--- datasets: - salma-remyx/test_startup_advice_50_samples base_model: google/gemma-2b-it library_name: peft tags: - remyx --- # Model Card for test_train_general_1 **test_train_general_1** uses `google/gemma-2b-it` as the backbone. ## Model Details This model is fine-tuned on the `salma-remyx/test_startup_advice_50_samples` dataset designed to enhance specific reasoning capabilities. ### Model Description This model was fine-tuned for task 'llm' using data generated on 20:37 January 08, 2025. - **Developed by:** remyx.ai - **Model type:** Language Model, Adapter Model - **Finetuned from model:** google/gemma-2b-it ## Usage Use the code snippet below to load the base model and apply the adapter for inference: ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel # Load the base model base_model_name = "google/gemma-2b-it" adapter_path = "/path/to/adapter" # Replace with actual adapter path tokenizer = AutoTokenizer.from_pretrained(base_model_name) base_model = AutoModelForCausalLM.from_pretrained(base_model_name) # Apply the adapter model = PeftModel.from_pretrained(base_model, adapter_path) model = model.merge_and_unload() # Run inference input_text = "Your input text here" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```