ruslandev commited on
Commit
b7e07f4
1 Parent(s): ed37026

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -2
README.md CHANGED
@@ -19,12 +19,25 @@ This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](http
19
  The idea behind this model is to train on a dataset derived from a smaller subset of the [tagengo-gpt4](https://huggingface.co/datasets/lightblue/tagengo-gpt4), but with improved data quality.
20
  I tried to achieve higher data quality by prompting GPT-4o, the latest OpenAI's LLM with better multilingual capabilities. The training objective is primarily focused on the Russian language (80% of the training examples).
21
  The model shows promising results on the MT-Bench evaluation benchmark, surpassing GPT-3.5-turbo and being on par with [Suzume](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) in Russian language scores,
22
- even though the latter is trained on 8x bigger and more diverse dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  ## Evaluation scores
25
 
26
  I achieved the following scores on Ru/En MT-Bench:
27
-
28
  | |meta-llama/Meta-Llama-3-8B-Instruct | ruslandev/llama-3-8b-gpt-4o-ru1.0 | lightblue/suzume-llama-3-8B-multilingual | Nexusflow/Starling-LM-7B-beta | gpt-3.5-turbo |
29
  |:----------:|:----------------------------------:|:---------------------------------:|:----------------------------------------:|:-----------------------------:|:-------------:|
30
  | Russian 🇷🇺 | NaN | 8.12 | 8.19 | 8.06 | 7.94 |
 
19
  The idea behind this model is to train on a dataset derived from a smaller subset of the [tagengo-gpt4](https://huggingface.co/datasets/lightblue/tagengo-gpt4), but with improved data quality.
20
  I tried to achieve higher data quality by prompting GPT-4o, the latest OpenAI's LLM with better multilingual capabilities. The training objective is primarily focused on the Russian language (80% of the training examples).
21
  The model shows promising results on the MT-Bench evaluation benchmark, surpassing GPT-3.5-turbo and being on par with [Suzume](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) in Russian language scores,
22
+ even though the latter is trained on 8x bigger and more diverse dataset.
23
+
24
+ ## How to use
25
+
26
+ The easiest way to use this model on your own computer is to use the GGUF version of this model ([ruslandev/llama-3-8b-gpt-4o-ru1.0-gguf](https://huggingface.co/ruslandev/llama-3-8b-gpt-4o-ru1.0-gguf)) using a program such as [llama.cpp](https://github.com/ggerganov/llama.cpp).
27
+ If you want to use this model directly with the Huggingface Transformers stack, I recommend using my framework [gptchain](https://github.com/RuslanPeresy/gptchain).
28
+
29
+ ```
30
+ git clone https://github.com/RuslanPeresy/gptchain.git
31
+ cd gptchain
32
+ pip install -r requirements-train.txt
33
+ python gptchain.py chat -m ruslandev/llama-3-8b-gpt-4o-ru1.0-gguf \
34
+ --chatml true \
35
+ -q '[{"from": "human", "value": "Из чего состоит нейронная сеть?"}]'
36
+ ```
37
 
38
  ## Evaluation scores
39
 
40
  I achieved the following scores on Ru/En MT-Bench:
 
41
  | |meta-llama/Meta-Llama-3-8B-Instruct | ruslandev/llama-3-8b-gpt-4o-ru1.0 | lightblue/suzume-llama-3-8B-multilingual | Nexusflow/Starling-LM-7B-beta | gpt-3.5-turbo |
42
  |:----------:|:----------------------------------:|:---------------------------------:|:----------------------------------------:|:-----------------------------:|:-------------:|
43
  | Russian 🇷🇺 | NaN | 8.12 | 8.19 | 8.06 | 7.94 |