---
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- generated_from_trainer
model-index:
- name: >-
home/ubuntu/llm_training/axolotl/llama3-8b-gpt-4o-ru/output_llama3_8b_gpt_4o_ru
results: []
datasets:
- ruslandev/tagengo-rus-gpt-4o
---
# Llama-3 8B GPT-4o-RU1.0
[[Dataset]](https://huggingface.co/datasets/ruslandev/tagengo-rus-gpt-4o)
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct).
The idea behind this model is to train on a dataset derived from a smaller subset of the [tagengo-gpt4](https://huggingface.co/datasets/lightblue/tagengo-gpt4), but with improved data quality.
I tried to achieve higher data quality by prompting GPT-4o, the latest OpenAI's LLM with better multilingual capabilities. The training objective is primarily focused on the Russian language (80% of the training examples).
After training for 1 epoch on 2 NVIDIA A100 the model shows promising results on the MT-Bench evaluation benchmark, surpassing GPT-3.5-turbo and being on par with [Suzume](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) in Russian language scores,
even though the latter is trained on 8x bigger and more diverse dataset.
## How to use
The easiest way to use this model on your own computer is to use the GGUF version of this model ([ruslandev/llama-3-8b-gpt-4o-ru1.0-gguf](https://huggingface.co/ruslandev/llama-3-8b-gpt-4o-ru1.0-gguf)) using a program such as [llama.cpp](https://github.com/ggerganov/llama.cpp).
If you want to use this model directly with the Huggingface Transformers stack, I recommend using my framework [gptchain](https://github.com/RuslanPeresy/gptchain).
```
git clone https://github.com/RuslanPeresy/gptchain.git
cd gptchain
pip install -r requirements-train.txt
python gptchain.py chat -m ruslandev/llama-3-8b-gpt-4o-ru1.0 \
--chatml true \
-q '[{"from": "human", "value": "Из чего состоит нейронная сеть?"}]'
```
## Evaluation scores
I achieved the following scores on Ru/En MT-Bench:
| |meta-llama/Meta-Llama-3-8B-Instruct | ruslandev/llama-3-8b-gpt-4o-ru1.0 | lightblue/suzume-llama-3-8B-multilingual | Nexusflow/Starling-LM-7B-beta | gpt-3.5-turbo |
|:----------:|:----------------------------------:|:---------------------------------:|:----------------------------------------:|:-----------------------------:|:-------------:|
| Russian 🇷🇺 | NaN | 8.12 | 8.19 | 8.06 | 7.94 |
| English 🇺🇸 | 7.98 | 8.01 | 7.73 | 7.92 | 8.26 |
## Training procedure
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: ruslandev/tagengo-rus-gpt-4o
type: sharegpt
conversation: llama-3
dataset_prepared_path: /home/ubuntu/llm_training/axolotl/llama3-8b-gpt-4o-ru/prepared_tagengo_rus
val_set_size: 0.01
output_dir: /home/ubuntu/llm_training/axolotl/llama3-8b-gpt-4o-ru/output_llama3_8b_gpt_4o_ru
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
use_wandb: false
#wandb_project: axolotl
#wandb_entity: wandb_entity
#wandb_name: llama_3_8b_gpt_4o_ru
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 5
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: /home/ubuntu/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1347 | 0.016 | 1 | 1.1086 |
| 0.916 | 0.208 | 13 | 0.8883 |
| 0.8494 | 0.416 | 26 | 0.8072 |
| 0.8657 | 0.624 | 39 | 0.7814 |
| 0.8077 | 0.832 | 52 | 0.7702 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.2.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1