Update README.md
Browse files
README.md
CHANGED
@@ -1,22 +1,129 @@
|
|
1 |
---
|
2 |
base_model: ibm-granite/granite-3.1-2b-instruct
|
3 |
tags:
|
4 |
-
- text-generation
|
5 |
- transformers
|
6 |
-
- unsloth
|
7 |
-
- granite
|
8 |
- gguf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
license: apache-2.0
|
10 |
language:
|
11 |
- en
|
12 |
---
|
13 |
|
14 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
- **License:** apache-2.0
|
18 |
-
- **Finetuned from model :** ibm-granite/granite-3.1-2b-instruct
|
19 |
|
20 |
-
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
base_model: ibm-granite/granite-3.1-2b-instruct
|
3 |
tags:
|
4 |
+
- text-generation
|
5 |
- transformers
|
|
|
|
|
6 |
- gguf
|
7 |
+
- english
|
8 |
+
- granite
|
9 |
+
- text-generation-inference
|
10 |
+
- inference-endpoints
|
11 |
+
- conversational
|
12 |
+
- 4-bit
|
13 |
+
- 5-bit
|
14 |
+
- 8-bit
|
15 |
+
- ruslanmv
|
16 |
license: apache-2.0
|
17 |
language:
|
18 |
- en
|
19 |
---
|
20 |
|
21 |
+
# Granite-3.1-2B-Reasoning-GGUF (Quantized for Efficiency)
|
22 |
+
|
23 |
+
## Model Overview
|
24 |
+
|
25 |
+
This is a **GGUF quantized version** of **ruslanmv/granite-3.1-2b-Reasoning**, fine-tuned from **ibm-granite/granite-3.1-2b-instruct**. The **GGUF format** allows for efficient inference on **CPU and GPU**, optimized for use with **Kbit quantization levels** (4-bit, 5-bit, and 8-bit).
|
26 |
+
|
27 |
+
- **Developed by:** [ruslanmv](https://huggingface.co/ruslanmv)
|
28 |
+
- **License:** Apache 2.0
|
29 |
+
- **Base Model:** [ibm-granite/granite-3.1-2b-instruct](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct)
|
30 |
+
- **Fine-tuned for:** Logical reasoning, structured problem-solving, long-context tasks
|
31 |
+
- **Quantized GGUF versions available:**
|
32 |
+
- **4-bit:** `Q4_K_M`
|
33 |
+
- **5-bit:** `Q5_K_M`
|
34 |
+
- **8-bit:** `Q8_0`
|
35 |
+
- **Supported Languages:** English
|
36 |
+
- **Architecture:** **Granite**
|
37 |
+
- **Model Size:** **2.53B params**
|
38 |
+
|
39 |
+
---
|
40 |
+
|
41 |
+
## Why Use the GGUF Quantized Version?
|
42 |
+
|
43 |
+
The **GGUF format** is designed for optimized **CPU and GPU inference**, enabling:
|
44 |
+
|
45 |
+
✅ **Lower memory usage** for running on consumer hardware
|
46 |
+
✅ **Faster inference speeds** without compromising reasoning ability
|
47 |
+
✅ **Compatibility with popular inference engines** like llama.cpp, ctransformers, and KoboldCpp
|
48 |
+
|
49 |
+
---
|
50 |
+
|
51 |
+
## Installation & Usage
|
52 |
+
|
53 |
+
To use this model with **llama.cpp**, install the required dependencies:
|
54 |
+
|
55 |
+
```bash
|
56 |
+
pip install llama-cpp-python
|
57 |
+
```
|
58 |
+
|
59 |
+
### Running the Model
|
60 |
+
|
61 |
+
To run the model using **llama.cpp**:
|
62 |
+
|
63 |
+
```bash
|
64 |
+
from llama_cpp import Llama
|
65 |
+
|
66 |
+
model_path = "path/to/ruslanmv/granite-3.1-2b-Reasoning-GGUF.Q4_K_M.gguf"
|
67 |
+
|
68 |
+
llm = Llama(model_path=model_path)
|
69 |
+
|
70 |
+
input_text = "Can you explain the difference between inductive and deductive reasoning?"
|
71 |
+
output = llm(input_text, max_tokens=400)
|
72 |
+
|
73 |
+
print(output["choices"][0]["text"])
|
74 |
+
```
|
75 |
+
|
76 |
+
Alternatively, using **ctransformers**:
|
77 |
+
|
78 |
+
```bash
|
79 |
+
pip install ctransformers
|
80 |
+
```
|
81 |
+
|
82 |
+
```python
|
83 |
+
from ctransformers import AutoModelForCausalLM
|
84 |
+
|
85 |
+
model_path = "path/to/ruslanmv/granite-3.1-2b-Reasoning-GGUF.Q4_K_M.gguf"
|
86 |
+
|
87 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, model_type="llama", gpu_layers=50)
|
88 |
+
|
89 |
+
input_text = "What are the key principles of logical reasoning?"
|
90 |
+
output = model(input_text, max_new_tokens=400)
|
91 |
+
|
92 |
+
print(output)
|
93 |
+
```
|
94 |
+
|
95 |
+
---
|
96 |
+
|
97 |
+
## Intended Use
|
98 |
+
|
99 |
+
Granite-3.1-2B-Reasoning-GGUF is optimized for **efficient inference** while maintaining strong **reasoning capabilities**, making it ideal for:
|
100 |
+
|
101 |
+
- **Logical and analytical problem-solving**
|
102 |
+
- **Text-based reasoning tasks**
|
103 |
+
- **Mathematical and symbolic reasoning**
|
104 |
+
- **Advanced instruction-following**
|
105 |
+
|
106 |
+
This model is particularly useful for **CPU-based deployments** and users who need **low-memory, high-performance** text generation.
|
107 |
+
|
108 |
+
---
|
109 |
+
|
110 |
+
## License & Acknowledgments
|
111 |
+
|
112 |
+
This model is released under the **Apache 2.0** license. It is fine-tuned from IBM’s **Granite 3.1-2B-Instruct** model and **quantized using GGUF** for optimal efficiency. Special thanks to the **IBM Granite Team** for developing the base model.
|
113 |
+
|
114 |
+
For more details, visit the [IBM Granite Documentation](https://huggingface.co/ibm-granite).
|
115 |
+
|
116 |
+
---
|
117 |
|
118 |
+
### Citation
|
|
|
|
|
119 |
|
120 |
+
If you use this model in your research or applications, please cite:
|
121 |
|
122 |
+
```
|
123 |
+
@misc{ruslanmv2025granite,
|
124 |
+
title={Fine-Tuning and GGUF Quantization of Granite-3.1 for Advanced Reasoning},
|
125 |
+
author={Ruslan M.V.},
|
126 |
+
year={2025},
|
127 |
+
url={https://huggingface.co/ruslanmv/granite-3.1-2b-Reasoning-GGUF}
|
128 |
+
}
|
129 |
+
```
|