Update README.md
Browse files
README.md
CHANGED
@@ -1,200 +1,118 @@
|
|
1 |
---
|
2 |
-
|
|
|
3 |
tags:
|
4 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
<!-- This should link to a Dataset Card if possible. -->
|
113 |
-
|
114 |
-
[More Information Needed]
|
115 |
-
|
116 |
-
#### Factors
|
117 |
-
|
118 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
119 |
-
|
120 |
-
[More Information Needed]
|
121 |
-
|
122 |
-
#### Metrics
|
123 |
-
|
124 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
125 |
-
|
126 |
-
[More Information Needed]
|
127 |
-
|
128 |
-
### Results
|
129 |
-
|
130 |
-
[More Information Needed]
|
131 |
-
|
132 |
-
#### Summary
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
## Model Examination [optional]
|
137 |
-
|
138 |
-
<!-- Relevant interpretability work for the model goes here -->
|
139 |
-
|
140 |
-
[More Information Needed]
|
141 |
-
|
142 |
-
## Environmental Impact
|
143 |
-
|
144 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
145 |
-
|
146 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
147 |
-
|
148 |
-
- **Hardware Type:** [More Information Needed]
|
149 |
-
- **Hours used:** [More Information Needed]
|
150 |
-
- **Cloud Provider:** [More Information Needed]
|
151 |
-
- **Compute Region:** [More Information Needed]
|
152 |
-
- **Carbon Emitted:** [More Information Needed]
|
153 |
-
|
154 |
-
## Technical Specifications [optional]
|
155 |
-
|
156 |
-
### Model Architecture and Objective
|
157 |
-
|
158 |
-
[More Information Needed]
|
159 |
-
|
160 |
-
### Compute Infrastructure
|
161 |
-
|
162 |
-
[More Information Needed]
|
163 |
-
|
164 |
-
#### Hardware
|
165 |
-
|
166 |
-
[More Information Needed]
|
167 |
-
|
168 |
-
#### Software
|
169 |
-
|
170 |
-
[More Information Needed]
|
171 |
-
|
172 |
-
## Citation [optional]
|
173 |
-
|
174 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
175 |
-
|
176 |
-
**BibTeX:**
|
177 |
-
|
178 |
-
[More Information Needed]
|
179 |
-
|
180 |
-
**APA:**
|
181 |
-
|
182 |
-
[More Information Needed]
|
183 |
-
|
184 |
-
## Glossary [optional]
|
185 |
-
|
186 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
187 |
-
|
188 |
-
[More Information Needed]
|
189 |
-
|
190 |
-
## More Information [optional]
|
191 |
-
|
192 |
-
[More Information Needed]
|
193 |
-
|
194 |
-
## Model Card Authors [optional]
|
195 |
-
|
196 |
-
[More Information Needed]
|
197 |
-
|
198 |
-
## Model Card Contact
|
199 |
-
|
200 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
4 |
tags:
|
5 |
+
- text-generation-inference
|
6 |
+
- transformers
|
7 |
+
- ruslanmv
|
8 |
+
- llama
|
9 |
+
- trl
|
10 |
+
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
11 |
+
datasets:
|
12 |
+
- ruslanmv/ai-medical-dataset
|
13 |
---
|
14 |
|
15 |
+
# ai-medical-model-4bit: Fine-Tuned Llama3 for Technical Medical Questions
|
16 |
+
[](https://ruslanmv.com/)
|
17 |
+
This repository provides a fine-tuned version of the powerful Llama3 8B Instruct model, specifically designed to answer medical questions in an informative way.
|
18 |
+
It leverages the rich knowledge contained in the AI Medical Dataset ([ruslanmv/ai-medical-chatbot](https://huggingface.co/datasets/ruslanmv/ai-medical-dataset)).
|
19 |
+
|
20 |
+
**Model & Development**
|
21 |
+
|
22 |
+
- **Developed by:** ruslanmv
|
23 |
+
- **License:** Apache-2.0
|
24 |
+
- **Finetuned from model:** meta-llama/Meta-Llama-3-8B-Instruct
|
25 |
+
|
26 |
+
**Key Features**
|
27 |
+
|
28 |
+
- **Medical Focus:** Optimized to address health-related inquiries.
|
29 |
+
- **Knowledge Base:** Trained on a comprehensive medical chatbot dataset.
|
30 |
+
- **Text Generation:** Generates informative and potentially helpful responses.
|
31 |
+
|
32 |
+
**Installation**
|
33 |
+
|
34 |
+
This model is accessible through the Hugging Face Transformers library. Install it using pip:
|
35 |
+
|
36 |
+
```bash
|
37 |
+
!python -m pip install --upgrade pip
|
38 |
+
!pip3 install torch==2.2.1 torchvision torchaudio xformers --index-url https://download.pytorch.org/whl/cu121
|
39 |
+
!pip install bitsandbytes accelerate
|
40 |
+
```
|
41 |
+
|
42 |
+
**Usage Example**
|
43 |
+
|
44 |
+
Here's a Python code snippet demonstrating how to interact with the `ai-medical-model-4bit` model and generate answers to your medical questions:
|
45 |
+
|
46 |
+
```python
|
47 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
48 |
+
import torch
|
49 |
+
model_name = "ruslanmv/ai-medical-model-4bit"
|
50 |
+
device_map = 'auto'
|
51 |
+
bnb_config = BitsAndBytesConfig(
|
52 |
+
load_in_4bit=True,
|
53 |
+
bnb_4bit_quant_type="nf4",
|
54 |
+
bnb_4bit_compute_dtype=torch.float16,
|
55 |
+
)
|
56 |
+
model = AutoModelForCausalLM.from_pretrained(
|
57 |
+
model_name,
|
58 |
+
quantization_config=bnb_config,
|
59 |
+
trust_remote_code=True,
|
60 |
+
use_cache=False,
|
61 |
+
device_map=device_map
|
62 |
+
)
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
64 |
+
tokenizer.pad_token = tokenizer.eos_token
|
65 |
+
|
66 |
+
def askme(question):
|
67 |
+
prompt = f"<|start_header_id|>system<|end_header_id|> You are a Medical AI chatbot assistant. <|eot_id|><|start_header_id|>User: <|end_header_id|>This is the question: {question}<|eot_id|>"
|
68 |
+
# Tokenizing the input and generating the output
|
69 |
+
#prompt = f"{question}"
|
70 |
+
# Tokenizing the input and generating the output
|
71 |
+
inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
|
72 |
+
outputs = model.generate(**inputs, max_new_tokens=256, use_cache=True)
|
73 |
+
answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
74 |
+
# Try Remove the prompt
|
75 |
+
try:
|
76 |
+
# Split the answer at the first line break, assuming system intro and question are on separate lines
|
77 |
+
answer_parts = answer.split("\n", 1)
|
78 |
+
# If there are multiple parts, consider the second part as the answer
|
79 |
+
if len(answer_parts) > 1:
|
80 |
+
answers = answer_parts[1].strip() # Remove leading/trailing whitespaces
|
81 |
+
else:
|
82 |
+
answers = "" # If no split possible, set answer to empty string
|
83 |
+
print(f"Answer: {answers}")
|
84 |
+
except:
|
85 |
+
print(answer)
|
86 |
+
|
87 |
+
# Example usage
|
88 |
+
# - Question: Make the question.
|
89 |
+
question="What was the main cause of the inflammatory CD4+ T cells?"
|
90 |
+
askme(question)
|
91 |
+
```
|
92 |
+
the type of answer is :
|
93 |
+
```
|
94 |
+
The main cause of inflammatory CD4+ T cells is typically attributed to an imbalance in the immune system's response to an antigen, leading to an overactive immune response. This can occur due to various factors, such as:
|
95 |
+
|
96 |
+
1. **Autoimmune disorders**: In conditions like rheumatoid arthritis, lupus, or multiple sclerosis, the immune system mistakenly attacks the body's own tissues, leading to chronic inflammation and the activation of CD4+ T cells.
|
97 |
+
2. **Infections**: Certain infections, like tuberculosis or HIV, can trigger an excessive immune response, resulting in the activation of CD4+ T cells.
|
98 |
+
3. **Environmental factors**: Exposure to pollutants, toxins, or allergens can trigger an immune response, leading to the activation of CD4+ T cells.
|
99 |
+
4. **Genetic predisposition**: Some individuals may be more susceptible to developing inflammatory CD4+ T cells due to their genetic makeup.
|
100 |
+
5. **Immunosuppression**: Weakened immune systems, such as those resulting from immunosuppressive therapy or HIV/AIDS, can lead to an overactive immune response and the activation of CD4+ T cells.
|
101 |
+
|
102 |
+
These factors can lead to the activation of CD4+
|
103 |
+
```
|
104 |
+
**Important Note**
|
105 |
+
|
106 |
+
This model is intended for informational purposes only and should not be used as a substitute for professional medical advice. Always consult with a qualified healthcare provider for any medical concerns.
|
107 |
+
|
108 |
+
**License**
|
109 |
+
|
110 |
+
This model is distributed under the Apache License 2.0 (see LICENSE file for details).
|
111 |
+
|
112 |
+
**Contributing**
|
113 |
+
|
114 |
+
We welcome contributions to this repository! If you have improvements or suggestions, feel free to create a pull request.
|
115 |
+
|
116 |
+
**Disclaimer**
|
117 |
+
|
118 |
+
While we strive to provide informative responses, the accuracy of the model's outputs cannot be guaranteed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|