File size: 54,874 Bytes
afc0495 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:800
- loss:MultipleNegativesRankingLoss
base_model: microsoft/mpnet-base
widget:
- source_sentence: What is the department of medicine located at?
sentences:
- 'Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional afil-
iations.
onon)
Copyright: © 2021 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses/by/
4.0/).
Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College,
525 East 68th Street,
Room M-522, Box 130, New York, NY 10065, USA; [email protected] or [email protected]'
- 'Results At the parameters used, the ultrasound did not directly affect bCSC proliferation,
with no evident changes in
morphology. In contrast, the ultrasound protocol affected the migration and invasion
ability of bCSCs, limiting their
capacity to advance while a major affection was detected on their angiogenic properties.
LIPUS-treated bCSCs were
unable to transform into aggressive metastatic cancer cells, by decreasing their
migration and invasion capacity as
well as vessel formation. Finally, RNA-seq analysis revealed major changes in
gene expression, with 676 differentially'
- 'Tesfaye, M. & Savoldo, B. Adoptive cell therapy in
treating pediatric solid tumors. Curr. Oncol. Rep. 20,
73 (2018).
Marofi, F. et al. CAR T cells in solid tumors: challenges
and opportunities. Stem Cell Res. Ther. 12, 81 (2021).
Deng, Q. et al. Characteristics of anti-CD19 CAR T cell
infusion products associated with efficacy and toxicity
in patients with large B cell lymphomas. Nat. Med. 26,
1878-1887 (2020).
Boulch, M. A cross-talk between CAR T cell subsets
and the tumor microenvironment is essential for
sustained cytotoxic activity. Sci. Immunol. 6,
eabd4344 (2021).'
- source_sentence: What is the result of LIPUS treatment on the formation of new vessels
and tubes?
sentences:
- 'apparatus), and mitochondrial damage, which then leads to eventual cell death
[112,114].
Accordingly, alterations that affect the lysosomal-mitochondria relationship and
their
metabolic equilibrium generate a defective metabolism, which contributes to disease
pro-
gression [115]. Consequently, the identification of regulatory molecular links
between these
two organelles will most probably cause the rise of novel targets for the treatment
of NPC.
Therefore, we propose that members of the miRNA-17-92 cluster could be relevant
actors'
- 'A tube formation assay was conducted on Matrigel to
study the impact of LIPUS stimulation on bCSCs’ angio-
genic activity (Fig. 5). After 2 h, both control and LIPUS-
stimulated cells exhibited signs of angiogenesis (Fig. 5A
and B). This observation was further confirmed by count-
ing the number of panel-like structures and vessels in
both conditions, which were slightly higher in control
cells (Fig. 5C). Statistical analysis using Student’s t-test
revealed that LIPUS treatment significantly reduced the
formation of new vessels and tubes (y=0.0039). These'
- 'Although a number of preclinical studies, like the ones
previously described, have shown considerable promise re-
garding the use of ADSC-therapy, more studies are needed.
Future studies can continue to work toward determining if
hADSCs are capable of being used for cell replacement and
better elucidate the mechanisms by which hADSCs work.
IV. ADIPOSE TISSUE AS A SOURCE FOR STEM
CELLS'
- source_sentence: What percentage of cases had malignant lesions?
sentences:
- 'Vedolizumab Monoclonal antibody anti «487 integrins, blocks gut homing of T lymphocytes
“These drugs are used as second line treatments for SR aGvHD, as reviewed by Penack
et al. (11).
’Ruxolitinib has been recently approved by FDA as second line therapy for SR aGVHD.
TABLE 3 | Major drugs used as second line treatment of cGvHD and their mechanisms.
Drug* Major mechanisms identified
Cyclosporin A, tacrolimus Calcineurin inhibitors that block downstrem TCR signalling
leading to NFAT regulated genes transcription; block T cells
activation'
- '--- Page 4 ---
J. Clin. Med. 2024, 13, 7559
4 of 13
lesions were found in 59 cases (70.24%) and malignant lesions in 25 cases (29.76%).
In DC
IV, benign lesions were found in 57 cases (81.4%) and malignant lesions in 13
cases (18.6%).
There were no statistically significant associations between gender (p = 0.76),
BMI (p = 0.52),
and obesity (p = 0.76) and the presence of thyroid malignancy.
Table 1. Demographic and pathologic features of 521 patients who underwent surgery
due to
thyroid nodules.'
- 'MSCs showed that these exosomes induce angiogenesis in
endothelial cells via the activation of the NF«B pathway (141).
However, in another study exosomes derived from hypoxia-
preconditioned MSCs contributed to the attenuation of the
injury resulting from an ischemia/reperfusion episode via the
Wnt signaling pathway (142). Beyond that, hypoxia seems to
increase exosome secretion in general (141). Also, in a fat
graft model, co-transplantation of exosomes from hypoxia pre-
conditioned adipose-derived MSC improved vascularization and
graft survival (143) (see Table 5).'
- source_sentence: When is routine fine-needle aspiration biopsy (FS) recommended
during thyroidectomy?
sentences:
- 'ing queries about its routine use due to the improved preoperative diagnosis.
Nowadays, while the use of FS during thyroidectomy
has decreased, it is still used as an additional method for different purposes
intraoperatively. FS may not always provide definitive
results. If FS will alter the surgical plan or extent, it should be applied. Routine
FS is not recommended for evaluating thyroid nod-
ules. But in addition to FNAB, if FS results may change the operation plan or
extent, they can be utilized. FS should not be applied'
- 'Approximately 15% of FNABs take part in this category.
After their initial Bethesda | FNAB, the malignancy risk in
nodules surgically excised, ranges between 5-20%. Repeat
FNAB is recommended if the initial FNAB result is Bethes-
da |, and in 60-80% of cases, the repeat FNAB results in a
diagnostic category.''''?*°! If the second FNAB also yields a
nondiagnostic result, surgical resection is recommended.
21] Especially in cases with Bethesda | FNAB and with a sur-
gical indication, an intraoperative FS can be utilized.® It
has been reported that FS significantly contributes to the'
- 'Preconditioning with a myriad of other soluble factors, such
as growth factors or hormones, seems to also potentiate MSCs
regenerative capacity, mainly by stimulating angiogenesis and
inhibiting fibrosis. For example, intracardiac transplantation
of SDF-1-preconditioned MSCs increased angiogenesis and
reduced fibrosis in the ischemic area of a post-infarct heart (89).
The effects observed were attributed to the activation of the Akt
signaling pathway, similarly to what was described for hypoxia-
preconditioned MSCs. TGF-a-preconditioned MSCs enhanced'
- source_sentence: What is the number of genes obtained from comparing control and
LIPUS-stimulated samples?
sentences:
- 'Differentially expressed genes (DEGs) were obtained
between control and LIPUS-stimulated samples using
an adjusted P<0.05 and|log2FC| > 1 as cutoffs to define
statistically significant differential expression. 676 genes
were obtained from which 578 were upregulated when
stimulated with LIPUS and 98 genes were subregulated
(Supp. Figure 1). To further understand the functions
and pathways associated with the differentially expressed
genes (DEG), Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) analyses were con-
ducted using the DAVID database [37, 38].'
- 'Another advantage of ADSCs is their immune privilege
status due to a lack of major histocompatibility complex
II (MHC Il) and costimulatory molecules.42,43,45,.47 Some
studies have even demonstrated a higher immunosuppres-
sion capacity in ADSCs compared to BMSCs as ADSCs ex-
pressed lower levels of human antigen class I (HLA I) anti-
gen.47 They also have a unique secretome and can produce
immunomodulatory, anti-apoptotic, hematopoietic, and
angiogenic factors that can help with repair of tissues -
characteristics that may support successful transplanta-'
- 'independent studies have shown a raising trend in both cancer incidence [2] and
a high-salt
dietary lifestyle [7], there is no direct correlation between dietary salt intake
and breast
cancer. Interestingly, in the human body, certain organs such as the skin and
lymph nodes
have a natural tendency to accumulate salt [8]. Although unknown, the pathophysiological
significance of this selective accumulation of sodium in certain organs and solid
tumors is
an area of intense research.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on microsoft/mpnet-base
results:
- task:
type: triplet
name: Triplet
dataset:
name: initial test
type: initial_test
metrics:
- type: cosine_accuracy
value: 0.9800000190734863
name: Cosine Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: final test
type: final_test
metrics:
- type: cosine_accuracy
value: 0.9800000190734863
name: Cosine Accuracy
---
# SentenceTransformer based on microsoft/mpnet-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'MPNetModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sahithkumar7/final-mpnet-base-fullfinetuned-epoch3")
# Run inference
sentences = [
'What is the number of genes obtained from comparing control and LIPUS-stimulated samples?',
'Differentially expressed genes (DEGs) were obtained\nbetween control and LIPUS-stimulated samples using\nan adjusted P<0.05 and|log2FC| > 1 as cutoffs to define\nstatistically significant differential expression. 676 genes\nwere obtained from which 578 were upregulated when\nstimulated with LIPUS and 98 genes were subregulated\n(Supp. Figure 1). To further understand the functions\nand pathways associated with the differentially expressed\ngenes (DEG), Gene Ontology (GO) and Kyoto Encyclo-\npedia of Genes and Genomes (KEGG) analyses were con-\nducted using the DAVID database [37, 38].',
'independent studies have shown a raising trend in both cancer incidence [2] and a high-salt\ndietary lifestyle [7], there is no direct correlation between dietary salt intake and breast\ncancer. Interestingly, in the human body, certain organs such as the skin and lymph nodes\nhave a natural tendency to accumulate salt [8]. Although unknown, the pathophysiological\nsignificance of this selective accumulation of sodium in certain organs and solid tumors is\nan area of intense research.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.6291, -0.0130],
# [ 0.6291, 1.0000, -0.0026],
# [-0.0130, -0.0026, 1.0000]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Datasets: `initial_test` and `final_test`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | initial_test | final_test |
|:--------------------|:-------------|:-----------|
| **cosine_accuracy** | **0.98** | **0.98** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 800 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 800 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 16.79 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 39 tokens</li><li>mean: 117.74 tokens</li><li>max: 265 tokens</li></ul> | <ul><li>min: 40 tokens</li><li>mean: 116.14 tokens</li><li>max: 356 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:-------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What is the limitation of FBG-based sensors in tactile feedback?</code> | <code>Furthermore, FBG-based 3-axis tactile sensors have been<br>proposed for a more comprehensive haptic perception tool<br>in surgeries (Figure 1D) (16). Five optical fibers merged<br>with FBG sensors are suspended in a deformable medium<br>and measure the compression or tension of the tissue as the<br>sensors are pressed against it, returning a _ surface<br>reaction map. While FBG-based sensors are small, flexible, and<br>sensitive, there are several challenges that need to be<br>addressed for optimal performance for tactile feedback. These<br>sensors are temperature sensitive, requiring temperature</code> | <code>141]. Therefore, it is not known to what extent spared<br>axons are remyelinated by transplanted Schwann cells,<br>nor is the contribution of this myelin to functional im-<br>provements proven. Transplantation of Schwann cells<br>incapable of producing myelin, such as cells derived<br>from trembler (Pmp22Tr) mutant mice, may be useful<br>in establishing a causal relationship between myelin re-<br>generation and functional improvements. Several MSC<br>transplantations demonstrate an increase of myelin re-<br>tention and the number of myelinated axons in the le-<br>sion site during a chronic post-injury period [57]. Thus,</code> |
| <code>What are the advantages of strain elastography?</code> | <code>frontiersin.org<br><br>--- Page 8 ---<br>Kumar et al.<br><br>TABLE 2 Modalities of ultrasound elastography.<br><br>Modality<br>Strain elastography<br><br>Excitation<br>Applied manual compression (38)<br><br>Advantages<br><br>No additional specialized equipment<br>required (40)<br><br>10.3389/fmedt.2023.1238129<br><br>Limitations<br><br>Qualitative measurements (39)<br><br>Internal physiological mechanism (42)<br><br>Simple low-cost design (40)<br><br>Applied compression is operator-dependent (51)<br><br>More commonly used (52)<br><br>High inter-observer variability (51)<br><br>coustic radiation force impulse Acoustic radiation force (43)<br><br>(ARFI) imaging<br><br>Image beyond slip boundaries (45)</code> | <code>Publisher’s Note: MDPI stays neutral<br>with regard to jurisdictional claims in<br>published maps and institutional afil-<br><br>iations.<br><br>onon)<br><br>Copyright: © 2021 by the author.<br>Licensee MDPI, Basel, Switzerland.<br>This article is an open access article<br>distributed under the terms and<br>conditions of the Creative Commons<br>Attribution (CC BY) license (https://<br>creativecommons.org/licenses/by/<br>4.0/).<br><br>Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, 525 East 68th Street,<br>Room M-522, Box 130, New York, NY 10065, USA; [email protected] or [email protected]</code> |
| <code>What is the material used for the substrate in a piezoelectric element?</code> | <code>gain for biomedical applications.<br><br>frontiersin.org<br><br>--- Page 9 ---<br>Kumar et al.<br><br>><br><br>[PMUT ]<br><br>Electrode: Voltage Electrode2<br><br>© piezoelectric elements<br>o<br><br>—: OSi02<br><br>©) silicon substrate<br><br>B [ CMUT ]<br>AC DC<br><br>membrane<br><br>—————<br><br>vacuum<br>insulator<br><br>substrate<br><br>= ground<br><br>FIGURE 3</code> | <code>Histopatholo<br>Cytology Total, n (%) Benign, n (%) P ey Cancer, n (%)<br>FA 2 (15.4%) FTC 2 (25%)<br>0 GD (7.7%) PTC 6 (75%)<br>I 21 (4.0%) NG 9 (69.2%)<br>Other diagnosis (7.7%)<br>FA 15 (9.9%) FIC 4 (14.3%)<br>FT-UMP (0.7%) MTC 3 (10.7%)<br>GD (0.7%) PTC 21 (75%)<br>Il 180 (34.5%) OA (0.7%)<br>LT (0.7%)<br>NG 130 (85.5%)<br>NIFTP 2 (1.3%)<br>FA 14 (23.7%) FIC 7 (28.0%)<br>FI-UMP 2 (3.4%) OTC 1 (4.0%)<br>OA (1.7%) PTC 17 (68.0%)<br>Il 84 (16.1%) LT 3 (5.1%)<br>NG 35 (59.3%)<br>NIFTP 2 (3.4%)<br>WDT-UMP 2 (3.4%)<br>FA 15 (26.3%) OTC 1 (7.7%)<br>FT-UMP 5 (8.8%) PTC 12 (92.3%)<br>OA 13 (22.8%)<br>IV 70 (13.4%) LT 2 (3.5%)<br>NG 18 (31.6%)<br>NIFTP 2 (3.5%)</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### json
* Dataset: json
* Size: 200 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 200 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 17.14 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 40 tokens</li><li>mean: 121.3 tokens</li><li>max: 356 tokens</li></ul> | <ul><li>min: 45 tokens</li><li>mean: 119.75 tokens</li><li>max: 356 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:---------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What can differentiate into a very wide variety of tissues?</code> | <code>lead to decreased rates of graft-versus-host disease. They<br>also can differentiate into a very wide variety of tissues. For<br>example, when compared with bone marrow stem cells or<br>mobilized peripheral blood, umbilical cord blood stem cells<br>have a greater repopulating ability.5° Cord blood derived<br>CD34+ cells have very potent hematopoietic abilities, and<br>this is attributed to the immaturity of the stem cells rela-<br>tive to adult derived cells. Studies have been done that an-<br>alyze long term survival of children with hematologic dis-<br>orders who were transplanted with umbilical cord blood</code> | <code>metabolic regulation may affect the function of more than one organelle. Therefore, if the<br>miR-17-92 regulatory cluster can perturb genes related to mitochondrial metabolic function,<br>it could be also related, in some way, to genes involved in lysosomal metabolic function.<br>Lysosomes are intracellular organelles that, in form of small vesicles, participate in<br>several cellular functions, mainly digestion, but also vesicle trafficking, autophagy, nutrient<br>sensing, cellular growth, signaling [85], and even enzyme secretion. The membrane-bound</code> |
| <code>What are the two most common types of pluripotent stem cells?</code> | <code>III]. AMNIOTIC CELLS AS A SOURCE FOR STEM<br>CELLS<br><br>Historically, the two most common types of pluripotent<br>stem cells include embryonic stem cells (ESCs) and induced<br>pluripotent stem cells (iPSCs).35 However, despite the many<br>research efforts to improve ESC and iPSC technologies,<br>there are still enormous clinical challenges.°> Two signif-<br>icant issues posed by ESC and iPSC technologies include<br>low survival rate of transplanted cells and tumorigenicity.°><br>Recently, researchers have isolated pluripotent stem cells</code> | <code>Explanation: criterion 6 indicates a positive diagnosis only within the DC VI group<br>relative to all other categories. Criterion 5 indicates a positive diagnosis within the DCs VI<br>and V relative to all other categories.<br><br>The highest positive predictive value (PPV) confirming malignancy through histopatho-<br>logical examination for criterion 6 was 0.93, and for criterion 5, it was 0.92. For the subsequent<br>criteria, the PPVs were as follows: criterion 4—0.66; criterion 3—0.55; criterion 2—0.40.</code> |
| <code>What percentage of stem cells are present in bone marrow?</code> | <code>ing 30% in some tissues.43-45 This is a significant difference<br>from the .0001-.0002% stem cells present in bone marrow.43<br>Given this difference in stem cell concentration between<br>the sources, there will be more ADSCs per sample of WAT</code> | <code>migration of bCSCs. This finding raises the possibil-<br>ity that LIPUS may decrease the ability of these cells to<br>invade adjacent tissues and start the process of metasta-<br>ses. These results also suggested that some of the changes<br>induced by LIPUS take longer to be detected in this type<br>of 2D migration model, possible due to changes in gene<br>expression pattern. To further study this hypothesis, we<br>performed a Transwell invasion assay. The data revealed<br>a reduced number of cells crossing the membrane after<br>LIPUS stimulation, indicating that therapeutic LIPUS</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss | initial_test_cosine_accuracy | final_test_cosine_accuracy |
|:------:|:----:|:-------------:|:---------------:|:----------------------------:|:--------------------------:|
| -1 | -1 | - | - | 0.7800 | - |
| 0.02 | 1 | 3.124 | - | - | - |
| 0.04 | 2 | 3.2227 | - | - | - |
| 0.06 | 3 | 3.1108 | - | - | - |
| 0.08 | 4 | 3.1317 | - | - | - |
| 0.1 | 5 | 3.3326 | - | - | - |
| 0.12 | 6 | 2.9797 | - | - | - |
| 0.14 | 7 | 3.0933 | - | - | - |
| 0.16 | 8 | 2.7409 | - | - | - |
| 0.18 | 9 | 2.7381 | - | - | - |
| 0.2 | 10 | 2.6301 | - | - | - |
| 0.22 | 11 | 2.005 | - | - | - |
| 0.24 | 12 | 2.1863 | - | - | - |
| 0.26 | 13 | 2.8065 | - | - | - |
| 0.28 | 14 | 1.6524 | - | - | - |
| 0.3 | 15 | 1.7121 | - | - | - |
| 0.32 | 16 | 1.9863 | - | - | - |
| 0.34 | 17 | 1.4783 | - | - | - |
| 0.36 | 18 | 1.0542 | - | - | - |
| 0.38 | 19 | 1.1223 | - | - | - |
| 0.4 | 20 | 1.0425 | 0.9097 | 0.9000 | - |
| 0.42 | 21 | 1.2517 | - | - | - |
| 0.44 | 22 | 1.048 | - | - | - |
| 0.46 | 23 | 1.0064 | - | - | - |
| 0.48 | 24 | 0.9887 | - | - | - |
| 0.5 | 25 | 0.6468 | - | - | - |
| 0.52 | 26 | 0.8978 | - | - | - |
| 0.54 | 27 | 0.439 | - | - | - |
| 0.56 | 28 | 0.8051 | - | - | - |
| 0.58 | 29 | 0.7684 | - | - | - |
| 0.6 | 30 | 0.573 | - | - | - |
| 0.62 | 31 | 0.6101 | - | - | - |
| 0.64 | 32 | 0.9438 | - | - | - |
| 0.66 | 33 | 0.8656 | - | - | - |
| 0.68 | 34 | 0.5758 | - | - | - |
| 0.7 | 35 | 0.2412 | - | - | - |
| 0.72 | 36 | 0.4738 | - | - | - |
| 0.74 | 37 | 0.7844 | - | - | - |
| 0.76 | 38 | 0.7517 | - | - | - |
| 0.78 | 39 | 0.3222 | - | - | - |
| 0.8 | 40 | 0.466 | 0.6199 | 0.9600 | - |
| 0.82 | 41 | 0.5259 | - | - | - |
| 0.84 | 42 | 0.3936 | - | - | - |
| 0.86 | 43 | 0.23 | - | - | - |
| 0.88 | 44 | 0.4184 | - | - | - |
| 0.9 | 45 | 0.7641 | - | - | - |
| 0.92 | 46 | 0.2579 | - | - | - |
| 0.94 | 47 | 1.2493 | - | - | - |
| 0.96 | 48 | 0.4205 | - | - | - |
| 0.98 | 49 | 0.4778 | - | - | - |
| 1.0 | 50 | 0.545 | - | - | - |
| 1.02 | 51 | 0.2018 | - | - | - |
| 1.04 | 52 | 0.2048 | - | - | - |
| 1.06 | 53 | 0.2031 | - | - | - |
| 1.08 | 54 | 0.5784 | - | - | - |
| 1.1 | 55 | 0.2764 | - | - | - |
| 1.12 | 56 | 0.5112 | - | - | - |
| 1.1400 | 57 | 0.2482 | - | - | - |
| 1.16 | 58 | 0.3772 | - | - | - |
| 1.18 | 59 | 0.1247 | - | - | - |
| 1.2 | 60 | 0.1832 | 0.5882 | 1.0 | - |
| 1.22 | 61 | 0.1802 | - | - | - |
| 1.24 | 62 | 0.3174 | - | - | - |
| 1.26 | 63 | 0.0836 | - | - | - |
| 1.28 | 64 | 0.2814 | - | - | - |
| 1.3 | 65 | 0.0926 | - | - | - |
| 1.32 | 66 | 0.3834 | - | - | - |
| 1.34 | 67 | 0.2547 | - | - | - |
| 1.3600 | 68 | 0.3229 | - | - | - |
| 1.38 | 69 | 0.0441 | - | - | - |
| 1.4 | 70 | 0.1735 | - | - | - |
| 1.42 | 71 | 0.0494 | - | - | - |
| 1.44 | 72 | 0.2197 | - | - | - |
| 1.46 | 73 | 0.2218 | - | - | - |
| 1.48 | 74 | 0.2196 | - | - | - |
| 1.5 | 75 | 0.2516 | - | - | - |
| 1.52 | 76 | 0.6337 | - | - | - |
| 1.54 | 77 | 0.1729 | - | - | - |
| 1.56 | 78 | 0.5629 | - | - | - |
| 1.58 | 79 | 0.4224 | - | - | - |
| 1.6 | 80 | 0.1977 | 0.4683 | 1.0 | - |
| 1.62 | 81 | 0.2117 | - | - | - |
| 1.6400 | 82 | 0.2423 | - | - | - |
| 1.6600 | 83 | 0.2047 | - | - | - |
| 1.6800 | 84 | 0.1741 | - | - | - |
| 1.7 | 85 | 0.4539 | - | - | - |
| 1.72 | 86 | 0.5744 | - | - | - |
| 1.74 | 87 | 0.2697 | - | - | - |
| 1.76 | 88 | 0.1926 | - | - | - |
| 1.78 | 89 | 0.1882 | - | - | - |
| 1.8 | 90 | 0.1527 | - | - | - |
| 1.8200 | 91 | 0.2154 | - | - | - |
| 1.8400 | 92 | 0.5145 | - | - | - |
| 1.8600 | 93 | 0.1294 | - | - | - |
| 1.88 | 94 | 0.1499 | - | - | - |
| 1.9 | 95 | 0.2143 | - | - | - |
| 1.92 | 96 | 0.2039 | - | - | - |
| 1.94 | 97 | 0.1662 | - | - | - |
| 1.96 | 98 | 0.1414 | - | - | - |
| 1.98 | 99 | 0.0743 | - | - | - |
| 2.0 | 100 | 0.1603 | 0.4067 | 0.9800 | - |
| 2.02 | 101 | 0.1885 | - | - | - |
| 2.04 | 102 | 0.1539 | - | - | - |
| 2.06 | 103 | 0.0592 | - | - | - |
| 2.08 | 104 | 0.0874 | - | - | - |
| 2.1 | 105 | 0.0873 | - | - | - |
| 2.12 | 106 | 0.057 | - | - | - |
| 2.14 | 107 | 0.0317 | - | - | - |
| 2.16 | 108 | 0.0807 | - | - | - |
| 2.18 | 109 | 0.0232 | - | - | - |
| 2.2 | 110 | 0.0847 | - | - | - |
| 2.22 | 111 | 0.0811 | - | - | - |
| 2.24 | 112 | 0.0688 | - | - | - |
| 2.26 | 113 | 0.1392 | - | - | - |
| 2.2800 | 114 | 0.0681 | - | - | - |
| 2.3 | 115 | 0.0329 | - | - | - |
| 2.32 | 116 | 0.0177 | - | - | - |
| 2.34 | 117 | 0.0794 | - | - | - |
| 2.36 | 118 | 0.1128 | - | - | - |
| 2.38 | 119 | 0.095 | - | - | - |
| 2.4 | 120 | 0.0384 | 0.4131 | 0.9800 | - |
| 2.42 | 121 | 0.0791 | - | - | - |
| 2.44 | 122 | 0.078 | - | - | - |
| 2.46 | 123 | 0.0232 | - | - | - |
| 2.48 | 124 | 0.0265 | - | - | - |
| 2.5 | 125 | 0.023 | - | - | - |
| 2.52 | 126 | 0.1105 | - | - | - |
| 2.54 | 127 | 0.0114 | - | - | - |
| 2.56 | 128 | 0.1051 | - | - | - |
| 2.58 | 129 | 0.0178 | - | - | - |
| 2.6 | 130 | 0.0731 | - | - | - |
| 2.62 | 131 | 0.051 | - | - | - |
| 2.64 | 132 | 0.0589 | - | - | - |
| 2.66 | 133 | 0.1714 | - | - | - |
| 2.68 | 134 | 0.0452 | - | - | - |
| 2.7 | 135 | 0.0491 | - | - | - |
| 2.7200 | 136 | 0.0652 | - | - | - |
| 2.74 | 137 | 0.0534 | - | - | - |
| 2.76 | 138 | 0.0414 | - | - | - |
| 2.7800 | 139 | 0.0611 | - | - | - |
| 2.8 | 140 | 0.1983 | 0.4193 | 0.9800 | - |
| 2.82 | 141 | 0.0489 | - | - | - |
| 2.84 | 142 | 0.0215 | - | - | - |
| 2.86 | 143 | 0.0491 | - | - | - |
| 2.88 | 144 | 0.0521 | - | - | - |
| 2.9 | 145 | 0.1212 | - | - | - |
| 2.92 | 146 | 0.0464 | - | - | - |
| 2.94 | 147 | 0.0145 | - | - | - |
| 2.96 | 148 | 0.0281 | - | - | - |
| 2.98 | 149 | 0.1358 | - | - | - |
| 3.0 | 150 | 0.0479 | - | - | - |
| -1 | -1 | - | - | - | 0.9800 |
</details>
### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.0.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |