File size: 1,837 Bytes
d935928 d5257c1 d935928 5ff3546 d5257c1 5ff3546 d935928 5ff3546 d935928 d5257c1 5ff3546 d935928 5ff3546 d935928 5ff3546 d935928 5ff3546 d935928 5ff3546 d935928 5ff3546 d935928 5ff3546 d935928 5ff3546 d935928 5ff3546 d935928 5ff3546 d935928 5ff3546 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
datasets: MMInstruction/Clevr_CoGenT_TrainA_R1
library_name: transformers
model_name: Qwen2-VL-2B-Instruct-SFT
tags:
- generated_from_trainer
- R1-V
- trl
- sft
licence: license
---
# Model Card for Qwen2-VL-2B-Instruct-SFT
This model is a fine-tuned version of [None](https://huggingface.co/None) on the [MMInstruction/Clevr_CoGenT_TrainA_R1](https://huggingface.co/datasets/MMInstruction/Clevr_CoGenT_TrainA_R1) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="russellyq/Qwen2-VL-2B-Instruct-SFT", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/1155225591-the-chinese-university-of-hong-kong/R1-V/runs/lm442bwr)
This model was trained with SFT.
### Framework versions
- TRL: 0.14.0
- Transformers: 4.49.0.dev0
- Pytorch: 2.5.1+cu121
- Datasets: 3.4.1
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |