Update README.md
Browse files
README.md
CHANGED
@@ -19,12 +19,25 @@ This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](http
|
|
19 |
The idea behind this model is to train on a dataset derived from a smaller subset of the [tagengo-gpt4](https://huggingface.co/datasets/lightblue/tagengo-gpt4), but with improved data quality.
|
20 |
I tried to achieve higher data quality by prompting GPT-4o, the latest OpenAI's LLM with better multilingual capabilities. The training objective is primarily focused on the Russian language (80% of the training examples).
|
21 |
The model shows promising results on the MT-Bench evaluation benchmark, surpassing GPT-3.5-turbo and being on par with [Suzume](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) in Russian language scores,
|
22 |
-
even though the latter is trained on 8x bigger and more diverse dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
## Evaluation scores
|
25 |
|
26 |
I achieved the following scores on Ru/En MT-Bench:
|
27 |
-
|
28 |
| |meta-llama/Meta-Llama-3-8B-Instruct | ruslandev/llama-3-8b-gpt-4o-ru1.0 | lightblue/suzume-llama-3-8B-multilingual | Nexusflow/Starling-LM-7B-beta | gpt-3.5-turbo |
|
29 |
|:----------:|:----------------------------------:|:---------------------------------:|:----------------------------------------:|:-----------------------------:|:-------------:|
|
30 |
| Russian 🇷🇺 | NaN | 8.12 | 8.19 | 8.06 | 7.94 |
|
|
|
19 |
The idea behind this model is to train on a dataset derived from a smaller subset of the [tagengo-gpt4](https://huggingface.co/datasets/lightblue/tagengo-gpt4), but with improved data quality.
|
20 |
I tried to achieve higher data quality by prompting GPT-4o, the latest OpenAI's LLM with better multilingual capabilities. The training objective is primarily focused on the Russian language (80% of the training examples).
|
21 |
The model shows promising results on the MT-Bench evaluation benchmark, surpassing GPT-3.5-turbo and being on par with [Suzume](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) in Russian language scores,
|
22 |
+
even though the latter is trained on 8x bigger and more diverse dataset.
|
23 |
+
|
24 |
+
## How to use
|
25 |
+
|
26 |
+
The easiest way to use this model on your own computer is to use the GGUF version of this model ([ruslandev/llama-3-8b-gpt-4o-ru1.0-gguf](https://huggingface.co/ruslandev/llama-3-8b-gpt-4o-ru1.0-gguf)) using a program such as [llama.cpp](https://github.com/ggerganov/llama.cpp).
|
27 |
+
If you want to use this model directly with the Huggingface Transformers stack, I recommend using my framework [gptchain](https://github.com/RuslanPeresy/gptchain).
|
28 |
+
|
29 |
+
```
|
30 |
+
git clone https://github.com/RuslanPeresy/gptchain.git
|
31 |
+
cd gptchain
|
32 |
+
pip install -r requirements-train.txt
|
33 |
+
python gptchain.py chat -m ruslandev/llama-3-8b-gpt-4o-ru1.0-gguf \
|
34 |
+
--chatml true \
|
35 |
+
-q '[{"from": "human", "value": "Из чего состоит нейронная сеть?"}]'
|
36 |
+
```
|
37 |
|
38 |
## Evaluation scores
|
39 |
|
40 |
I achieved the following scores on Ru/En MT-Bench:
|
|
|
41 |
| |meta-llama/Meta-Llama-3-8B-Instruct | ruslandev/llama-3-8b-gpt-4o-ru1.0 | lightblue/suzume-llama-3-8B-multilingual | Nexusflow/Starling-LM-7B-beta | gpt-3.5-turbo |
|
42 |
|:----------:|:----------------------------------:|:---------------------------------:|:----------------------------------------:|:-----------------------------:|:-------------:|
|
43 |
| Russian 🇷🇺 | NaN | 8.12 | 8.19 | 8.06 | 7.94 |
|