Improve language tag (#1)
Browse files- Improve language tag (4aeb706980681eccca7fd9fa2f31a7f930d2640b)
Co-authored-by: Loïck BOURDOIS <[email protected]>
README.md
CHANGED
@@ -1,130 +1,142 @@
|
|
1 |
-
---
|
2 |
-
base_model:
|
3 |
-
- Qwen/Qwen2.5-3B-Instruct
|
4 |
-
tags:
|
5 |
-
- text-generation-inference
|
6 |
-
- transformers
|
7 |
-
- qwen2
|
8 |
-
- trl
|
9 |
-
- grpo
|
10 |
-
license: apache-2.0
|
11 |
-
language:
|
12 |
-
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
-
|
18 |
-
-
|
19 |
-
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
- **
|
32 |
-
- **
|
33 |
-
- **
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
""
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
)
|
85 |
-
|
86 |
-
#
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
)
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model:
|
3 |
+
- Qwen/Qwen2.5-3B-Instruct
|
4 |
+
tags:
|
5 |
+
- text-generation-inference
|
6 |
+
- transformers
|
7 |
+
- qwen2
|
8 |
+
- trl
|
9 |
+
- grpo
|
10 |
+
license: apache-2.0
|
11 |
+
language:
|
12 |
+
- zho
|
13 |
+
- eng
|
14 |
+
- fra
|
15 |
+
- spa
|
16 |
+
- por
|
17 |
+
- deu
|
18 |
+
- ita
|
19 |
+
- rus
|
20 |
+
- jpn
|
21 |
+
- kor
|
22 |
+
- vie
|
23 |
+
- tha
|
24 |
+
- ara
|
25 |
+
---
|
26 |
+
|
27 |
+
# TBH.AI Secure Reasoning Model
|
28 |
+
|
29 |
+
- **Developed by:** TBH.AI
|
30 |
+
- **License:** apache-2.0
|
31 |
+
- **Fine-tuned from:** Qwen/Qwen2.5-3B-Instruct
|
32 |
+
- **Fine-tuning Method:** GRPO (General Reinforcement with Policy Optimization)
|
33 |
+
- **Inspired by:** DeepSeek-R1
|
34 |
+
|
35 |
+
## **Model Description**
|
36 |
+
TBH.AI Secure Reasoning Model is a cutting-edge AI model designed for secure, reliable, and structured reasoning. Fine-tuned on Qwen 2.5 using GRPO, it enhances logical reasoning, decision-making, and problem-solving capabilities while maintaining a strong focus on reducing AI hallucinations and ensuring factual accuracy.
|
37 |
+
|
38 |
+
Unlike conventional language models that rely primarily on knowledge retrieval, TBH.AI's model is designed to autonomously engage with complex problems, breaking them down into structured thought processes. Inspired by DeepSeek-R1, it employs advanced reinforcement learning methodologies that allow it to validate and refine its logical conclusions securely and effectively.
|
39 |
+
|
40 |
+
This model is particularly suited for tasks requiring high-level reasoning, structured analysis, and problem-solving in critical domains such as cybersecurity, finance, and research. It is ideal for professionals and organizations seeking AI solutions that prioritize security, transparency, and truthfulness.
|
41 |
+
|
42 |
+
## **Features**
|
43 |
+
- **Secure Self-Reasoning Capabilities:** Independently analyzes problems while ensuring factual consistency.
|
44 |
+
- **Reinforcement Learning with GRPO:** Fine-tuned using policy optimization techniques for logical precision.
|
45 |
+
- **Multi-Step Logical Deduction:** Breaks down complex queries into structured, step-by-step responses.
|
46 |
+
- **Industry-Ready Security Focus:** Ideal for cybersecurity, finance, and high-stakes applications requiring trust and reliability.
|
47 |
+
|
48 |
+
## **Limitations**
|
49 |
+
- Requires well-structured prompts for optimal reasoning depth.
|
50 |
+
- Not optimized for tasks requiring extensive factual recall beyond its training scope.
|
51 |
+
- Performance depends on reinforcement learning techniques and fine-tuning datasets.
|
52 |
+
|
53 |
+
## **Usage**
|
54 |
+
To use this model for secure text generation and reasoning tasks, follow the structure below:
|
55 |
+
```python
|
56 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
57 |
+
import torch
|
58 |
+
|
59 |
+
# Load tokenizer and model
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained("saishshinde15/TBH.AI_Base_Reasoning")
|
61 |
+
model = AutoModelForCausalLM.from_pretrained("saishshinde15/TBH.AI_Base_Reasoning")
|
62 |
+
|
63 |
+
# Prepare input prompt using chat template
|
64 |
+
SYSTEM_PROMPT = """
|
65 |
+
Respond in the following format:
|
66 |
+
<reasoning>
|
67 |
+
...
|
68 |
+
</reasoning>
|
69 |
+
<answer>
|
70 |
+
...
|
71 |
+
</answer>
|
72 |
+
"""
|
73 |
+
text = tokenizer.apply_chat_template([
|
74 |
+
{"role": "system", "content": SYSTEM_PROMPT},
|
75 |
+
{"role": "user", "content": "What is 2x+3=4"},
|
76 |
+
], tokenize=False, add_generation_prompt=True)
|
77 |
+
|
78 |
+
# Tokenize input
|
79 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
80 |
+
|
81 |
+
# Move to GPU if available
|
82 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
83 |
+
model.to(device)
|
84 |
+
input_ids = input_ids.to(device)
|
85 |
+
|
86 |
+
# Generate response
|
87 |
+
from vllm import SamplingParams
|
88 |
+
sampling_params = SamplingParams(
|
89 |
+
temperature=0.8,
|
90 |
+
top_p=0.95,
|
91 |
+
max_tokens=1024,
|
92 |
+
)
|
93 |
+
output = model.generate(
|
94 |
+
input_ids,
|
95 |
+
sampling_params=sampling_params,
|
96 |
+
)
|
97 |
+
|
98 |
+
# Decode and print output
|
99 |
+
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
100 |
+
print(output_text)
|
101 |
+
```
|
102 |
+
|
103 |
+
<details>
|
104 |
+
<summary>Fast inference</summary>
|
105 |
+
|
106 |
+
```python
|
107 |
+
pip install transformers vllm vllm[lora] torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
|
108 |
+
|
109 |
+
text = tokenizer.apply_chat_template([
|
110 |
+
{"role" : "system", "content" : SYSTEM_PROMPT},
|
111 |
+
{"role" : "user", "content" : "What is 2x+3=4"},
|
112 |
+
], tokenize = False, add_generation_prompt = True)
|
113 |
+
|
114 |
+
from vllm import SamplingParams
|
115 |
+
sampling_params = SamplingParams(
|
116 |
+
temperature = 0.8,
|
117 |
+
top_p = 0.95,
|
118 |
+
max_tokens = 1024,
|
119 |
+
)
|
120 |
+
output = model.fast_generate(
|
121 |
+
text,
|
122 |
+
sampling_params = sampling_params,
|
123 |
+
lora_request = model.load_lora("grpo_saved_lora"),
|
124 |
+
)[0].outputs[0].text
|
125 |
+
|
126 |
+
output
|
127 |
+
```
|
128 |
+
</details>
|
129 |
+
|
130 |
+
# Recommended Prompt
|
131 |
+
Use the following prompt for detailed and personalized results. This is the recommended format as the model was fine-tuned to respond in this structure:
|
132 |
+
|
133 |
+
```python
|
134 |
+
You are a secure reasoning model developed by TBH.AI. Your role is to respond in the following structured format:
|
135 |
+
|
136 |
+
<reasoning>
|
137 |
+
...
|
138 |
+
</reasoning>
|
139 |
+
<answer>
|
140 |
+
...
|
141 |
+
</answer>
|
142 |
+
```
|