--- language: - en pipeline_tag: image-classification tags: - cards - computervision - imageclassification --- # Cards Image Classification Model This model is trained to classify images of cards using a custom dataset. ## Model Details - Architecture: ResNet18 - Dataset: Cards Image Dataset-Classification - Number of Classes: 53 - Training Epochs: 25 - Optimizer: Adam - Loss Function: CrossEntropyLoss ## Usage To use this model, follow the example code below: ```python from transformers import AutoModelForImageClassification, AutoFeatureExtractor from PIL import Image import requests model_name = "sabrilben/cards_image_classification" model = AutoModelForImageClassification.from_pretrained(model_name) feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) url = "path/to/image.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ```