sahlebrahim commited on
Commit
f02616a
1 Parent(s): 1e85581

finetune-example

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
3
+ library_name: peft
4
+ license: apache-2.0
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: example
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # example
16
+
17
+ This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.7394
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0002
39
+ - train_batch_size: 4
40
+ - eval_batch_size: 4
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 4
43
+ - total_train_batch_size: 16
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_steps: 2
47
+ - num_epochs: 10
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss |
53
+ |:-------------:|:------:|:----:|:---------------:|
54
+ | 4.5926 | 0.9231 | 3 | 3.9699 |
55
+ | 4.0469 | 1.8462 | 6 | 3.4482 |
56
+ | 3.4692 | 2.7692 | 9 | 2.9892 |
57
+ | 2.2456 | 4.0 | 13 | 2.5493 |
58
+ | 2.6462 | 4.9231 | 16 | 2.3061 |
59
+ | 2.3335 | 5.8462 | 19 | 2.1080 |
60
+ | 2.098 | 6.7692 | 22 | 1.9466 |
61
+ | 1.4478 | 8.0 | 26 | 1.7940 |
62
+ | 1.8208 | 8.9231 | 29 | 1.7453 |
63
+ | 1.2676 | 9.2308 | 30 | 1.7394 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - PEFT 0.12.0
69
+ - Transformers 4.42.4
70
+ - Pytorch 2.3.1+cu121
71
+ - Datasets 2.20.0
72
+ - Tokenizers 0.19.1