sahithkumar7 commited on
Commit
dd0599f
·
verified ·
1 Parent(s): 93c9bdf

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,812 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:800
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: microsoft/mpnet-base
11
+ widget:
12
+ - source_sentence: What is the department of medicine located at?
13
+ sentences:
14
+ - 'Publisher’s Note: MDPI stays neutral
15
+
16
+ with regard to jurisdictional claims in
17
+
18
+ published maps and institutional afil-
19
+
20
+
21
+ iations.
22
+
23
+
24
+ onon)
25
+
26
+
27
+ Copyright: © 2021 by the author.
28
+
29
+ Licensee MDPI, Basel, Switzerland.
30
+
31
+ This article is an open access article
32
+
33
+ distributed under the terms and
34
+
35
+ conditions of the Creative Commons
36
+
37
+ Attribution (CC BY) license (https://
38
+
39
+ creativecommons.org/licenses/by/
40
+
41
+ 4.0/).
42
+
43
+
44
+ Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College,
45
+ 525 East 68th Street,
46
+
47
+ Room M-522, Box 130, New York, NY 10065, USA; [email protected] or [email protected]'
48
+ - 'Results At the parameters used, the ultrasound did not directly affect bCSC proliferation,
49
+ with no evident changes in
50
+
51
+ morphology. In contrast, the ultrasound protocol affected the migration and invasion
52
+ ability of bCSCs, limiting their
53
+
54
+ capacity to advance while a major affection was detected on their angiogenic properties.
55
+ LIPUS-treated bCSCs were
56
+
57
+ unable to transform into aggressive metastatic cancer cells, by decreasing their
58
+ migration and invasion capacity as
59
+
60
+ well as vessel formation. Finally, RNA-seq analysis revealed major changes in
61
+ gene expression, with 676 differentially'
62
+ - 'Tesfaye, M. & Savoldo, B. Adoptive cell therapy in
63
+
64
+ treating pediatric solid tumors. Curr. Oncol. Rep. 20,
65
+
66
+ 73 (2018).
67
+
68
+
69
+ Marofi, F. et al. CAR T cells in solid tumors: challenges
70
+
71
+ and opportunities. Stem Cell Res. Ther. 12, 81 (2021).
72
+
73
+ Deng, Q. et al. Characteristics of anti-CD19 CAR T cell
74
+
75
+ infusion products associated with efficacy and toxicity
76
+
77
+
78
+ in patients with large B cell lymphomas. Nat. Med. 26,
79
+
80
+
81
+ 1878-1887 (2020).
82
+
83
+ Boulch, M. A cross-talk between CAR T cell subsets
84
+
85
+ and the tumor microenvironment is essential for
86
+
87
+ sustained cytotoxic activity. Sci. Immunol. 6,
88
+
89
+ eabd4344 (2021).'
90
+ - source_sentence: What is the result of LIPUS treatment on the formation of new vessels
91
+ and tubes?
92
+ sentences:
93
+ - 'apparatus), and mitochondrial damage, which then leads to eventual cell death
94
+ [112,114].
95
+
96
+ Accordingly, alterations that affect the lysosomal-mitochondria relationship and
97
+ their
98
+
99
+ metabolic equilibrium generate a defective metabolism, which contributes to disease
100
+ pro-
101
+
102
+ gression [115]. Consequently, the identification of regulatory molecular links
103
+ between these
104
+
105
+ two organelles will most probably cause the rise of novel targets for the treatment
106
+ of NPC.
107
+
108
+ Therefore, we propose that members of the miRNA-17-92 cluster could be relevant
109
+ actors'
110
+ - 'A tube formation assay was conducted on Matrigel to
111
+
112
+ study the impact of LIPUS stimulation on bCSCs’ angio-
113
+
114
+ genic activity (Fig. 5). After 2 h, both control and LIPUS-
115
+
116
+ stimulated cells exhibited signs of angiogenesis (Fig. 5A
117
+
118
+ and B). This observation was further confirmed by count-
119
+
120
+ ing the number of panel-like structures and vessels in
121
+
122
+ both conditions, which were slightly higher in control
123
+
124
+ cells (Fig. 5C). Statistical analysis using Student’s t-test
125
+
126
+ revealed that LIPUS treatment significantly reduced the
127
+
128
+ formation of new vessels and tubes (y=0.0039). These'
129
+ - 'Although a number of preclinical studies, like the ones
130
+
131
+ previously described, have shown considerable promise re-
132
+
133
+ garding the use of ADSC-therapy, more studies are needed.
134
+
135
+ Future studies can continue to work toward determining if
136
+
137
+ hADSCs are capable of being used for cell replacement and
138
+
139
+ better elucidate the mechanisms by which hADSCs work.
140
+
141
+
142
+ IV. ADIPOSE TISSUE AS A SOURCE FOR STEM
143
+
144
+ CELLS'
145
+ - source_sentence: What percentage of cases had malignant lesions?
146
+ sentences:
147
+ - 'Vedolizumab Monoclonal antibody anti «487 integrins, blocks gut homing of T lymphocytes
148
+
149
+
150
+ “These drugs are used as second line treatments for SR aGvHD, as reviewed by Penack
151
+ et al. (11).
152
+
153
+ ’Ruxolitinib has been recently approved by FDA as second line therapy for SR aGVHD.
154
+
155
+
156
+ TABLE 3 | Major drugs used as second line treatment of cGvHD and their mechanisms.
157
+
158
+
159
+ Drug* Major mechanisms identified
160
+
161
+
162
+ Cyclosporin A, tacrolimus Calcineurin inhibitors that block downstrem TCR signalling
163
+ leading to NFAT regulated genes transcription; block T cells
164
+
165
+ activation'
166
+ - '--- Page 4 ---
167
+
168
+ J. Clin. Med. 2024, 13, 7559
169
+
170
+
171
+ 4 of 13
172
+
173
+
174
+ lesions were found in 59 cases (70.24%) and malignant lesions in 25 cases (29.76%).
175
+ In DC
176
+
177
+ IV, benign lesions were found in 57 cases (81.4%) and malignant lesions in 13
178
+ cases (18.6%).
179
+
180
+ There were no statistically significant associations between gender (p = 0.76),
181
+ BMI (p = 0.52),
182
+
183
+ and obesity (p = 0.76) and the presence of thyroid malignancy.
184
+
185
+
186
+ Table 1. Demographic and pathologic features of 521 patients who underwent surgery
187
+ due to
188
+
189
+
190
+ thyroid nodules.'
191
+ - 'MSCs showed that these exosomes induce angiogenesis in
192
+
193
+ endothelial cells via the activation of the NF«B pathway (141).
194
+
195
+ However, in another study exosomes derived from hypoxia-
196
+
197
+ preconditioned MSCs contributed to the attenuation of the
198
+
199
+ injury resulting from an ischemia/reperfusion episode via the
200
+
201
+ Wnt signaling pathway (142). Beyond that, hypoxia seems to
202
+
203
+ increase exosome secretion in general (141). Also, in a fat
204
+
205
+ graft model, co-transplantation of exosomes from hypoxia pre-
206
+
207
+ conditioned adipose-derived MSC improved vascularization and
208
+
209
+ graft survival (143) (see Table 5).'
210
+ - source_sentence: When is routine fine-needle aspiration biopsy (FS) recommended
211
+ during thyroidectomy?
212
+ sentences:
213
+ - 'ing queries about its routine use due to the improved preoperative diagnosis.
214
+ Nowadays, while the use of FS during thyroidectomy
215
+
216
+ has decreased, it is still used as an additional method for different purposes
217
+ intraoperatively. FS may not always provide definitive
218
+
219
+ results. If FS will alter the surgical plan or extent, it should be applied. Routine
220
+ FS is not recommended for evaluating thyroid nod-
221
+
222
+ ules. But in addition to FNAB, if FS results may change the operation plan or
223
+ extent, they can be utilized. FS should not be applied'
224
+ - 'Approximately 15% of FNABs take part in this category.
225
+
226
+ After their initial Bethesda | FNAB, the malignancy risk in
227
+
228
+ nodules surgically excised, ranges between 5-20%. Repeat
229
+
230
+ FNAB is recommended if the initial FNAB result is Bethes-
231
+
232
+ da |, and in 60-80% of cases, the repeat FNAB results in a
233
+
234
+ diagnostic category.''''?*°! If the second FNAB also yields a
235
+
236
+ nondiagnostic result, surgical resection is recommended.
237
+
238
+ 21] Especially in cases with Bethesda | FNAB and with a sur-
239
+
240
+ gical indication, an intraoperative FS can be utilized.® It
241
+
242
+ has been reported that FS significantly contributes to the'
243
+ - 'Preconditioning with a myriad of other soluble factors, such
244
+
245
+ as growth factors or hormones, seems to also potentiate MSCs
246
+
247
+ regenerative capacity, mainly by stimulating angiogenesis and
248
+
249
+ inhibiting fibrosis. For example, intracardiac transplantation
250
+
251
+ of SDF-1-preconditioned MSCs increased angiogenesis and
252
+
253
+ reduced fibrosis in the ischemic area of a post-infarct heart (89).
254
+
255
+ The effects observed were attributed to the activation of the Akt
256
+
257
+ signaling pathway, similarly to what was described for hypoxia-
258
+
259
+ preconditioned MSCs. TGF-a-preconditioned MSCs enhanced'
260
+ - source_sentence: What is the number of genes obtained from comparing control and
261
+ LIPUS-stimulated samples?
262
+ sentences:
263
+ - 'Differentially expressed genes (DEGs) were obtained
264
+
265
+ between control and LIPUS-stimulated samples using
266
+
267
+ an adjusted P<0.05 and|log2FC| > 1 as cutoffs to define
268
+
269
+ statistically significant differential expression. 676 genes
270
+
271
+ were obtained from which 578 were upregulated when
272
+
273
+ stimulated with LIPUS and 98 genes were subregulated
274
+
275
+ (Supp. Figure 1). To further understand the functions
276
+
277
+ and pathways associated with the differentially expressed
278
+
279
+ genes (DEG), Gene Ontology (GO) and Kyoto Encyclo-
280
+
281
+ pedia of Genes and Genomes (KEGG) analyses were con-
282
+
283
+ ducted using the DAVID database [37, 38].'
284
+ - 'Another advantage of ADSCs is their immune privilege
285
+
286
+ status due to a lack of major histocompatibility complex
287
+
288
+ II (MHC Il) and costimulatory molecules.42,43,45,.47 Some
289
+
290
+ studies have even demonstrated a higher immunosuppres-
291
+
292
+ sion capacity in ADSCs compared to BMSCs as ADSCs ex-
293
+
294
+ pressed lower levels of human antigen class I (HLA I) anti-
295
+
296
+ gen.47 They also have a unique secretome and can produce
297
+
298
+ immunomodulatory, anti-apoptotic, hematopoietic, and
299
+
300
+ angiogenic factors that can help with repair of tissues -
301
+
302
+ characteristics that may support successful transplanta-'
303
+ - 'independent studies have shown a raising trend in both cancer incidence [2] and
304
+ a high-salt
305
+
306
+ dietary lifestyle [7], there is no direct correlation between dietary salt intake
307
+ and breast
308
+
309
+ cancer. Interestingly, in the human body, certain organs such as the skin and
310
+ lymph nodes
311
+
312
+ have a natural tendency to accumulate salt [8]. Although unknown, the pathophysiological
313
+
314
+ significance of this selective accumulation of sodium in certain organs and solid
315
+ tumors is
316
+
317
+ an area of intense research.'
318
+ pipeline_tag: sentence-similarity
319
+ library_name: sentence-transformers
320
+ metrics:
321
+ - cosine_accuracy
322
+ model-index:
323
+ - name: SentenceTransformer based on microsoft/mpnet-base
324
+ results:
325
+ - task:
326
+ type: triplet
327
+ name: Triplet
328
+ dataset:
329
+ name: initial test
330
+ type: initial_test
331
+ metrics:
332
+ - type: cosine_accuracy
333
+ value: 0.9800000190734863
334
+ name: Cosine Accuracy
335
+ - task:
336
+ type: triplet
337
+ name: Triplet
338
+ dataset:
339
+ name: final test
340
+ type: final_test
341
+ metrics:
342
+ - type: cosine_accuracy
343
+ value: 0.9800000190734863
344
+ name: Cosine Accuracy
345
+ ---
346
+
347
+ # SentenceTransformer based on microsoft/mpnet-base
348
+
349
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
350
+
351
+ ## Model Details
352
+
353
+ ### Model Description
354
+ - **Model Type:** Sentence Transformer
355
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
356
+ - **Maximum Sequence Length:** 512 tokens
357
+ - **Output Dimensionality:** 768 dimensions
358
+ - **Similarity Function:** Cosine Similarity
359
+ - **Training Dataset:**
360
+ - json
361
+ <!-- - **Language:** Unknown -->
362
+ <!-- - **License:** Unknown -->
363
+
364
+ ### Model Sources
365
+
366
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
367
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
368
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
369
+
370
+ ### Full Model Architecture
371
+
372
+ ```
373
+ SentenceTransformer(
374
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'MPNetModel'})
375
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
376
+ )
377
+ ```
378
+
379
+ ## Usage
380
+
381
+ ### Direct Usage (Sentence Transformers)
382
+
383
+ First install the Sentence Transformers library:
384
+
385
+ ```bash
386
+ pip install -U sentence-transformers
387
+ ```
388
+
389
+ Then you can load this model and run inference.
390
+ ```python
391
+ from sentence_transformers import SentenceTransformer
392
+
393
+ # Download from the 🤗 Hub
394
+ model = SentenceTransformer("sahithkumar7/final-mpnet-base-fullfinetuned-epoch2")
395
+ # Run inference
396
+ sentences = [
397
+ 'What is the number of genes obtained from comparing control and LIPUS-stimulated samples?',
398
+ 'Differentially expressed genes (DEGs) were obtained\nbetween control and LIPUS-stimulated samples using\nan adjusted P<0.05 and|log2FC| > 1 as cutoffs to define\nstatistically significant differential expression. 676 genes\nwere obtained from which 578 were upregulated when\nstimulated with LIPUS and 98 genes were subregulated\n(Supp. Figure 1). To further understand the functions\nand pathways associated with the differentially expressed\ngenes (DEG), Gene Ontology (GO) and Kyoto Encyclo-\npedia of Genes and Genomes (KEGG) analyses were con-\nducted using the DAVID database [37, 38].',
399
+ 'independent studies have shown a raising trend in both cancer incidence [2] and a high-salt\ndietary lifestyle [7], there is no direct correlation between dietary salt intake and breast\ncancer. Interestingly, in the human body, certain organs such as the skin and lymph nodes\nhave a natural tendency to accumulate salt [8]. Although unknown, the pathophysiological\nsignificance of this selective accumulation of sodium in certain organs and solid tumors is\nan area of intense research.',
400
+ ]
401
+ embeddings = model.encode(sentences)
402
+ print(embeddings.shape)
403
+ # [3, 768]
404
+
405
+ # Get the similarity scores for the embeddings
406
+ similarities = model.similarity(embeddings, embeddings)
407
+ print(similarities)
408
+ # tensor([[1.0000, 0.6796, 0.0930],
409
+ # [0.6796, 1.0000, 0.0629],
410
+ # [0.0930, 0.0629, 1.0000]])
411
+ ```
412
+
413
+ <!--
414
+ ### Direct Usage (Transformers)
415
+
416
+ <details><summary>Click to see the direct usage in Transformers</summary>
417
+
418
+ </details>
419
+ -->
420
+
421
+ <!--
422
+ ### Downstream Usage (Sentence Transformers)
423
+
424
+ You can finetune this model on your own dataset.
425
+
426
+ <details><summary>Click to expand</summary>
427
+
428
+ </details>
429
+ -->
430
+
431
+ <!--
432
+ ### Out-of-Scope Use
433
+
434
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
435
+ -->
436
+
437
+ ## Evaluation
438
+
439
+ ### Metrics
440
+
441
+ #### Triplet
442
+
443
+ * Datasets: `initial_test` and `final_test`
444
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
445
+
446
+ | Metric | initial_test | final_test |
447
+ |:--------------------|:-------------|:-----------|
448
+ | **cosine_accuracy** | **0.98** | **0.98** |
449
+
450
+ <!--
451
+ ## Bias, Risks and Limitations
452
+
453
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
454
+ -->
455
+
456
+ <!--
457
+ ### Recommendations
458
+
459
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
460
+ -->
461
+
462
+ ## Training Details
463
+
464
+ ### Training Dataset
465
+
466
+ #### json
467
+
468
+ * Dataset: json
469
+ * Size: 800 training samples
470
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
471
+ * Approximate statistics based on the first 800 samples:
472
+ | | anchor | positive | negative |
473
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
474
+ | type | string | string | string |
475
+ | details | <ul><li>min: 7 tokens</li><li>mean: 16.79 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 39 tokens</li><li>mean: 117.74 tokens</li><li>max: 265 tokens</li></ul> | <ul><li>min: 40 tokens</li><li>mean: 116.14 tokens</li><li>max: 356 tokens</li></ul> |
476
+ * Samples:
477
+ | anchor | positive | negative |
478
+ |:-------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
479
+ | <code>What is the limitation of FBG-based sensors in tactile feedback?</code> | <code>Furthermore, FBG-based 3-axis tactile sensors have been<br>proposed for a more comprehensive haptic perception tool<br>in surgeries (Figure 1D) (16). Five optical fibers merged<br>with FBG sensors are suspended in a deformable medium<br>and measure the compression or tension of the tissue as the<br>sensors are pressed against it, returning a _ surface<br>reaction map. While FBG-based sensors are small, flexible, and<br>sensitive, there are several challenges that need to be<br>addressed for optimal performance for tactile feedback. These<br>sensors are temperature sensitive, requiring temperature</code> | <code>141]. Therefore, it is not known to what extent spared<br>axons are remyelinated by transplanted Schwann cells,<br>nor is the contribution of this myelin to functional im-<br>provements proven. Transplantation of Schwann cells<br>incapable of producing myelin, such as cells derived<br>from trembler (Pmp22Tr) mutant mice, may be useful<br>in establishing a causal relationship between myelin re-<br>generation and functional improvements. Several MSC<br>transplantations demonstrate an increase of myelin re-<br>tention and the number of myelinated axons in the le-<br>sion site during a chronic post-injury period [57]. Thus,</code> |
480
+ | <code>What are the advantages of strain elastography?</code> | <code>frontiersin.org<br><br>--- Page 8 ---<br>Kumar et al.<br><br>TABLE 2 Modalities of ultrasound elastography.<br><br>Modality<br>Strain elastography<br><br>Excitation<br>Applied manual compression (38)<br><br>Advantages<br><br>No additional specialized equipment<br>required (40)<br><br>10.3389/fmedt.2023.1238129<br><br>Limitations<br><br>Qualitative measurements (39)<br><br>Internal physiological mechanism (42)<br><br>Simple low-cost design (40)<br><br>Applied compression is operator-dependent (51)<br><br>More commonly used (52)<br><br>High inter-observer variability (51)<br><br>coustic radiation force impulse Acoustic radiation force (43)<br><br>(ARFI) imaging<br><br>Image beyond slip boundaries (45)</code> | <code>Publisher’s Note: MDPI stays neutral<br>with regard to jurisdictional claims in<br>published maps and institutional afil-<br><br>iations.<br><br>onon)<br><br>Copyright: © 2021 by the author.<br>Licensee MDPI, Basel, Switzerland.<br>This article is an open access article<br>distributed under the terms and<br>conditions of the Creative Commons<br>Attribution (CC BY) license (https://<br>creativecommons.org/licenses/by/<br>4.0/).<br><br>Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, 525 East 68th Street,<br>Room M-522, Box 130, New York, NY 10065, USA; [email protected] or [email protected]</code> |
481
+ | <code>What is the material used for the substrate in a piezoelectric element?</code> | <code>gain for biomedical applications.<br><br>frontiersin.org<br><br>--- Page 9 ---<br>Kumar et al.<br><br>><br><br>[PMUT ]<br><br>Electrode: Voltage Electrode2<br><br>© piezoelectric elements<br>o<br><br>—: OSi02<br><br>©) silicon substrate<br><br>B [ CMUT ]<br>AC DC<br><br>membrane<br><br>—————<br><br>vacuum<br>insulator<br><br>substrate<br><br>= ground<br><br>FIGURE 3</code> | <code>Histopatholo<br>Cytology Total, n (%) Benign, n (%) P ey Cancer, n (%)<br>FA 2 (15.4%) FTC 2 (25%)<br>0 GD (7.7%) PTC 6 (75%)<br>I 21 (4.0%) NG 9 (69.2%)<br>Other diagnosis (7.7%)<br>FA 15 (9.9%) FIC 4 (14.3%)<br>FT-UMP (0.7%) MTC 3 (10.7%)<br>GD (0.7%) PTC 21 (75%)<br>Il 180 (34.5%) OA (0.7%)<br>LT (0.7%)<br>NG 130 (85.5%)<br>NIFTP 2 (1.3%)<br>FA 14 (23.7%) FIC 7 (28.0%)<br>FI-UMP 2 (3.4%) OTC 1 (4.0%)<br>OA (1.7%) PTC 17 (68.0%)<br>Il 84 (16.1%) LT 3 (5.1%)<br>NG 35 (59.3%)<br>NIFTP 2 (3.4%)<br>WDT-UMP 2 (3.4%)<br>FA 15 (26.3%) OTC 1 (7.7%)<br>FT-UMP 5 (8.8%) PTC 12 (92.3%)<br>OA 13 (22.8%)<br>IV 70 (13.4%) LT 2 (3.5%)<br>NG 18 (31.6%)<br>NIFTP 2 (3.5%)</code> |
482
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
483
+ ```json
484
+ {
485
+ "scale": 20.0,
486
+ "similarity_fct": "cos_sim"
487
+ }
488
+ ```
489
+
490
+ ### Evaluation Dataset
491
+
492
+ #### json
493
+
494
+ * Dataset: json
495
+ * Size: 200 evaluation samples
496
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
497
+ * Approximate statistics based on the first 200 samples:
498
+ | | anchor | positive | negative |
499
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
500
+ | type | string | string | string |
501
+ | details | <ul><li>min: 7 tokens</li><li>mean: 17.14 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 40 tokens</li><li>mean: 121.3 tokens</li><li>max: 356 tokens</li></ul> | <ul><li>min: 45 tokens</li><li>mean: 119.75 tokens</li><li>max: 356 tokens</li></ul> |
502
+ * Samples:
503
+ | anchor | positive | negative |
504
+ |:---------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
505
+ | <code>What can differentiate into a very wide variety of tissues?</code> | <code>lead to decreased rates of graft-versus-host disease. They<br>also can differentiate into a very wide variety of tissues. For<br>example, when compared with bone marrow stem cells or<br>mobilized peripheral blood, umbilical cord blood stem cells<br>have a greater repopulating ability.5° Cord blood derived<br>CD34+ cells have very potent hematopoietic abilities, and<br>this is attributed to the immaturity of the stem cells rela-<br>tive to adult derived cells. Studies have been done that an-<br>alyze long term survival of children with hematologic dis-<br>orders who were transplanted with umbilical cord blood</code> | <code>metabolic regulation may affect the function of more than one organelle. Therefore, if the<br>miR-17-92 regulatory cluster can perturb genes related to mitochondrial metabolic function,<br>it could be also related, in some way, to genes involved in lysosomal metabolic function.<br>Lysosomes are intracellular organelles that, in form of small vesicles, participate in<br>several cellular functions, mainly digestion, but also vesicle trafficking, autophagy, nutrient<br>sensing, cellular growth, signaling [85], and even enzyme secretion. The membrane-bound</code> |
506
+ | <code>What are the two most common types of pluripotent stem cells?</code> | <code>III]. AMNIOTIC CELLS AS A SOURCE FOR STEM<br>CELLS<br><br>Historically, the two most common types of pluripotent<br>stem cells include embryonic stem cells (ESCs) and induced<br>pluripotent stem cells (iPSCs).35 However, despite the many<br>research efforts to improve ESC and iPSC technologies,<br>there are still enormous clinical challenges.°> Two signif-<br>icant issues posed by ESC and iPSC technologies include<br>low survival rate of transplanted cells and tumorigenicity.°><br>Recently, researchers have isolated pluripotent stem cells</code> | <code>Explanation: criterion 6 indicates a positive diagnosis only within the DC VI group<br>relative to all other categories. Criterion 5 indicates a positive diagnosis within the DCs VI<br>and V relative to all other categories.<br><br>The highest positive predictive value (PPV) confirming malignancy through histopatho-<br>logical examination for criterion 6 was 0.93, and for criterion 5, it was 0.92. For the subsequent<br>criteria, the PPVs were as follows: criterion 4—0.66; criterion 3—0.55; criterion 2—0.40.</code> |
507
+ | <code>What percentage of stem cells are present in bone marrow?</code> | <code>ing 30% in some tissues.43-45 This is a significant difference<br>from the .0001-.0002% stem cells present in bone marrow.43<br>Given this difference in stem cell concentration between<br>the sources, there will be more ADSCs per sample of WAT</code> | <code>migration of bCSCs. This finding raises the possibil-<br>ity that LIPUS may decrease the ability of these cells to<br>invade adjacent tissues and start the process of metasta-<br>ses. These results also suggested that some of the changes<br>induced by LIPUS take longer to be detected in this type<br>of 2D migration model, possible due to changes in gene<br>expression pattern. To further study this hypothesis, we<br>performed a Transwell invasion assay. The data revealed<br>a reduced number of cells crossing the membrane after<br>LIPUS stimulation, indicating that therapeutic LIPUS</code> |
508
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
509
+ ```json
510
+ {
511
+ "scale": 20.0,
512
+ "similarity_fct": "cos_sim"
513
+ }
514
+ ```
515
+
516
+ ### Training Hyperparameters
517
+ #### Non-Default Hyperparameters
518
+
519
+ - `eval_strategy`: steps
520
+ - `per_device_train_batch_size`: 16
521
+ - `per_device_eval_batch_size`: 16
522
+ - `num_train_epochs`: 2
523
+ - `warmup_ratio`: 0.1
524
+ - `fp16`: True
525
+ - `batch_sampler`: no_duplicates
526
+
527
+ #### All Hyperparameters
528
+ <details><summary>Click to expand</summary>
529
+
530
+ - `overwrite_output_dir`: False
531
+ - `do_predict`: False
532
+ - `eval_strategy`: steps
533
+ - `prediction_loss_only`: True
534
+ - `per_device_train_batch_size`: 16
535
+ - `per_device_eval_batch_size`: 16
536
+ - `per_gpu_train_batch_size`: None
537
+ - `per_gpu_eval_batch_size`: None
538
+ - `gradient_accumulation_steps`: 1
539
+ - `eval_accumulation_steps`: None
540
+ - `torch_empty_cache_steps`: None
541
+ - `learning_rate`: 5e-05
542
+ - `weight_decay`: 0.0
543
+ - `adam_beta1`: 0.9
544
+ - `adam_beta2`: 0.999
545
+ - `adam_epsilon`: 1e-08
546
+ - `max_grad_norm`: 1.0
547
+ - `num_train_epochs`: 2
548
+ - `max_steps`: -1
549
+ - `lr_scheduler_type`: linear
550
+ - `lr_scheduler_kwargs`: {}
551
+ - `warmup_ratio`: 0.1
552
+ - `warmup_steps`: 0
553
+ - `log_level`: passive
554
+ - `log_level_replica`: warning
555
+ - `log_on_each_node`: True
556
+ - `logging_nan_inf_filter`: True
557
+ - `save_safetensors`: True
558
+ - `save_on_each_node`: False
559
+ - `save_only_model`: False
560
+ - `restore_callback_states_from_checkpoint`: False
561
+ - `no_cuda`: False
562
+ - `use_cpu`: False
563
+ - `use_mps_device`: False
564
+ - `seed`: 42
565
+ - `data_seed`: None
566
+ - `jit_mode_eval`: False
567
+ - `use_ipex`: False
568
+ - `bf16`: False
569
+ - `fp16`: True
570
+ - `fp16_opt_level`: O1
571
+ - `half_precision_backend`: auto
572
+ - `bf16_full_eval`: False
573
+ - `fp16_full_eval`: False
574
+ - `tf32`: None
575
+ - `local_rank`: 0
576
+ - `ddp_backend`: None
577
+ - `tpu_num_cores`: None
578
+ - `tpu_metrics_debug`: False
579
+ - `debug`: []
580
+ - `dataloader_drop_last`: False
581
+ - `dataloader_num_workers`: 0
582
+ - `dataloader_prefetch_factor`: None
583
+ - `past_index`: -1
584
+ - `disable_tqdm`: False
585
+ - `remove_unused_columns`: True
586
+ - `label_names`: None
587
+ - `load_best_model_at_end`: False
588
+ - `ignore_data_skip`: False
589
+ - `fsdp`: []
590
+ - `fsdp_min_num_params`: 0
591
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
592
+ - `fsdp_transformer_layer_cls_to_wrap`: None
593
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
594
+ - `deepspeed`: None
595
+ - `label_smoothing_factor`: 0.0
596
+ - `optim`: adamw_torch
597
+ - `optim_args`: None
598
+ - `adafactor`: False
599
+ - `group_by_length`: False
600
+ - `length_column_name`: length
601
+ - `ddp_find_unused_parameters`: None
602
+ - `ddp_bucket_cap_mb`: None
603
+ - `ddp_broadcast_buffers`: False
604
+ - `dataloader_pin_memory`: True
605
+ - `dataloader_persistent_workers`: False
606
+ - `skip_memory_metrics`: True
607
+ - `use_legacy_prediction_loop`: False
608
+ - `push_to_hub`: False
609
+ - `resume_from_checkpoint`: None
610
+ - `hub_model_id`: None
611
+ - `hub_strategy`: every_save
612
+ - `hub_private_repo`: None
613
+ - `hub_always_push`: False
614
+ - `gradient_checkpointing`: False
615
+ - `gradient_checkpointing_kwargs`: None
616
+ - `include_inputs_for_metrics`: False
617
+ - `include_for_metrics`: []
618
+ - `eval_do_concat_batches`: True
619
+ - `fp16_backend`: auto
620
+ - `push_to_hub_model_id`: None
621
+ - `push_to_hub_organization`: None
622
+ - `mp_parameters`:
623
+ - `auto_find_batch_size`: False
624
+ - `full_determinism`: False
625
+ - `torchdynamo`: None
626
+ - `ray_scope`: last
627
+ - `ddp_timeout`: 1800
628
+ - `torch_compile`: False
629
+ - `torch_compile_backend`: None
630
+ - `torch_compile_mode`: None
631
+ - `include_tokens_per_second`: False
632
+ - `include_num_input_tokens_seen`: False
633
+ - `neftune_noise_alpha`: None
634
+ - `optim_target_modules`: None
635
+ - `batch_eval_metrics`: False
636
+ - `eval_on_start`: False
637
+ - `use_liger_kernel`: False
638
+ - `eval_use_gather_object`: False
639
+ - `average_tokens_across_devices`: False
640
+ - `prompts`: None
641
+ - `batch_sampler`: no_duplicates
642
+ - `multi_dataset_batch_sampler`: proportional
643
+ - `router_mapping`: {}
644
+ - `learning_rate_mapping`: {}
645
+
646
+ </details>
647
+
648
+ ### Training Logs
649
+ <details><summary>Click to expand</summary>
650
+
651
+ | Epoch | Step | Training Loss | Validation Loss | initial_test_cosine_accuracy | final_test_cosine_accuracy |
652
+ |:------:|:----:|:-------------:|:---------------:|:----------------------------:|:--------------------------:|
653
+ | -1 | -1 | - | - | 0.7800 | - |
654
+ | 0.02 | 1 | 3.124 | - | - | - |
655
+ | 0.04 | 2 | 3.2227 | - | - | - |
656
+ | 0.06 | 3 | 3.1108 | - | - | - |
657
+ | 0.08 | 4 | 3.1317 | - | - | - |
658
+ | 0.1 | 5 | 3.3266 | - | - | - |
659
+ | 0.12 | 6 | 2.9528 | - | - | - |
660
+ | 0.14 | 7 | 3.0521 | - | - | - |
661
+ | 0.16 | 8 | 2.5702 | - | - | - |
662
+ | 0.18 | 9 | 2.4701 | - | - | - |
663
+ | 0.2 | 10 | 2.3816 | - | - | - |
664
+ | 0.22 | 11 | 1.6773 | - | - | - |
665
+ | 0.24 | 12 | 1.5529 | - | - | - |
666
+ | 0.26 | 13 | 1.7036 | - | - | - |
667
+ | 0.28 | 14 | 1.5104 | - | - | - |
668
+ | 0.3 | 15 | 1.3331 | - | - | - |
669
+ | 0.32 | 16 | 1.8093 | - | - | - |
670
+ | 0.34 | 17 | 1.5907 | - | - | - |
671
+ | 0.36 | 18 | 1.3202 | - | - | - |
672
+ | 0.38 | 19 | 1.247 | - | - | - |
673
+ | 0.4 | 20 | 1.0266 | 0.8487 | 0.9200 | - |
674
+ | 0.42 | 21 | 1.0923 | - | - | - |
675
+ | 0.44 | 22 | 0.9558 | - | - | - |
676
+ | 0.46 | 23 | 0.9531 | - | - | - |
677
+ | 0.48 | 24 | 1.1518 | - | - | - |
678
+ | 0.5 | 25 | 0.5961 | - | - | - |
679
+ | 0.52 | 26 | 0.8555 | - | - | - |
680
+ | 0.54 | 27 | 0.3773 | - | - | - |
681
+ | 0.56 | 28 | 0.7775 | - | - | - |
682
+ | 0.58 | 29 | 0.6595 | - | - | - |
683
+ | 0.6 | 30 | 0.5545 | - | - | - |
684
+ | 0.62 | 31 | 0.6099 | - | - | - |
685
+ | 0.64 | 32 | 1.0897 | - | - | - |
686
+ | 0.66 | 33 | 0.8707 | - | - | - |
687
+ | 0.68 | 34 | 0.5433 | - | - | - |
688
+ | 0.7 | 35 | 0.1551 | - | - | - |
689
+ | 0.72 | 36 | 0.5062 | - | - | - |
690
+ | 0.74 | 37 | 0.4382 | - | - | - |
691
+ | 0.76 | 38 | 0.813 | - | - | - |
692
+ | 0.78 | 39 | 0.3402 | - | - | - |
693
+ | 0.8 | 40 | 0.5362 | 0.5955 | 0.9800 | - |
694
+ | 0.82 | 41 | 0.4337 | - | - | - |
695
+ | 0.84 | 42 | 0.4311 | - | - | - |
696
+ | 0.86 | 43 | 0.2757 | - | - | - |
697
+ | 0.88 | 44 | 0.4837 | - | - | - |
698
+ | 0.9 | 45 | 0.8246 | - | - | - |
699
+ | 0.92 | 46 | 0.2713 | - | - | - |
700
+ | 0.94 | 47 | 1.2741 | - | - | - |
701
+ | 0.96 | 48 | 0.3547 | - | - | - |
702
+ | 0.98 | 49 | 0.4662 | - | - | - |
703
+ | 1.0 | 50 | 0.5558 | - | - | - |
704
+ | 1.02 | 51 | 0.2286 | - | - | - |
705
+ | 1.04 | 52 | 0.1806 | - | - | - |
706
+ | 1.06 | 53 | 0.1947 | - | - | - |
707
+ | 1.08 | 54 | 0.5536 | - | - | - |
708
+ | 1.1 | 55 | 0.1474 | - | - | - |
709
+ | 1.12 | 56 | 0.5316 | - | - | - |
710
+ | 1.1400 | 57 | 0.1787 | - | - | - |
711
+ | 1.16 | 58 | 0.3009 | - | - | - |
712
+ | 1.18 | 59 | 0.0757 | - | - | - |
713
+ | 1.2 | 60 | 0.1751 | 0.4981 | 1.0 | - |
714
+ | 1.22 | 61 | 0.1504 | - | - | - |
715
+ | 1.24 | 62 | 0.2225 | - | - | - |
716
+ | 1.26 | 63 | 0.0926 | - | - | - |
717
+ | 1.28 | 64 | 0.2145 | - | - | - |
718
+ | 1.3 | 65 | 0.0699 | - | - | - |
719
+ | 1.32 | 66 | 0.3843 | - | - | - |
720
+ | 1.34 | 67 | 0.235 | - | - | - |
721
+ | 1.3600 | 68 | 0.3296 | - | - | - |
722
+ | 1.38 | 69 | 0.0503 | - | - | - |
723
+ | 1.4 | 70 | 0.3067 | - | - | - |
724
+ | 1.42 | 71 | 0.0799 | - | - | - |
725
+ | 1.44 | 72 | 0.2317 | - | - | - |
726
+ | 1.46 | 73 | 0.1423 | - | - | - |
727
+ | 1.48 | 74 | 0.1322 | - | - | - |
728
+ | 1.5 | 75 | 0.2092 | - | - | - |
729
+ | 1.52 | 76 | 0.6533 | - | - | - |
730
+ | 1.54 | 77 | 0.1548 | - | - | - |
731
+ | 1.56 | 78 | 0.5765 | - | - | - |
732
+ | 1.58 | 79 | 0.3432 | - | - | - |
733
+ | 1.6 | 80 | 0.1581 | 0.4722 | 0.9800 | - |
734
+ | 1.62 | 81 | 0.2133 | - | - | - |
735
+ | 1.6400 | 82 | 0.1788 | - | - | - |
736
+ | 1.6600 | 83 | 0.1909 | - | - | - |
737
+ | 1.6800 | 84 | 0.1055 | - | - | - |
738
+ | 1.7 | 85 | 0.5633 | - | - | - |
739
+ | 1.72 | 86 | 0.5562 | - | - | - |
740
+ | 1.74 | 87 | 0.2456 | - | - | - |
741
+ | 1.76 | 88 | 0.1299 | - | - | - |
742
+ | 1.78 | 89 | 0.127 | - | - | - |
743
+ | 1.8 | 90 | 0.1508 | - | - | - |
744
+ | 1.8200 | 91 | 0.2308 | - | - | - |
745
+ | 1.8400 | 92 | 0.525 | - | - | - |
746
+ | 1.8600 | 93 | 0.1216 | - | - | - |
747
+ | 1.88 | 94 | 0.1122 | - | - | - |
748
+ | 1.9 | 95 | 0.379 | - | - | - |
749
+ | 1.92 | 96 | 0.1595 | - | - | - |
750
+ | 1.94 | 97 | 0.1224 | - | - | - |
751
+ | 1.96 | 98 | 0.1442 | - | - | - |
752
+ | 1.98 | 99 | 0.1012 | - | - | - |
753
+ | 2.0 | 100 | 0.2018 | 0.4420 | 0.9800 | - |
754
+ | -1 | -1 | - | - | - | 0.9800 |
755
+
756
+ </details>
757
+
758
+ ### Framework Versions
759
+ - Python: 3.11.13
760
+ - Sentence Transformers: 5.0.0
761
+ - Transformers: 4.52.4
762
+ - PyTorch: 2.6.0+cu124
763
+ - Accelerate: 1.8.1
764
+ - Datasets: 3.6.0
765
+ - Tokenizers: 0.21.2
766
+
767
+ ## Citation
768
+
769
+ ### BibTeX
770
+
771
+ #### Sentence Transformers
772
+ ```bibtex
773
+ @inproceedings{reimers-2019-sentence-bert,
774
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
775
+ author = "Reimers, Nils and Gurevych, Iryna",
776
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
777
+ month = "11",
778
+ year = "2019",
779
+ publisher = "Association for Computational Linguistics",
780
+ url = "https://arxiv.org/abs/1908.10084",
781
+ }
782
+ ```
783
+
784
+ #### MultipleNegativesRankingLoss
785
+ ```bibtex
786
+ @misc{henderson2017efficient,
787
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
788
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
789
+ year={2017},
790
+ eprint={1705.00652},
791
+ archivePrefix={arXiv},
792
+ primaryClass={cs.CL}
793
+ }
794
+ ```
795
+
796
+ <!--
797
+ ## Glossary
798
+
799
+ *Clearly define terms in order to be accessible across audiences.*
800
+ -->
801
+
802
+ <!--
803
+ ## Model Card Authors
804
+
805
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
806
+ -->
807
+
808
+ <!--
809
+ ## Model Card Contact
810
+
811
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
812
+ -->
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MPNetModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-05,
14
+ "max_position_embeddings": 514,
15
+ "model_type": "mpnet",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 1,
19
+ "relative_attention_num_buckets": 32,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.52.4",
22
+ "vocab_size": 30527
23
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.0.0",
5
+ "transformers": "4.52.4",
6
+ "pytorch": "2.6.0+cu124"
7
+ },
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:127c02899d65b9366b7d33010f2b2adaf4c5db0d306dcda592bb24b040eb734c
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "model_max_length": 512,
60
+ "pad_token": "<pad>",
61
+ "sep_token": "</s>",
62
+ "strip_accents": null,
63
+ "tokenize_chinese_chars": true,
64
+ "tokenizer_class": "MPNetTokenizer",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff