--- library_name: transformers license: apache-2.0 language: - en base_model: - HuggingFaceTB/SmolLM2-360M pipeline_tag: text-to-speech --- # YarnGPT2b  ## Table of Contents 1. [Model Summary](#model-summary) 2. [Model Description](#model-description) 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations) - [Recommendations](#recommendations) 4. [Speech Samples](#speech-samples) 5. [Training](#training) 6. [Future Improvements](#future-improvements) 7. [Citation](#citation) 8. [Credits & References](#credits--references) ## Model Summary YarnGPT2b is a text-to-speech (TTS) and automatic speech recognition (ASR) model designed to synthesize Nigerian-accented languages (Yoruba, Igbo, Hausa, and English). It leverages pure language modeling without external adapters or complex architectures, providing high-quality, natural, and culturally relevant speech synthesis. The model was trained on both TTS and ASR to explore whether learning patterns from one task could improve the other. However, this approach did not yield significant improvements, especially in ASR. This may be due to the small model size or the fact that the base model (YarnGPT2) was already highly optimized for TTS, making it difficult to learn ASR effectively. #### How to use (Colab) The model can generate audio on its own but its better to use a voice to prompt the model: ##### Voices (arranged in order of perfomance and stability) - English: idera, chinenye, jude, emma,umar,,joke,zainab ,osagie, remi, tayo - Yoruba: yoruba_male2, yoruba_female2, yoruba_feamle1 - Igbo: igbo_female2, igbo_male2,igbo_female1, - Hausa: hausa_feamle1,hausa_female2, hausa_male2,hausa_male1 ### Prompt YarnGPT2b ```python !git clone https://github.com/saheedniyi02/yarngpt.git pip install outetts uroman import os import re import json import torch import inflect import random import uroman as ur import numpy as np import torchaudio import IPython from transformers import AutoModelForCausalLM, AutoTokenizer from outetts.wav_tokenizer.decoder import WavTokenizer !wget https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml !gdown 1-ASeEkrn4HY49yZWHTASgfGFNXdVnLTt from yarngpt.audiotokenizer import AudioTokenizerV2 tokenizer_path="saheedniyi/YarnGPT2b" wav_tokenizer_config_path="/content/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml" wav_tokenizer_model_path = "/content/wavtokenizer_large_speech_320_24k.ckpt" audio_tokenizer=AudioTokenizerV2( tokenizer_path,wav_tokenizer_model_path,wav_tokenizer_config_path ) model = AutoModelForCausalLM.from_pretrained(tokenizer_path,torch_dtype="auto").to(audio_tokenizer.device) #change the text text="The election was won by businessman and politician, Moshood Abiola, but Babangida annulled the results, citing concerns over national security." # change the language and voice prompt=audio_tokenizer.create_prompt(text,lang="english",speaker_name="idera") input_ids=audio_tokenizer.tokenize_prompt(prompt) output = model.generate( input_ids=input_ids, temperature=0.1, repetition_penalty=1.1, max_length=4000, #num_beams=5,# using a beam size helps for the local languages but not english ) codes=audio_tokenizer.get_codes(output) audio=audio_tokenizer.get_audio(codes) IPython.display.Audio(audio,rate=24000) torchaudio.save(f"Sample.wav", audio, sample_rate=24000) ``` ### Simple Nigerian Accented-NewsReader ```python !git clone https://github.com/saheedniyi02/yarngpt.git pip install outetts uroman trafilatura pydub import os import re import json import torch import inflect import random import requests import trafilatura import inflect import uroman as ur import numpy as np import torchaudio import IPython from pydub import AudioSegment from pydub.effects import normalize from transformers import AutoModelForCausalLM, AutoTokenizer from outetts.wav_tokenizer.decoder import WavTokenizer !wget https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml !gdown 1-ASeEkrn4HY49yZWHTASgfGFNXdVnLTt from yarngpt.audiotokenizer import AudioTokenizerV2 tokenizer_path="saheedniyi/YarnGPT2b" wav_tokenizer_config_path="/content/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml" wav_tokenizer_model_path = "/content/wavtokenizer_large_speech_320_24k.ckpt" audio_tokenizer=AudioTokenizerV2( tokenizer_path,wav_tokenizer_model_path,wav_tokenizer_config_path ) model = AutoModelForCausalLM.from_pretrained(tokenizer_path,torch_dtype="auto").to(audio_tokenizer.device) # Split text into chunks def split_text_into_chunks(text, word_limit=25): sentences=[sentence.strip() for sentence in text.split('.') if sentence.strip()] chunks=[] for sentence in sentences: chunks.append(".") sentence_splitted=sentence.split(" ") num_words=len(sentence_splitted) if (num_words>word_limit) and (num_words<=word_limit*2): chunks.append(" ".join(sentence_splitted[:int(num_words/2)])) chunks.append(" ".join(sentence_splitted[int(num_words/2):])) elif (num_words>word_limit*2) and (num_words<=word_limit*3): chunks.append(" ".join(sentence_splitted[:int(num_words/3)])) chunks.append(" ".join(sentence_splitted[int(num_words/3):int(2*num_words/3)])) chunks.append(" ".join(sentence_splitted[int(2*num_words/3):])) elif (num_words>word_limit*3) and (num_words<=word_limit*4): chunks.append(" ".join(sentence_splitted[:int(num_words/4)])) chunks.append(" ".join(sentence_splitted[int(num_words/4):word_limit*2])) chunks.append(" ".join(sentence_splitted[int(2*num_words/4):int(3*num_words/4)])) chunks.append(" ".join(sentence_splitted[int(3*num_words/4):])) elif (num_words>word_limit*4) and (num_words<=word_limit*5): chunks.append(" ".join(sentence_splitted[:int(num_words/5)])) chunks.append(" ".join(sentence_splitted[int(num_words/5):int(2*num_words/5)])) chunks.append(" ".join(sentence_splitted[int(2*num_words/5):int(3*num_words/5)])) chunks.append(" ".join(sentence_splitted[int(3*num_words/5):int(4*num_words/5)])) chunks.append(" ".join(sentence_splitted[int(4*num_words/5):])) else: chunks.append(sentence) return chunks def speed_change(sound, speed=0.9): # Manually override the frame_rate. This tells the computer how many # samples to play per second sound_with_altered_frame_rate = sound._spawn(sound.raw_data, overrides={ "frame_rate": int(sound.frame_rate * speed) }) # convert the sound with altered frame rate to a standard frame rate # so that regular playback programs will work right. They often only # know how to play audio at standard frame rate (like 44.1k) return sound_with_altered_frame_rate.set_frame_rate(sound.frame_rate) #change the url url="https://punchng.com/im-not-desperate-for-2027-presidential-ticket-obi/" page=requests.get(url) content=trafilatura.extract(page.text) chunks=split_text_into_chunks(content) all_codes=[] #Looping over the chunks and adding creating a large `all_codes` list for i,chunk in enumerate(chunks): print(i) print("\n") print(chunk) if chunk==".": #add silence for 0.5 seconds if we encounter a full stop all_codes.extend([453]*38) else: # Change the language and voice here prompt=audio_tokenizer.create_prompt(chunk,lang="english",speaker_name="jude") input_ids=audio_tokenizer.tokenize_prompt(prompt) output = model.generate( input_ids=input_ids, temperature=0.1, repetition_penalty=1.1, max_length=4000, #num_beams=5, ) codes=audio_tokenizer.get_codes(output) all_codes.extend(codes) audio=audio_tokenizer.get_audio(all_codes) IPython.display.Audio(audio,rate=24000) torchaudio.save(f"news1.wav", audio, sample_rate=24000, ) ``` ## Model Description - **Developed by:** [Saheedniyi](https://linkedin.com/in/azeez-saheed) - **Model type:** Text-to-Speech - **Language(s) (NLP):** English--> Nigerian Accented English - **Finetuned from:** [HuggingFaceTB/SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M) - **Repository:** [YarnGPT Github Repository](https://github.com/saheedniyi02/yarngpt) - **Paper:** IN PROGRESS. - **Demo:** 1) [Prompt YarnGPT2b notebook](https://colab.research.google.com/drive/13-o1X5F3CLeHixjqobNf2TJN1T6LWOqx?usp=sharing) 2) [Simple news reader](https://colab.research.google.com/drive/1FLTUmESJbG52Bj21XX3-AoevjaXwtmhE?usp=sharing) #### Uses Generate Nigerian-accented English speech for experimental purposes. #### Out-of-Scope Use The model is not suitable for generating speech in languages other than English or other accents. ## Bias, Risks, and Limitations The model may not capture the full diversity of Nigerian accents and could exhibit biases based on the training dataset. Also a lot of the text the model was trained on were automatically generated which could impact performance. #### Recommendations Users (both direct and downstream) should be made aware of the risks, biases, and limitations of the model. Feedback and diverse training data contributions are encouraged. ## Speech Samples Listen to samples generated by YarnGPT:
Input | Audio | Notes |
---|---|---|
Uhm, so, what was the inspiration behind your latest project? Like, was there a specific moment where you were like, 'Yeah, this is it!' Or, you know, did it just kind of, uh, come together naturally over time | (temperature=0.1, repetition_penalty=1.1), language: english, voice: idera | |
The election was won by businessman and politician, Moshood Abiola, but Babangida annulled the results, citing concerns over national security. | (temperature=0.1, repetition_penalty=1.1), language: english, voice: zainab | |
Habeeb Okikiọla Olalomi Badmus ti ọpọ awọn ololufẹ rẹ mọ si Portable ti sọ fun ile ẹjọ majisireeti ti ipinlẹ Ogun wi pe ṣaka lara oun da, oun ko ni aisan tabi arun kankan lara. | (temperature=0.1, repetition_penalty=1.1), language: yoruba, voice: yoruba_male2 | |
Gómìnà náà fẹ̀sùn kàn pé àwọn alága àná gbìyànjú láti fi ipá gba àwọn ìjọba ìbílẹ̀ lọ́nà àìtọ́, tó sì jẹ́ pé ó yẹ kí àwọn ìjọba ìbílẹ̀ náà wà ní títì | (temperature=0.1, repetition_penalty=1.1), language: yoruba, voice: yoruba_female2 | |
Ọ bụ oge ha si Enugwu steeti eme njem aga Anambra ka ndị omekome ahụ wakporo ụgbọala ha. | (temperature=0.1, repetition_penalty=1.1), language: igbo, voice: igbo_male2 | |
Isi ụlọorụ Shell dị na Lọndọn na gọọmenti Naịjirịa ekwuputala ugboro ugboro na ọrụ ịsacha ogbe ndị lara n'iyi n'Ogoni bụ nke malitere ihe dịka afọ asatọ gara aga na-aga nke ọma. | (temperature=0.1, repetition_penalty=1.1), language: igbo, voice: igbo_female1 | |
Gwamnatin Najeriya ta sake maka shafin hada-hadar kuɗin kirifto na Binance a kotu, inda take buƙatar ya biya ta diyyar kuɗi dalar Amurka biliyan 81.5 | (temperature=0.1, repetition_penalty=1.1), language: hausa, voice: hausa_female1 | |
Bisa ga dukkan alamu, haƙata cimma ruwa, dangane da koke-koken da tsofaffin ma'aikatan tarayya ke ta yi, a kan dimbin basukan wasu hakkokinsu da suke bi shekara da shekaru. | (temperature=0.1, repetition_penalty=1.1), language: hausa, voice: hausa_male2 |