File size: 1,841 Bytes
5e52320 14d9868 5e52320 f2bf380 5e52320 f2bf380 5e52320 f2bf380 5e52320 f2bf380 5e52320 f2bf380 5e52320 f2bf380 5e52320 f2bf380 5e52320 f2bf380 5e52320 f2bf380 5e52320 f2bf380 5e52320 f2bf380 5e52320 f2bf380 5e52320 f2bf380 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
library_name: transformers
tags:
- sentiment
license: mit
datasets:
- scikit-learn/imdb
language:
- en
metrics:
- accuracy
base_model:
- distilbert/distilbert-base-uncased
pipeline_tag: text-classification
---
# DistilBERT Sentiment Classifier (IMDb) — saibapanku/distilbert-sentiment
This is a fine-tuned [DistilBERT](https://huggingface.co/distilbert-base-uncased) model for **binary sentiment classification** trained on the IMDb dataset.
The model classifies movie reviews as either **positive** or **negative**.
## Model Details
- **Model name**: `saibapanku/distilbert-sentiment`
- **Base model**: [`distilbert-base-uncased`](https://huggingface.co/distilbert-base-uncased)
- **Task**: Sequence Classification (Sentiment Analysis)
- **Dataset**: [IMDb](https://huggingface.co/datasets/imdb)
- **Labels**:
- `0`: Negative
- `1`: Positive
## How to Use
You can load and use the model directly with 🤗 Transformers:
```python
from transformers import pipeline
classifier = pipeline("text-classification", model="saibapanku/distilbert-sentiment")
print(classifier("This movie was absolutely amazing!"))
```
## Training Configuration
- Training method: Hugging Face Trainer
- Epochs: 3
- Batch size: 16
- Max sequence length: 256 tokens
- Learning rate: default
- Weight decay: 0.01
- Evaluation strategy: per epoch
- Metric used: Accuracy
- Subset used: 2,000 train / 1,000 test samples (for demo purposes)
Example Output: [{'label': 'positive', 'score': 0.9843}]
# Limitations
This model was trained on a small subset of the IMDb dataset and may not generalize well to all types of reviews.
Performance on domain-specific or multi-lingual content is not guaranteed.
## License
This model is distributed under the MIT License.
Feel free to fine-tune further or adapt it for your specific sentiment analysis tasks! |