Model save
Browse files- README.md +78 -0
- metadata.json +1 -1
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: llama3.1
|
4 |
+
base_model: meta-llama/Llama-3.1-8B-Instruct
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: QA-Llama-3.1-4155
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# QA-Llama-3.1-4155
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.0781
|
22 |
+
- Accuracy: 0.6965
|
23 |
+
- Macro F1: 0.6444
|
24 |
+
- Macro Precision: 0.7361
|
25 |
+
- Macro Recall: 0.5968
|
26 |
+
- Micro F1: 0.7539
|
27 |
+
- Micro Precision: 0.8035
|
28 |
+
- Micro Recall: 0.7100
|
29 |
+
- Flagged/accuracy: 0.8561
|
30 |
+
- Flagged/precision: 0.9050
|
31 |
+
- Flagged/recall: 0.8284
|
32 |
+
- Flagged/f1: 0.8650
|
33 |
+
|
34 |
+
## Model description
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Intended uses & limitations
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training and evaluation data
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training procedure
|
47 |
+
|
48 |
+
### Training hyperparameters
|
49 |
+
|
50 |
+
The following hyperparameters were used during training:
|
51 |
+
- learning_rate: 2.8362564501611134e-07
|
52 |
+
- train_batch_size: 16
|
53 |
+
- eval_batch_size: 32
|
54 |
+
- seed: 42
|
55 |
+
- distributed_type: multi-GPU
|
56 |
+
- num_devices: 4
|
57 |
+
- total_train_batch_size: 64
|
58 |
+
- total_eval_batch_size: 128
|
59 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
60 |
+
- lr_scheduler_type: cosine
|
61 |
+
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 3
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 | Macro Precision | Macro Recall | Micro F1 | Micro Precision | Micro Recall | Flagged/accuracy | Flagged/precision | Flagged/recall | Flagged/f1 |
|
67 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|
|
68 |
+
| 0.0688 | 1.0 | 8454 | 0.0799 | 0.6891 | 0.6367 | 0.7276 | 0.5931 | 0.7464 | 0.8015 | 0.6984 | 0.8491 | 0.8948 | 0.8260 | 0.8590 |
|
69 |
+
| 0.0745 | 2.0 | 16908 | 0.0777 | 0.6956 | 0.6295 | 0.7647 | 0.5680 | 0.7503 | 0.8171 | 0.6935 | 0.8532 | 0.9108 | 0.8160 | 0.8608 |
|
70 |
+
| 0.06 | 3.0 | 25362 | 0.0781 | 0.6965 | 0.6444 | 0.7361 | 0.5968 | 0.7539 | 0.8035 | 0.7100 | 0.8561 | 0.9050 | 0.8284 | 0.8650 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.51.3
|
76 |
+
- Pytorch 2.7.0+cu118
|
77 |
+
- Datasets 3.5.1
|
78 |
+
- Tokenizers 0.21.1
|
metadata.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
-
"steps_completed":
|
3 |
"trial_id": 4155
|
4 |
}
|
|
|
1 |
{
|
2 |
+
"steps_completed": 25362,
|
3 |
"trial_id": 4155
|
4 |
}
|