--- inference: false language: pt datasets: - ruanchaves/porsimplessent --- # mDeBERTa v3 base for Text Simplification This is the [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) model finetuned for Text Simplification with the [PorSimplesSent](https://huggingface.co/ruanchaves/porsimplessent) dataset. This model is suitable for Portuguese. - Git Repo: [Evaluation of Portuguese Language Models](https://github.com/ruanchaves/eplm). - Demo: [Hugging Face Space: Portuguese Text Simplification](https://ruanchaves-portuguese-text-simplification.hf.space) ### **Labels**: * 0 : Sentence A is more simple than Sentence B. * 1 : The two sentences are equally simple. * 2 : Sentence B is more simple than Sentence A. ## Full classification example ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig import numpy as np import torch from scipy.special import softmax model_name = "ruanchaves/mdeberta-v3-base-porsimplessent" s1 = "O preço para instalar um DVD player no carro fica entre R$ 2 mil e R$ 5 mil." s2 = "Instalar um DVD player no carro tem preço médio entre R$ 2 mil e R$ 5 mil." model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name) model_input = tokenizer(*([s1], [s2]), padding=True, return_tensors="pt") with torch.no_grad(): output = model(**model_input) scores = output[0][0].detach().numpy() scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = config.id2label[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) Label: {l} Score: {np.round(float(s), 4)}") ``` ## Citation Our research is ongoing, and we are currently working on describing our experiments in a paper, which will be published soon. In the meanwhile, if you would like to cite our work or models before the publication of the paper, please cite our [GitHub repository](https://github.com/ruanchaves/eplm): ``` @software{Chaves_Rodrigues_eplm_2023, author = {Chaves Rodrigues, Ruan and Tanti, Marc and Agerri, Rodrigo}, doi = {10.5281/zenodo.7781848}, month = {3}, title = {{Evaluation of Portuguese Language Models}}, url = {https://github.com/ruanchaves/eplm}, version = {1.0.0}, year = {2023} } ```