--- library_name: transformers license: llama3.1 base_model: meta-llama/Llama-3.1-8B-Instruct tags: - generated_from_trainer metrics: - accuracy model-index: - name: QA-Llama-3.1-4155 results: [] --- # QA-Llama-3.1-4155 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0781 - Accuracy: 0.6965 - Macro F1: 0.6444 - Macro Precision: 0.7361 - Macro Recall: 0.5968 - Micro F1: 0.7539 - Micro Precision: 0.8035 - Micro Recall: 0.7100 - Flagged/accuracy: 0.8561 - Flagged/precision: 0.9050 - Flagged/recall: 0.8284 - Flagged/f1: 0.8650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.8362564501611134e-07 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 64 - total_eval_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 | Macro Precision | Macro Recall | Micro F1 | Micro Precision | Micro Recall | Flagged/accuracy | Flagged/precision | Flagged/recall | Flagged/f1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:| | 0.0688 | 1.0 | 8454 | 0.0799 | 0.6891 | 0.6367 | 0.7276 | 0.5931 | 0.7464 | 0.8015 | 0.6984 | 0.8491 | 0.8948 | 0.8260 | 0.8590 | | 0.0745 | 2.0 | 16908 | 0.0777 | 0.6956 | 0.6295 | 0.7647 | 0.5680 | 0.7503 | 0.8171 | 0.6935 | 0.8532 | 0.9108 | 0.8160 | 0.8608 | | 0.06 | 3.0 | 25362 | 0.0781 | 0.6965 | 0.6444 | 0.7361 | 0.5968 | 0.7539 | 0.8035 | 0.7100 | 0.8561 | 0.9050 | 0.8284 | 0.8650 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu118 - Datasets 3.5.1 - Tokenizers 0.21.1