File size: 17,990 Bytes
1eac08c ce3dad4 1eac08c c62502c ce3dad4 c62502c ce3dad4 c62502c ce3dad4 260c086 c62502c ce3dad4 16e09d6 ce3dad4 eabc85c ce3dad4 16e09d6 ce3dad4 16e09d6 ce3dad4 16e09d6 ce3dad4 16e09d6 ce3dad4 16e09d6 ce3dad4 16e09d6 ce3dad4 0f25530 ce3dad4 eabc85c ce3dad4 0f25530 ce3dad4 0f25530 ce3dad4 0f25530 ce3dad4 0f25530 ce3dad4 0f25530 ce3dad4 0f25530 ce3dad4 0f25530 ce3dad4 0f25530 ce3dad4 0f25530 ce3dad4 0f25530 ce3dad4 0f25530 ce3dad4 197b11b 0f25530 ce3dad4 1eac08c ce3dad4 1eac08c ce3dad4 1eac08c ce3dad4 260c086 c62502c 260c086 c62502c 260c086 c62502c 260c086 ce3dad4 c62502c ce3dad4 260c086 ce3dad4 260c086 ce3dad4 c62502c ce3dad4 260c086 ce3dad4 260c086 ce3dad4 c62502c ce3dad4 260c086 ce3dad4 260c086 ce3dad4 c62502c ce3dad4 260c086 ce3dad4 260c086 ce3dad4 c62502c ce3dad4 260c086 ce3dad4 1eac08c ce3dad4 1eac08c ce3dad4 1eac08c ce3dad4 1eac08c ce3dad4 1eac08c ce3dad4 1eac08c ce3dad4 1eac08c ce3dad4 1eac08c ce3dad4 1eac08c ce3dad4 1eac08c ce3dad4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
---
library_name: transformers
license: apache-2.0
language:
- en
base_model:
- HuggingFaceTB/SmolLM2-360M
pipeline_tag: text-to-speech
---
# YarnGPT2b

## Table of Contents
1. [Model Summary](#model-summary)
2. [Model Description](#model-description)
3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
- [Recommendations](#recommendations)
4. [Speech Samples](#speech-samples)
5. [Training](#training)
6. [Future Improvements](#future-improvements)
7. [Citation](#citation)
8. [Credits & References](#credits--references)
## Model Summary
YarnGPT2b is a text-to-speech (TTS) and automatic speech recognition (ASR) model designed to synthesize Nigerian-accented languages (Yoruba, Igbo, Hausa, and English). It leverages pure language modeling without external adapters or complex architectures, providing high-quality, natural, and culturally relevant speech synthesis.
The model was trained on both TTS and ASR to explore whether learning patterns from one task could improve the other. However, this approach did not yield significant improvements, especially in ASR. This may be due to the small model size or the fact that the base model (YarnGPT2) was already highly optimized for TTS, making it difficult to learn ASR effectively.
<video controls width="600">
<source src="https://huggingface.co/saheedniyi/YarnGPT/resolve/main/audio/YearnGPT.mp4" type="video/mp4">
Your browser does not support the video tag.
</video>
#### How to use (Colab)
The model can generate audio on its own but its better to use a voice to prompt the model:
##### Voices (arranged in order of perfomance and stability)
- English: idera, chinenye, jude, emma,umar,,joke,zainab ,osagie, remi, tayo
- Yoruba: yoruba_male2, yoruba_female2, yoruba_feamle1
- Igbo: igbo_female2, igbo_male2,igbo_female1,
- Hausa: hausa_feamle1,hausa_female2, hausa_male2,hausa_male1
### Prompt YarnGPT2b
```python
!git clone https://github.com/saheedniyi02/yarngpt.git
pip install outetts uroman
import os
import re
import json
import torch
import inflect
import random
import uroman as ur
import numpy as np
import torchaudio
import IPython
from transformers import AutoModelForCausalLM, AutoTokenizer
from outetts.wav_tokenizer.decoder import WavTokenizer
!wget https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml
!gdown 1-ASeEkrn4HY49yZWHTASgfGFNXdVnLTt
from yarngpt.audiotokenizer import AudioTokenizerV2
tokenizer_path="saheedniyi/YarnGPT2b"
wav_tokenizer_config_path="/content/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml"
wav_tokenizer_model_path = "/content/wavtokenizer_large_speech_320_24k.ckpt"
audio_tokenizer=AudioTokenizerV2(
tokenizer_path,wav_tokenizer_model_path,wav_tokenizer_config_path
)
model = AutoModelForCausalLM.from_pretrained(tokenizer_path,torch_dtype="auto").to(audio_tokenizer.device)
#change the text
text="The election was won by businessman and politician, Moshood Abiola, but Babangida annulled the results, citing concerns over national security."
# change the language and voice
prompt=audio_tokenizer.create_prompt(text,lang="english",speaker_name="idera")
input_ids=audio_tokenizer.tokenize_prompt(prompt)
output = model.generate(
input_ids=input_ids,
temperature=0.1,
repetition_penalty=1.1,
max_length=4000,
#num_beams=5,# using a beam size helps for the local languages but not english
)
codes=audio_tokenizer.get_codes(output)
audio=audio_tokenizer.get_audio(codes)
IPython.display.Audio(audio,rate=24000)
torchaudio.save(f"Sample.wav", audio, sample_rate=24000)
```
### Simple Nigerian Accented-NewsReader
```python
!git clone https://github.com/saheedniyi02/yarngpt.git
pip install outetts uroman trafilatura pydub
import os
import re
import json
import torch
import inflect
import random
import requests
import trafilatura
import inflect
import uroman as ur
import numpy as np
import torchaudio
import IPython
from pydub import AudioSegment
from pydub.effects import normalize
from transformers import AutoModelForCausalLM, AutoTokenizer
from outetts.wav_tokenizer.decoder import WavTokenizer
!wget https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml
!gdown 1-ASeEkrn4HY49yZWHTASgfGFNXdVnLTt
from yarngpt.audiotokenizer import AudioTokenizerV2
tokenizer_path="saheedniyi/YarnGPT2b"
wav_tokenizer_config_path="/content/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml"
wav_tokenizer_model_path = "/content/wavtokenizer_large_speech_320_24k.ckpt"
audio_tokenizer=AudioTokenizerV2(
tokenizer_path,wav_tokenizer_model_path,wav_tokenizer_config_path
)
model = AutoModelForCausalLM.from_pretrained(tokenizer_path,torch_dtype="auto").to(audio_tokenizer.device)
# Split text into chunks
def split_text_into_chunks(text, word_limit=25):
sentences=[sentence.strip() for sentence in text.split('.') if sentence.strip()]
chunks=[]
for sentence in sentences:
chunks.append(".")
sentence_splitted=sentence.split(" ")
num_words=len(sentence_splitted)
if (num_words>word_limit) and (num_words<=word_limit*2):
chunks.append(" ".join(sentence_splitted[:int(num_words/2)]))
chunks.append(" ".join(sentence_splitted[int(num_words/2):]))
elif (num_words>word_limit*2) and (num_words<=word_limit*3):
chunks.append(" ".join(sentence_splitted[:int(num_words/3)]))
chunks.append(" ".join(sentence_splitted[int(num_words/3):int(2*num_words/3)]))
chunks.append(" ".join(sentence_splitted[int(2*num_words/3):]))
elif (num_words>word_limit*3) and (num_words<=word_limit*4):
chunks.append(" ".join(sentence_splitted[:int(num_words/4)]))
chunks.append(" ".join(sentence_splitted[int(num_words/4):word_limit*2]))
chunks.append(" ".join(sentence_splitted[int(2*num_words/4):int(3*num_words/4)]))
chunks.append(" ".join(sentence_splitted[int(3*num_words/4):]))
elif (num_words>word_limit*4) and (num_words<=word_limit*5):
chunks.append(" ".join(sentence_splitted[:int(num_words/5)]))
chunks.append(" ".join(sentence_splitted[int(num_words/5):int(2*num_words/5)]))
chunks.append(" ".join(sentence_splitted[int(2*num_words/5):int(3*num_words/5)]))
chunks.append(" ".join(sentence_splitted[int(3*num_words/5):int(4*num_words/5)]))
chunks.append(" ".join(sentence_splitted[int(4*num_words/5):]))
else:
chunks.append(sentence)
return chunks
def speed_change(sound, speed=0.9):
# Manually override the frame_rate. This tells the computer how many
# samples to play per second
sound_with_altered_frame_rate = sound._spawn(sound.raw_data, overrides={
"frame_rate": int(sound.frame_rate * speed)
})
# convert the sound with altered frame rate to a standard frame rate
# so that regular playback programs will work right. They often only
# know how to play audio at standard frame rate (like 44.1k)
return sound_with_altered_frame_rate.set_frame_rate(sound.frame_rate)
#change the url
url="https://punchng.com/im-not-desperate-for-2027-presidential-ticket-obi/"
page=requests.get(url)
content=trafilatura.extract(page.text)
chunks=split_text_into_chunks(content)
all_codes=[]
#Looping over the chunks and adding creating a large `all_codes` list
for i,chunk in enumerate(chunks):
print(i)
print("\n")
print(chunk)
if chunk==".":
#add silence for 0.5 seconds if we encounter a full stop
all_codes.extend([453]*38)
else:
# Change the language and voice here
prompt=audio_tokenizer.create_prompt(chunk,lang="english",speaker_name="jude")
input_ids=audio_tokenizer.tokenize_prompt(prompt)
output = model.generate(
input_ids=input_ids,
temperature=0.1,
repetition_penalty=1.1,
max_length=4000,
#num_beams=5,
)
codes=audio_tokenizer.get_codes(output)
all_codes.extend(codes)
audio=audio_tokenizer.get_audio(all_codes)
IPython.display.Audio(audio,rate=24000)
torchaudio.save(f"news1.wav",
audio,
sample_rate=24000,
)
```
## Model Description
- **Developed by:** [Saheedniyi](https://linkedin.com/in/azeez-saheed)
- **Model type:** Text-to-Speech
- **Language(s) (NLP):** English--> Nigerian Accented English
- **Finetuned from:** [HuggingFaceTB/SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M)
- **Repository:** [YarnGPT Github Repository](https://github.com/saheedniyi02/yarngpt)
- **Paper:** IN PROGRESS.
- **Demo:** 1) [Prompt YarnGPT2b notebook](https://colab.research.google.com/drive/13-o1X5F3CLeHixjqobNf2TJN1T6LWOqx?usp=sharing)
2) [Simple news reader](https://colab.research.google.com/drive/1FLTUmESJbG52Bj21XX3-AoevjaXwtmhE?usp=sharing)
#### Uses
Generate Nigerian-accented English speech for experimental purposes.
#### Out-of-Scope Use
The model is not suitable for generating speech in languages other than English or other accents.
## Bias, Risks, and Limitations
The model may not capture the full diversity of Nigerian accents and could exhibit biases based on the training dataset. Also a lot of the text the model was trained on were automatically generated which could impact performance.
#### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases, and limitations of the model. Feedback and diverse training data contributions are encouraged.
## Speech Samples
Listen to samples generated by YarnGPT:
<div style="margin-top: 20px;">
<table style="width: 100%; border-collapse: collapse;">
<thead>
<tr>
<th style="border: 1px solid #ddd; padding: 8px; text-align: left; width: 40%;">Input</th>
<th style="border: 1px solid #ddd; padding: 8px; text-align: left; width: 40%;">Audio</th>
<th style="border: 1px solid #ddd; padding: 8px; text-align: left; width: 10%;">Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td style="border: 1px solid #ddd; padding: 8px;">Uhm, so, what was the inspiration behind your latest project? Like, was there a specific moment where you were like, 'Yeah, this is it!' Or, you know, did it just kind of, uh, come together naturally over time</td>
<td style="border: 1px solid #ddd; padding: 8px;">
<audio controls style="width: 100%;">
<source src="https://huggingface.co/saheedniyi/YarnGPT2b/resolve/main/Audio/Audio1.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</td>
<td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1), language: english, voice: idera</td>
</tr>
<tr>
<td style="border: 1px solid #ddd; padding: 8px;">The election was won by businessman and politician, Moshood Abiola, but Babangida annulled the results, citing concerns over national security.</td>
<td style="border: 1px solid #ddd; padding: 8px;">
<audio controls style="width: 100%;">
<source src="https://huggingface.co/saheedniyi/YarnGPT2b/resolve/main/Audio/Audio2.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</td>
<td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1), language: english, voice: zainab</td>
</tr>
<tr>
<td style="border: 1px solid #ddd; padding: 8px;">Habeeb Okikiọla Olalomi Badmus ti ọpọ awọn ololufẹ rẹ mọ si Portable ti sọ fun ile ẹjọ majisireeti ti ipinlẹ Ogun wi pe ṣaka lara oun da, oun ko ni aisan tabi arun kankan lara.</td>
<td style="border: 1px solid #ddd; padding: 8px;">
<audio controls style="width: 100%;">
<source src="https://huggingface.co/saheedniyi/YarnGPT2b/resolve/main/Audio/Audio3.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</td>
<td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1), language: yoruba, voice: yoruba_male2</td>
</tr>
<tr>
<td style="border: 1px solid #ddd; padding: 8px;">Gómìnà náà fẹ̀sùn kàn pé àwọn alága àná gbìyànjú láti fi ipá gba àwọn ìjọba ìbílẹ̀ lọ́nà àìtọ́, tó sì jẹ́ pé ó yẹ kí àwọn ìjọba ìbílẹ̀ náà wà ní títì</td>
<td style="border: 1px solid #ddd; padding: 8px;">
<audio controls style="width: 100%;">
<source src="https://huggingface.co/saheedniyi/YarnGPT2b/resolve/main/Audio/Audio4.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</td>
<td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1), language: yoruba, voice: yoruba_female2</td>
</tr>
<tr>
<td style="border: 1px solid #ddd; padding: 8px;">Ọ bụ oge ha si Enugwu steeti eme njem aga Anambra ka ndị omekome ahụ wakporo ụgbọala ha.</td>
<td style="border: 1px solid #ddd; padding: 8px;">
<audio controls style="width: 100%;">
<source src="https://huggingface.co/saheedniyi/YarnGPT2b/resolve/main/Audio/Audio5.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</td>
<td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1), language: igbo, voice: igbo_male2</td>
</tr>
<tr>
<td style="border: 1px solid #ddd; padding: 8px;">Isi ụlọorụ Shell dị na Lọndọn na gọọmenti Naịjirịa ekwuputala ugboro ugboro na ọrụ ịsacha ogbe ndị lara n'iyi n'Ogoni bụ nke malitere ihe dịka afọ asatọ gara aga na-aga nke ọma.</td>
<td style="border: 1px solid #ddd; padding: 8px;">
<audio controls style="width: 100%;">
<source src="https://huggingface.co/saheedniyi/YarnGPT2b/resolve/main/Audio/Audio6.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</td>
<td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1), language: igbo, voice: igbo_female1</td>
</tr>
<tr>
<td style="border: 1px solid #ddd; padding: 8px;">Gwamnatin Najeriya ta sake maka shafin hada-hadar kuɗin kirifto na Binance a kotu, inda take buƙatar ya biya ta diyyar kuɗi dalar Amurka biliyan 81.5</td>
<td style="border: 1px solid #ddd; padding: 8px;">
<audio controls style="width: 100%;">
<source src="https://huggingface.co/saheedniyi/YarnGPT2b/resolve/main/Audio/Audio7.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</td>
<td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1), language: hausa, voice: hausa_female1</td>
</tr>
<tr>
<td style="border: 1px solid #ddd; padding: 8px;">Bisa ga dukkan alamu, haƙata cimma ruwa, dangane da koke-koken da tsofaffin ma'aikatan tarayya ke ta yi, a kan dimbin basukan wasu hakkokinsu da suke bi shekara da shekaru.</td>
<td style="border: 1px solid #ddd; padding: 8px;">
<audio controls style="width: 100%;">
<source src="https://huggingface.co/saheedniyi/YarnGPT2b/resolve/main/Audio/Audio8.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</td>
<td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1), language: hausa, voice: hausa_male2</td>
</tr>
</tbody>
</table>
</div>
## Training
#### Data
Trained on a dataset of publicly available Nigerian movies, podcasts ( using the subtitle-audio pairs) and open source Nigerian-related audio data on Huggingface,
#### Preprocessing
Audio files were preprocessed and resampled to 24Khz and tokenized using [wavtokenizer](https://huggingface.co/novateur/WavTokenizer).
#### Training Hyperparameters
- **Number of epochs:** 5
- **batch_size:** 4
- **Scheduler:** linear schedule with warmup for 4 epochs, then linear decay to zero for the last epoch
- **Optimizer:** AdamW (betas=(0.9, 0.95),weight_decay=0.01)
- **Learning rate:** 1*10^-3
#### Hardware
- **GPUs:** 1 A100 (google colab: 50 hours)
#### Software
- **Training Framework:** Pytorch
## Future Improvements?
- Scaling up model size and human-annotaed/ reviewed training data
- Wrap the model around an API endpoint
- Add support for local Nigerian languages
- Voice cloning.
- Potential expansion into speech-to-speech assistant models
## Citation [optional]
#### BibTeX:
```python
@misc{yarngpt2025,
author = {Saheed Azeez},
title = {YarnGPT: Nigerian-Accented English Text-to-Speech Model},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/SaheedAzeez/yarngpt}
}
```
#### APA:
```python
Saheed Azeez. (2025). YarnGPT: Nigerian-Accented English Text-to-Speech Model. Hugging Face. Available at: https://huggingface.co/saheedniyi/YarnGPT
```
## Credits & References
- [OuteAI/OuteTTS-0.2-500M](https://huggingface.co/OuteAI/OuteTTS-0.2-500M/)
- [WavTokenizer](https://github.com/jishengpeng/WavTokenizer)
- [CTC Forced Alignment](https://pytorch.org/audio/stable/tutorials/ctc_forced_alignment_api_tutorial.html)
- [Voicera](https://huggingface.co/Lwasinam/voicera) |