:02,850][00216] Loop rollout_proc5_evt_loop terminating...
|
511 |
+
[2025-03-20 23:28:02,936][00196] Stopping LearnerWorker_p0...
|
512 |
+
[2025-03-20 23:28:02,937][00196] Loop learner_proc0_evt_loop terminating...
|
513 |
+
[2025-03-20 23:28:02,937][00031] Component LearnerWorker_p0 stopped!
|
514 |
+
[2025-03-20 23:28:03,002][00212] Stopping RolloutWorker_w3...
|
515 |
+
[2025-03-20 23:28:03,004][00212] Loop rollout_proc3_evt_loop terminating...
|
516 |
+
[2025-03-20 23:28:03,003][00031] Component RolloutWorker_w3 stopped!
|
517 |
+
[2025-03-20 23:28:03,036][00215] Stopping RolloutWorker_w7...
|
518 |
+
[2025-03-20 23:28:03,036][00031] Component RolloutWorker_w7 stopped!
|
519 |
+
[2025-03-20 23:28:03,040][00215] Loop rollout_proc7_evt_loop terminating...
|
520 |
+
[2025-03-20 23:28:03,064][00214] Stopping RolloutWorker_w4...
|
521 |
+
[2025-03-20 23:28:03,064][00031] Component RolloutWorker_w4 stopped!
|
522 |
+
[2025-03-20 23:28:03,065][00214] Loop rollout_proc4_evt_loop terminating...
|
523 |
+
[2025-03-20 23:28:03,110][00031] Component RolloutWorker_w0 stopped!
|
524 |
+
[2025-03-20 23:28:03,111][00031] Waiting for process learner_proc0 to stop...
|
525 |
+
[2025-03-20 23:28:03,115][00210] Stopping RolloutWorker_w0...
|
526 |
+
[2025-03-20 23:28:03,116][00210] Loop rollout_proc0_evt_loop terminating...
|
527 |
+
[2025-03-20 23:28:04,424][00031] Waiting for process inference_proc0-0 to join...
|
528 |
+
[2025-03-20 23:28:04,426][00031] Waiting for process rollout_proc0 to join...
|
529 |
+
[2025-03-20 23:28:05,065][00031] Waiting for process rollout_proc1 to join...
|
530 |
+
[2025-03-20 23:28:05,066][00031] Waiting for process rollout_proc2 to join...
|
531 |
+
[2025-03-20 23:28:05,067][00031] Waiting for process rollout_proc3 to join...
|
532 |
+
[2025-03-20 23:28:05,069][00031] Waiting for process rollout_proc4 to join...
|
533 |
+
[2025-03-20 23:28:05,070][00031] Waiting for process rollout_proc5 to join...
|
534 |
+
[2025-03-20 23:28:05,071][00031] Waiting for process rollout_proc6 to join...
|
535 |
+
[2025-03-20 23:28:05,072][00031] Waiting for process rollout_proc7 to join...
|
536 |
+
[2025-03-20 23:28:05,073][00031] Batcher 0 profile tree view:
|
537 |
+
batching: 20.5565, releasing_batches: 0.0308
|
538 |
+
[2025-03-20 23:28:05,074][00031] InferenceWorker_p0-w0 profile tree view:
|
539 |
+
wait_policy: 0.0000
|
540 |
+
wait_policy_total: 16.8101
|
541 |
+
update_model: 7.0893
|
542 |
+
weight_update: 0.0022
|
543 |
+
one_step: 0.0049
|
544 |
+
handle_policy_step: 440.8086
|
545 |
+
deserialize: 13.3972, stack: 2.7370, obs_to_device_normalize: 106.3461, forward: 213.4394, send_messages: 23.2578
|
546 |
+
prepare_outputs: 59.6279
|
547 |
+
to_cpu: 37.1364
|
548 |
+
[2025-03-20 23:28:05,075][00031] Learner 0 profile tree view:
|
549 |
+
misc: 0.0058, prepare_batch: 13.1576
|
550 |
+
train: 54.6013
|
551 |
+
epoch_init: 0.0063, minibatch_init: 0.0076, losses_postprocess: 0.5497, kl_divergence: 0.5537, after_optimizer: 24.3350
|
552 |
+
calculate_losses: 18.1266
|
553 |
+
losses_init: 0.0041, forward_head: 1.1958, bptt_initial: 12.4322, tail: 0.7509, advantages_returns: 0.1977, losses: 1.8577
|
554 |
+
bptt: 1.4476
|
555 |
+
bptt_forward_core: 1.3815
|
556 |
+
update: 10.5385
|
557 |
+
clip: 0.9506
|
558 |
+
[2025-03-20 23:28:05,076][00031] RolloutWorker_w0 profile tree view:
|
559 |
+
wait_for_trajectories: 0.1884, enqueue_policy_requests: 8.6902, env_step: 363.3161, overhead: 7.5452, complete_rollouts: 1.3680
|
560 |
+
save_policy_outputs: 10.8651
|
561 |
+
split_output_tensors: 4.3671
|
562 |
+
[2025-03-20 23:28:05,077][00031] RolloutWorker_w7 profile tree view:
|
563 |
+
wait_for_trajectories: 0.1955, enqueue_policy_requests: 9.0198, env_step: 360.0656, overhead: 7.9315, complete_rollouts: 1.4588
|
564 |
+
save_policy_outputs: 11.3441
|
565 |
+
split_output_tensors: 4.6434
|
566 |
+
[2025-03-20 23:28:05,078][00031] Loop Runner_EvtLoop terminating...
|
567 |
+
[2025-03-20 23:28:05,079][00031] Runner profile tree view:
|
568 |
+
main_loop: 508.0986
|
569 |
+
[2025-03-20 23:28:05,080][00031] Collected {0: 4005888}, FPS: 7884.1
|
570 |
+
[2025-03-20 23:35:04,949][00031] Loading existing experiment configuration from /kaggle/working/train_dir/default_experiment/config.json
|
571 |
+
[2025-03-20 23:35:04,950][00031] Overriding arg 'num_workers' with value 1 passed from command line
|
572 |
+
[2025-03-20 23:35:04,951][00031] Adding new argument 'no_render'=True that is not in the saved config file!
|
573 |
+
[2025-03-20 23:35:04,952][00031] Adding new argument 'save_video'=True that is not in the saved config file!
|
574 |
+
[2025-03-20 23:35:04,953][00031] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
575 |
+
[2025-03-20 23:35:04,954][00031] Adding new argument 'video_name'=None that is not in the saved config file!
|
576 |
+
[2025-03-20 23:35:04,954][00031] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
|
577 |
+
[2025-03-20 23:35:04,955][00031] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
578 |
+
[2025-03-20 23:35:04,957][00031] Adding new argument 'push_to_hub'=False that is not in the saved config file!
|
579 |
+
[2025-03-20 23:35:04,958][00031] Adding new argument 'hf_repository'=None that is not in the saved config file!
|
580 |
+
[2025-03-20 23:35:04,959][00031] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
581 |
+
[2025-03-20 23:35:04,960][00031] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
582 |
+
[2025-03-20 23:35:04,961][00031] Adding new argument 'train_script'=None that is not in the saved config file!
|
583 |
+
[2025-03-20 23:35:04,962][00031] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
584 |
+
[2025-03-20 23:35:04,963][00031] Using frameskip 1 and render_action_repeat=4 for evaluation
|
585 |
+
[2025-03-20 23:35:04,995][00031] Doom resolution: 160x120, resize resolution: (128, 72)
|
586 |
+
[2025-03-20 23:35:04,998][00031] RunningMeanStd input shape: (3, 72, 128)
|
587 |
+
[2025-03-20 23:35:05,000][00031] RunningMeanStd input shape: (1,)
|
588 |
+
[2025-03-20 23:35:05,015][00031] ConvEncoder: input_channels=3
|
589 |
+
[2025-03-20 23:35:05,128][00031] Conv encoder output size: 512
|
590 |
+
[2025-03-20 23:35:05,129][00031] Policy head output size: 512
|
591 |
+
[2025-03-20 23:35:05,354][00031] Loading state from checkpoint /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
592 |
+
[2025-03-20 23:35:06,191][00031] Num frames 100...
|
593 |
+
[2025-03-20 23:35:06,313][00031] Num frames 200...
|
594 |
+
[2025-03-20 23:35:06,441][00031] Num frames 300...
|
595 |
+
[2025-03-20 23:35:06,560][00031] Num frames 400...
|
596 |
+
[2025-03-20 23:35:06,681][00031] Num frames 500...
|
597 |
+
[2025-03-20 23:35:06,801][00031] Num frames 600...
|
598 |
+
[2025-03-20 23:35:06,925][00031] Num frames 700...
|
599 |
+
[2025-03-20 23:35:07,052][00031] Num frames 800...
|
600 |
+
[2025-03-20 23:35:07,175][00031] Num frames 900...
|
601 |
+
[2025-03-20 23:35:07,233][00031] Avg episode rewards: #0: 20.020, true rewards: #0: 9.020
|
602 |
+
[2025-03-20 23:35:07,234][00031] Avg episode reward: 20.020, avg true_objective: 9.020
|
603 |
+
[2025-03-20 23:35:07,356][00031] Num frames 1000...
|
604 |
+
[2025-03-20 23:35:07,483][00031] Num frames 1100...
|
605 |
+
[2025-03-20 23:35:07,607][00031] Num frames 1200...
|
606 |
+
[2025-03-20 23:35:07,732][00031] Num frames 1300...
|
607 |
+
[2025-03-20 23:35:07,853][00031] Num frames 1400...
|
608 |
+
[2025-03-20 23:35:07,979][00031] Num frames 1500...
|
609 |
+
[2025-03-20 23:35:08,111][00031] Num frames 1600...
|
610 |
+
[2025-03-20 23:35:08,255][00031] Avg episode rewards: #0: 17.850, true rewards: #0: 8.350
|
611 |
+
[2025-03-20 23:35:08,256][00031] Avg episode reward: 17.850, avg true_objective: 8.350
|
612 |
+
[2025-03-20 23:35:08,292][00031] Num frames 1700...
|
613 |
+
[2025-03-20 23:35:08,412][00031] Num frames 1800...
|
614 |
+
[2025-03-20 23:35:08,532][00031] Num frames 1900...
|
615 |
+
[2025-03-20 23:35:08,617][00031] Avg episode rewards: #0: 12.753, true rewards: #0: 6.420
|
616 |
+
[2025-03-20 23:35:08,618][00031] Avg episode reward: 12.753, avg true_objective: 6.420
|
617 |
+
[2025-03-20 23:35:08,707][00031] Num frames 2000...
|
618 |
+
[2025-03-20 23:35:08,832][00031] Num frames 2100...
|
619 |
+
[2025-03-20 23:35:08,956][00031] Num frames 2200...
|
620 |
+
[2025-03-20 23:35:09,089][00031] Num frames 2300...
|
621 |
+
[2025-03-20 23:35:09,217][00031] Num frames 2400...
|
622 |
+
[2025-03-20 23:35:09,342][00031] Num frames 2500...
|
623 |
+
[2025-03-20 23:35:09,470][00031] Num frames 2600...
|
624 |
+
[2025-03-20 23:35:09,592][00031] Num frames 2700...
|
625 |
+
[2025-03-20 23:35:09,717][00031] Num frames 2800...
|
626 |
+
[2025-03-20 23:35:09,844][00031] Num frames 2900...
|
627 |
+
[2025-03-20 23:35:09,971][00031] Num frames 3000...
|
628 |
+
[2025-03-20 23:35:10,096][00031] Num frames 3100...
|
629 |
+
[2025-03-20 23:35:10,217][00031] Num frames 3200...
|
630 |
+
[2025-03-20 23:35:10,350][00031] Num frames 3300...
|
631 |
+
[2025-03-20 23:35:10,449][00031] Avg episode rewards: #0: 16.835, true rewards: #0: 8.335
|
632 |
+
[2025-03-20 23:35:10,450][00031] Avg episode reward: 16.835, avg true_objective: 8.335
|
633 |
+
[2025-03-20 23:35:10,532][00031] Num frames 3400...
|
634 |
+
[2025-03-20 23:35:10,656][00031] Num frames 3500...
|
635 |
+
[2025-03-20 23:35:10,782][00031] Num frames 3600...
|
636 |
+
[2025-03-20 23:35:10,913][00031] Num frames 3700...
|
637 |
+
[2025-03-20 23:35:11,073][00031] Avg episode rewards: #0: 14.564, true rewards: #0: 7.564
|
638 |
+
[2025-03-20 23:35:11,074][00031] Avg episode reward: 14.564, avg true_objective: 7.564
|
639 |
+
[2025-03-20 23:35:11,096][00031] Num frames 3800...
|
640 |
+
[2025-03-20 23:35:11,218][00031] Num frames 3900...
|
641 |
+
[2025-03-20 23:35:11,343][00031] Num frames 4000...
|
642 |
+
[2025-03-20 23:35:11,468][00031] Num frames 4100...
|
643 |
+
[2025-03-20 23:35:11,592][00031] Num frames 4200...
|
644 |
+
[2025-03-20 23:35:11,716][00031] Num frames 4300...
|
645 |
+
[2025-03-20 23:35:11,882][00031] Avg episode rewards: #0: 13.650, true rewards: #0: 7.317
|
646 |
+
[2025-03-20 23:35:11,884][00031] Avg episode reward: 13.650, avg true_objective: 7.317
|
647 |
+
[2025-03-20 23:35:11,897][00031] Num frames 4400...
|
648 |
+
[2025-03-20 23:35:12,017][00031] Num frames 4500...
|
649 |
+
[2025-03-20 23:35:12,153][00031] Num frames 4600...
|
650 |
+
[2025-03-20 23:35:12,283][00031] Num frames 4700...
|
651 |
+
[2025-03-20 23:35:12,410][00031] Num frames 4800...
|
652 |
+
[2025-03-20 23:35:12,537][00031] Num frames 4900...
|
653 |
+
[2025-03-20 23:35:12,665][00031] Num frames 5000...
|
654 |
+
[2025-03-20 23:35:12,787][00031] Num frames 5100...
|
655 |
+
[2025-03-20 23:35:12,912][00031] Num frames 5200...
|
656 |
+
[2025-03-20 23:35:13,037][00031] Num frames 5300...
|
657 |
+
[2025-03-20 23:35:13,157][00031] Num frames 5400...
|
658 |
+
[2025-03-20 23:35:13,281][00031] Num frames 5500...
|
659 |
+
[2025-03-20 23:35:13,409][00031] Num frames 5600...
|
660 |
+
[2025-03-20 23:35:13,538][00031] Num frames 5700...
|
661 |
+
[2025-03-20 23:35:13,716][00031] Avg episode rewards: #0: 15.709, true rewards: #0: 8.280
|
662 |
+
[2025-03-20 23:35:13,717][00031] Avg episode reward: 15.709, avg true_objective: 8.280
|
663 |
+
[2025-03-20 23:35:13,726][00031] Num frames 5800...
|
664 |
+
[2025-03-20 23:35:13,856][00031] Num frames 5900...
|
665 |
+
[2025-03-20 23:35:14,007][00031] Num frames 6000...
|
666 |
+
[2025-03-20 23:35:14,133][00031] Num frames 6100...
|
667 |
+
[2025-03-20 23:35:14,259][00031] Num frames 6200...
|
668 |
+
[2025-03-20 23:35:14,385][00031] Num frames 6300...
|
669 |
+
[2025-03-20 23:35:14,517][00031] Num frames 6400...
|
670 |
+
[2025-03-20 23:35:14,647][00031] Num frames 6500...
|
671 |
+
[2025-03-20 23:35:14,781][00031] Num frames 6600...
|
672 |
+
[2025-03-20 23:35:14,909][00031] Num frames 6700...
|
673 |
+
[2025-03-20 23:35:15,036][00031] Num frames 6800...
|
674 |
+
[2025-03-20 23:35:15,154][00031] Num frames 6900...
|
675 |
+
[2025-03-20 23:35:15,317][00031] Avg episode rewards: #0: 17.364, true rewards: #0: 8.739
|
676 |
+
[2025-03-20 23:35:15,318][00031] Avg episode reward: 17.364, avg true_objective: 8.739
|
677 |
+
[2025-03-20 23:35:15,330][00031] Num frames 7000...
|
678 |
+
[2025-03-20 23:35:15,450][00031] Num frames 7100...
|
679 |
+
[2025-03-20 23:35:15,568][00031] Num frames 7200...
|
680 |
+
[2025-03-20 23:35:15,697][00031] Num frames 7300...
|
681 |
+
[2025-03-20 23:35:15,820][00031] Num frames 7400...
|
682 |
+
[2025-03-20 23:35:15,946][00031] Num frames 7500...
|
683 |
+
[2025-03-20 23:35:16,073][00031] Num frames 7600...
|
684 |
+
[2025-03-20 23:35:16,194][00031] Num frames 7700...
|
685 |
+
[2025-03-20 23:35:16,309][00031] Num frames 7800...
|
686 |
+
[2025-03-20 23:35:16,434][00031] Num frames 7900...
|
687 |
+
[2025-03-20 23:35:16,559][00031] Num frames 8000...
|
688 |
+
[2025-03-20 23:35:16,684][00031] Num frames 8100...
|
689 |
+
[2025-03-20 23:35:16,753][00031] Avg episode rewards: #0: 17.901, true rewards: #0: 9.012
|
690 |
+
[2025-03-20 23:35:16,753][00031] Avg episode reward: 17.901, avg true_objective: 9.012
|
691 |
+
[2025-03-20 23:35:16,863][00031] Num frames 8200...
|
692 |
+
[2025-03-20 23:35:16,995][00031] Num frames 8300...
|
693 |
+
[2025-03-20 23:35:17,124][00031] Num frames 8400...
|
694 |
+
[2025-03-20 23:35:17,250][00031] Num frames 8500...
|
695 |
+
[2025-03-20 23:35:17,380][00031] Num frames 8600...
|
696 |
+
[2025-03-20 23:35:17,512][00031] Num frames 8700...
|
697 |
+
[2025-03-20 23:35:17,634][00031] Num frames 8800...
|
698 |
+
[2025-03-20 23:35:17,757][00031] Num frames 8900...
|
699 |
+
[2025-03-20 23:35:17,882][00031] Num frames 9000...
|
700 |
+
[2025-03-20 23:35:18,007][00031] Num frames 9100...
|
701 |
+
[2025-03-20 23:35:18,127][00031] Num frames 9200...
|
702 |
+
[2025-03-20 23:35:18,246][00031] Num frames 9300...
|
703 |
+
[2025-03-20 23:35:18,364][00031] Num frames 9400...
|
704 |
+
[2025-03-20 23:35:18,486][00031] Num frames 9500...
|
705 |
+
[2025-03-20 23:35:18,609][00031] Num frames 9600...
|
706 |
+
[2025-03-20 23:35:18,741][00031] Num frames 9700...
|
707 |
+
[2025-03-20 23:35:18,865][00031] Num frames 9800...
|
708 |
+
[2025-03-20 23:35:18,984][00031] Num frames 9900...
|
709 |
+
[2025-03-20 23:35:19,110][00031] Num frames 10000...
|
710 |
+
[2025-03-20 23:35:19,239][00031] Num frames 10100...
|
711 |
+
[2025-03-20 23:35:19,371][00031] Num frames 10200...
|
712 |
+
[2025-03-20 23:35:19,442][00031] Avg episode rewards: #0: 21.711, true rewards: #0: 10.211
|
713 |
+
[2025-03-20 23:35:19,443][00031] Avg episode reward: 21.711, avg true_objective: 10.211
|
714 |
+
[2025-03-20 23:35:55,955][00031] Replay video saved to /kaggle/working/train_dir/default_experiment/replay.mp4!
|
715 |
+
[2025-03-20 23:37:41,964][00031] Loading existing experiment configuration from /kaggle/working/train_dir/default_experiment/config.json
|
716 |
+
[2025-03-20 23:37:41,966][00031] Overriding arg 'num_workers' with value 1 passed from command line
|
717 |
+
[2025-03-20 23:37:41,967][00031] Adding new argument 'no_render'=True that is not in the saved config file!
|
718 |
+
[2025-03-20 23:37:41,968][00031] Adding new argument 'save_video'=True that is not in the saved config file!
|
719 |
+
[2025-03-20 23:37:41,969][00031] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
720 |
+
[2025-03-20 23:37:41,970][00031] Adding new argument 'video_name'=None that is not in the saved config file!
|
721 |
+
[2025-03-20 23:37:41,972][00031] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
|
722 |
+
[2025-03-20 23:37:41,973][00031] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
723 |
+
[2025-03-20 23:37:41,973][00031] Adding new argument 'push_to_hub'=True that is not in the saved config file!
|
724 |
+
[2025-03-20 23:37:41,974][00031] Adding new argument 'hf_repository'='salym/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
|
725 |
+
[2025-03-20 23:37:41,975][00031] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
726 |
+
[2025-03-20 23:37:41,976][00031] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
727 |
+
[2025-03-20 23:37:41,978][00031] Adding new argument 'train_script'=None that is not in the saved config file!
|
728 |
+
[2025-03-20 23:37:41,978][00031] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
729 |
+
[2025-03-20 23:37:41,979][00031] Using frameskip 1 and render_action_repeat=4 for evaluation
|
730 |
+
[2025-03-20 23:37:42,004][00031] RunningMeanStd input shape: (3, 72, 128)
|
731 |
+
[2025-03-20 23:37:42,006][00031] RunningMeanStd input shape: (1,)
|
732 |
+
[2025-03-20 23:37:42,018][00031] ConvEncoder: input_channels=3
|
733 |
+
[2025-03-20 23:37:42,059][00031] Conv encoder output size: 512
|
734 |
+
[2025-03-20 23:37:42,060][00031] Policy head output size: 512
|
735 |
+
[2025-03-20 23:37:42,078][00031] Loading state from checkpoint /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
736 |
+
[2025-03-20 23:37:42,554][00031] Num frames 100...
|
737 |
+
[2025-03-20 23:37:42,679][00031] Num frames 200...
|
738 |
+
[2025-03-20 23:37:42,803][00031] Num frames 300...
|
739 |
+
[2025-03-20 23:37:42,934][00031] Num frames 400...
|
740 |
+
[2025-03-20 23:37:43,056][00031] Num frames 500...
|
741 |
+
[2025-03-20 23:37:43,178][00031] Num frames 600...
|
742 |
+
[2025-03-20 23:37:43,299][00031] Num frames 700...
|
743 |
+
[2025-03-20 23:37:43,423][00031] Num frames 800...
|
744 |
+
[2025-03-20 23:37:43,546][00031] Num frames 900...
|
745 |
+
[2025-03-20 23:37:43,664][00031] Num frames 1000...
|
746 |
+
[2025-03-20 23:37:43,807][00031] Num frames 1100...
|
747 |
+
[2025-03-20 23:37:43,942][00031] Num frames 1200...
|
748 |
+
[2025-03-20 23:37:44,091][00031] Num frames 1300...
|
749 |
+
[2025-03-20 23:37:44,220][00031] Num frames 1400...
|
750 |
+
[2025-03-20 23:37:44,343][00031] Num frames 1500...
|
751 |
+
[2025-03-20 23:37:44,403][00031] Avg episode rewards: #0: 39.040, true rewards: #0: 15.040
|
752 |
+
[2025-03-20 23:37:44,404][00031] Avg episode reward: 39.040, avg true_objective: 15.040
|
753 |
+
[2025-03-20 23:37:44,524][00031] Num frames 1600...
|
754 |
+
[2025-03-20 23:37:44,656][00031] Num frames 1700...
|
755 |
+
[2025-03-20 23:37:44,785][00031] Num frames 1800...
|
756 |
+
[2025-03-20 23:37:44,914][00031] Num frames 1900...
|
757 |
+
[2025-03-20 23:37:45,073][00031] Avg episode rewards: #0: 23.420, true rewards: #0: 9.920
|
758 |
+
[2025-03-20 23:37:45,074][00031] Avg episode reward: 23.420, avg true_objective: 9.920
|
759 |
+
[2025-03-20 23:37:45,095][00031] Num frames 2000...
|
760 |
+
[2025-03-20 23:37:45,213][00031] Num frames 2100...
|
761 |
+
[2025-03-20 23:37:45,335][00031] Num frames 2200...
|
762 |
+
[2025-03-20 23:37:45,457][00031] Num frames 2300...
|
763 |
+
[2025-03-20 23:37:45,574][00031] Num frames 2400...
|
764 |
+
[2025-03-20 23:37:45,693][00031] Num frames 2500...
|
765 |
+
[2025-03-20 23:37:45,814][00031] Num frames 2600...
|
766 |
+
[2025-03-20 23:37:45,943][00031] Num frames 2700...
|
767 |
+
[2025-03-20 23:37:46,072][00031] Num frames 2800...
|
768 |
+
[2025-03-20 23:37:46,202][00031] Num frames 2900...
|
769 |
+
[2025-03-20 23:37:46,365][00031] Avg episode rewards: #0: 23.610, true rewards: #0: 9.943
|
770 |
+
[2025-03-20 23:37:46,366][00031] Avg episode reward: 23.610, avg true_objective: 9.943
|
771 |
+
[2025-03-20 23:37:46,389][00031] Num frames 3000...
|
772 |
+
[2025-03-20 23:37:46,515][00031] Num frames 3100...
|
773 |
+
[2025-03-20 23:37:46,641][00031] Num frames 3200...
|
774 |
+
[2025-03-20 23:37:46,766][00031] Num frames 3300...
|
775 |
+
[2025-03-20 23:37:46,894][00031] Num frames 3400...
|
776 |
+
[2025-03-20 23:37:47,033][00031] Avg episode rewards: #0: 20.158, true rewards: #0: 8.657
|
777 |
+
[2025-03-20 23:37:47,034][00031] Avg episode reward: 20.158, avg true_objective: 8.657
|
778 |
+
[2025-03-20 23:37:47,083][00031] Num frames 3500...
|
779 |
+
[2025-03-20 23:37:47,207][00031] Num frames 3600...
|
780 |
+
[2025-03-20 23:37:47,330][00031] Num frames 3700...
|
781 |
+
[2025-03-20 23:37:47,461][00031] Num frames 3800...
|
782 |
+
[2025-03-20 23:37:47,587][00031] Num frames 3900...
|
783 |
+
[2025-03-20 23:37:47,714][00031] Num frames 4000...
|
784 |
+
[2025-03-20 23:37:47,840][00031] Num frames 4100...
|
785 |
+
[2025-03-20 23:37:47,967][00031] Num frames 4200...
|
786 |
+
[2025-03-20 23:37:48,091][00031] Num frames 4300...
|
787 |
+
[2025-03-20 23:37:48,213][00031] Num frames 4400...
|
788 |
+
[2025-03-20 23:37:48,333][00031] Num frames 4500...
|
789 |
+
[2025-03-20 23:37:48,456][00031] Num frames 4600...
|
790 |
+
[2025-03-20 23:37:48,528][00031] Avg episode rewards: #0: 20.630, true rewards: #0: 9.230
|
791 |
+
[2025-03-20 23:37:48,529][00031] Avg episode reward: 20.630, avg true_objective: 9.230
|
792 |
+
[2025-03-20 23:37:48,631][00031] Num frames 4700...
|
793 |
+
[2025-03-20 23:37:48,769][00031] Num frames 4800...
|
794 |
+
[2025-03-20 23:37:48,898][00031] Num frames 4900...
|
795 |
+
[2025-03-20 23:37:49,020][00031] Num frames 5000...
|
796 |
+
[2025-03-20 23:37:49,142][00031] Num frames 5100...
|
797 |
+
[2025-03-20 23:37:49,261][00031] Num frames 5200...
|
798 |
+
[2025-03-20 23:37:49,387][00031] Num frames 5300...
|
799 |
+
[2025-03-20 23:37:49,513][00031] Num frames 5400...
|
800 |
+
[2025-03-20 23:37:49,643][00031] Num frames 5500...
|
801 |
+
[2025-03-20 23:37:49,760][00031] Num frames 5600...
|
802 |
+
[2025-03-20 23:37:49,886][00031] Num frames 5700...
|
803 |
+
[2025-03-20 23:37:50,009][00031] Num frames 5800...
|
804 |
+
[2025-03-20 23:37:50,085][00031] Avg episode rewards: #0: 21.695, true rewards: #0: 9.695
|
805 |
+
[2025-03-20 23:37:50,087][00031] Avg episode reward: 21.695, avg true_objective: 9.695
|
806 |
+
[2025-03-20 23:37:50,185][00031] Num frames 5900...
|
807 |
+
[2025-03-20 23:37:50,312][00031] Num frames 6000...
|
808 |
+
[2025-03-20 23:37:50,440][00031] Num frames 6100...
|
809 |
+
[2025-03-20 23:37:50,563][00031] Num frames 6200...
|
810 |
+
[2025-03-20 23:37:50,620][00031] Avg episode rewards: #0: 19.573, true rewards: #0: 8.859
|
811 |
+
[2025-03-20 23:37:50,622][00031] Avg episode reward: 19.573, avg true_objective: 8.859
|
812 |
+
[2025-03-20 23:37:50,757][00031] Num frames 6300...
|
813 |
+
[2025-03-20 23:37:50,896][00031] Num frames 6400...
|
814 |
+
[2025-03-20 23:37:51,028][00031] Num frames 6500...
|
815 |
+
[2025-03-20 23:37:51,155][00031] Num frames 6600...
|
816 |
+
[2025-03-20 23:37:51,283][00031] Num frames 6700...
|
817 |
+
[2025-03-20 23:37:51,411][00031] Num frames 6800...
|
818 |
+
[2025-03-20 23:37:51,536][00031] Num frames 6900...
|
819 |
+
[2025-03-20 23:37:51,655][00031] Num frames 7000...
|
820 |
+
[2025-03-20 23:37:51,781][00031] Num frames 7100...
|
821 |
+
[2025-03-20 23:37:51,913][00031] Num frames 7200...
|
822 |
+
[2025-03-20 23:37:52,021][00031] Avg episode rewards: #0: 20.555, true rewards: #0: 9.055
|
823 |
+
[2025-03-20 23:37:52,022][00031] Avg episode reward: 20.555, avg true_objective: 9.055
|
824 |
+
[2025-03-20 23:37:52,090][00031] Num frames 7300...
|
825 |
+
[2025-03-20 23:37:52,207][00031] Num frames 7400...
|
826 |
+
[2025-03-20 23:37:52,323][00031] Num frames 7500...
|
827 |
+
[2025-03-20 23:37:52,443][00031] Num frames 7600...
|
828 |
+
[2025-03-20 23:37:52,566][00031] Num frames 7700...
|
829 |
+
[2025-03-20 23:37:52,643][00031] Avg episode rewards: #0: 19.575, true rewards: #0: 8.574
|
830 |
+
[2025-03-20 23:37:52,644][00031] Avg episode reward: 19.575, avg true_objective: 8.574
|
831 |
+
[2025-03-20 23:37:52,748][00031] Num frames 7800...
|
832 |
+
[2025-03-20 23:37:52,874][00031] Num frames 7900...
|
833 |
+
[2025-03-20 23:37:52,995][00031] Num frames 8000...
|
834 |
+
[2025-03-20 23:37:53,130][00031] Num frames 8100...
|
835 |
+
[2025-03-20 23:37:53,253][00031] Num frames 8200...
|
836 |
+
[2025-03-20 23:37:53,426][00031] Avg episode rewards: #0: 18.693, true rewards: #0: 8.293
|
837 |
+
[2025-03-20 23:37:53,427][00031] Avg episode reward: 18.693, avg true_objective: 8.293
|
838 |
+
[2025-03-20 23:38:23,118][00031] Replay video saved to /kaggle/working/train_dir/default_experiment/replay.mp4!
|