# Your Model Name This model is LLama 3.1 8B finetuned using bahasa indonesia datasets. ## Model Details - **Architecture**: LLama 3.1 8B - **Dataset**: rubythalib33/alpaca-cleaned-translated-id - **Fine-tuning**: using QLoRA from unsloth to finetune it ## Usage ```python alpaca_prompt = "Di bawah ini adalah instruksi yang menjelaskan tugas, dipasangkan dengan masukan yang memberikan konteks lebih lanjut. Tulis tanggapan yang melengkapi permintaan dengan tepat. ### Instruction: #change this with curly braces ### Input: #change this with curly braces ### Response: #change this with curly braces from unsloth import FastLanguageModel model, tokenizer = FastLanguageModel.from_pretrained( model_name = "rubythalib33/llama3_1_8b_finetuned_bahasa_indonesia", # YOUR MODEL YOU USED FOR TRAINING max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, ) FastLanguageModel.for_inference(model) inputs = tokenizer( [ alpaca_prompt.format( "coba lanjutkan bilangan fibbonaci dibawah dalam bentuk list", # instruction "[1,1,2,3]", # input "[1,1,2,3,", # output - leave this blank for generation! ) ], return_tensors = "pt").to("cuda") from transformers import TextStreamer text_streamer = TextStreamer(tokenizer) _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = max_new_tokens)