File size: 1,837 Bytes
d935928
d5257c1
d935928
5ff3546
 
 
d5257c1
5ff3546
 
 
d935928
 
5ff3546
d935928
d5257c1
5ff3546
d935928
5ff3546
d935928
5ff3546
 
d935928
5ff3546
 
 
 
 
d935928
5ff3546
d935928
5ff3546
d935928
 
5ff3546
d935928
5ff3546
d935928
5ff3546
 
 
 
 
d935928
5ff3546
d935928
 
 
5ff3546
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
datasets: MMInstruction/Clevr_CoGenT_TrainA_R1
library_name: transformers
model_name: Qwen2-VL-2B-Instruct-SFT
tags:
- generated_from_trainer
- R1-V
- trl
- sft
licence: license
---

# Model Card for Qwen2-VL-2B-Instruct-SFT

This model is a fine-tuned version of [None](https://huggingface.co/None) on the [MMInstruction/Clevr_CoGenT_TrainA_R1](https://huggingface.co/datasets/MMInstruction/Clevr_CoGenT_TrainA_R1) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="russellyq/Qwen2-VL-2B-Instruct-SFT", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/1155225591-the-chinese-university-of-hong-kong/R1-V/runs/lm442bwr) 


This model was trained with SFT.

### Framework versions

- TRL: 0.14.0
- Transformers: 4.49.0.dev0
- Pytorch: 2.5.1+cu121
- Datasets: 3.4.1
- Tokenizers: 0.21.1

## Citations



Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```