|
Logging training |
|
Running DummyClassifier() |
|
accuracy: 0.491 recall_macro: 0.333 precision_macro: 0.164 f1_macro: 0.219 |
|
=== new best DummyClassifier() (using recall_macro): |
|
accuracy: 0.491 recall_macro: 0.333 precision_macro: 0.164 f1_macro: 0.219 |
|
|
|
Running GaussianNB() |
|
accuracy: 0.218 recall_macro: 0.354 precision_macro: 0.473 f1_macro: 0.176 |
|
=== new best GaussianNB() (using recall_macro): |
|
accuracy: 0.218 recall_macro: 0.354 precision_macro: 0.473 f1_macro: 0.176 |
|
|
|
Running MultinomialNB() |
|
accuracy: 0.660 recall_macro: 0.614 precision_macro: 0.620 f1_macro: 0.612 |
|
=== new best MultinomialNB() (using recall_macro): |
|
accuracy: 0.660 recall_macro: 0.614 precision_macro: 0.620 f1_macro: 0.612 |
|
|
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=1) |
|
accuracy: 0.610 recall_macro: 0.460 precision_macro: 0.466 f1_macro: 0.422 |
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=5) |
|
accuracy: 0.633 recall_macro: 0.606 precision_macro: 0.634 f1_macro: 0.598 |
|
Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01) |
|
accuracy: 0.604 recall_macro: 0.592 precision_macro: 0.594 f1_macro: 0.574 |
|
Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) |
|
accuracy: 0.693 recall_macro: 0.666 precision_macro: 0.658 f1_macro: 0.657 |
|
=== new best LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) (using recall_macro): |
|
accuracy: 0.693 recall_macro: 0.666 precision_macro: 0.658 f1_macro: 0.657 |
|
|
|
Running LogisticRegression(class_weight='balanced', max_iter=1000) |
|
accuracy: 0.694 recall_macro: 0.664 precision_macro: 0.658 f1_macro: 0.656 |
|
|
|
Best model: |
|
LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) |
|
Best Scores: |
|
accuracy: 0.693 recall_macro: 0.666 precision_macro: 0.658 f1_macro: 0.657 |
|
|