--- library_name: transformers license: apache-2.0 base_model: timm/vit_base_patch16_224.augreg2_in21k_ft_in1k tags: - generated_from_trainer metrics: - accuracy model-index: - name: output results: [] --- # output This model is a fine-tuned version of [timm/vit_base_patch16_224.augreg2_in21k_ft_in1k](https://huggingface.co/timm/vit_base_patch16_224.augreg2_in21k_ft_in1k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1798 - Accuracy: 0.9409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8834 | 1.0 | 29 | 0.3203 | 0.9002 | | 0.3653 | 2.0 | 58 | 0.2524 | 0.9193 | | 0.2723 | 3.0 | 87 | 0.2100 | 0.9338 | | 0.177 | 4.0 | 116 | 0.2148 | 0.9362 | | 0.1662 | 5.0 | 145 | 0.1798 | 0.9409 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0