updating model peptriever_2023-06-23T16:07:24.508460
Browse files- bi_encoder.py +88 -2
bi_encoder.py
CHANGED
@@ -1,7 +1,13 @@
|
|
1 |
-
from
|
|
|
|
|
|
|
2 |
from transformers.models.bert.modeling_bert import BertOnlyMLMHead
|
3 |
|
4 |
-
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
class BiEncoderConfig(BertEmbeddingConfig):
|
@@ -62,3 +68,83 @@ def _replace_max_length(config, length_key):
|
|
62 |
c1["max_position_embeddings"] = c1.pop(length_key)
|
63 |
config1 = BertEmbeddingConfig(**c1)
|
64 |
return config1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import BertConfig, BertModel, BertPreTrainedModel, PreTrainedModel
|
5 |
from transformers.models.bert.modeling_bert import BertOnlyMLMHead
|
6 |
|
7 |
+
|
8 |
+
class BertEmbeddingConfig(BertConfig):
|
9 |
+
n_output_dims: int
|
10 |
+
distance_func: str = "euclidean"
|
11 |
|
12 |
|
13 |
class BiEncoderConfig(BertEmbeddingConfig):
|
|
|
68 |
c1["max_position_embeddings"] = c1.pop(length_key)
|
69 |
config1 = BertEmbeddingConfig(**c1)
|
70 |
return config1
|
71 |
+
|
72 |
+
|
73 |
+
class L2Norm:
|
74 |
+
def __call__(self, x):
|
75 |
+
return x / torch.norm(x, p=2, dim=-1, keepdim=True)
|
76 |
+
|
77 |
+
|
78 |
+
class BertForEmbedding(BertPreTrainedModel):
|
79 |
+
config_class = BertEmbeddingConfig
|
80 |
+
|
81 |
+
def __init__(self, config: BertEmbeddingConfig):
|
82 |
+
super().__init__(config)
|
83 |
+
n_output_dims = config.n_output_dims
|
84 |
+
self.fc = torch.nn.Linear(config.hidden_size, n_output_dims)
|
85 |
+
self.bert = BertModel(config)
|
86 |
+
self.activation = _get_activation(config.distance_func)
|
87 |
+
self.post_init()
|
88 |
+
|
89 |
+
def forward(
|
90 |
+
self,
|
91 |
+
input_ids: Optional[torch.Tensor] = None,
|
92 |
+
attention_mask: Optional[torch.Tensor] = None,
|
93 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
94 |
+
position_ids: Optional[torch.Tensor] = None,
|
95 |
+
head_mask: Optional[torch.Tensor] = None,
|
96 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
97 |
+
output_attentions: Optional[bool] = None,
|
98 |
+
output_hidden_states: Optional[bool] = None,
|
99 |
+
return_dict: Optional[bool] = None,
|
100 |
+
) -> torch.Tensor:
|
101 |
+
embedding, _ = self.forward_with_state(
|
102 |
+
input_ids=input_ids,
|
103 |
+
attention_mask=attention_mask,
|
104 |
+
token_type_ids=token_type_ids,
|
105 |
+
position_ids=position_ids,
|
106 |
+
head_mask=head_mask,
|
107 |
+
inputs_embeds=inputs_embeds,
|
108 |
+
output_attentions=output_attentions,
|
109 |
+
output_hidden_states=output_hidden_states,
|
110 |
+
return_dict=return_dict,
|
111 |
+
)
|
112 |
+
return embedding
|
113 |
+
|
114 |
+
def forward_with_state(
|
115 |
+
self,
|
116 |
+
input_ids: Optional[torch.Tensor] = None,
|
117 |
+
attention_mask: Optional[torch.Tensor] = None,
|
118 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
119 |
+
position_ids: Optional[torch.Tensor] = None,
|
120 |
+
head_mask: Optional[torch.Tensor] = None,
|
121 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
122 |
+
output_attentions: Optional[bool] = None,
|
123 |
+
output_hidden_states: Optional[bool] = None,
|
124 |
+
return_dict: Optional[bool] = None,
|
125 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
126 |
+
encoded = self.bert(
|
127 |
+
input_ids,
|
128 |
+
attention_mask=attention_mask,
|
129 |
+
token_type_ids=token_type_ids,
|
130 |
+
position_ids=position_ids,
|
131 |
+
head_mask=head_mask,
|
132 |
+
inputs_embeds=inputs_embeds,
|
133 |
+
output_attentions=output_attentions,
|
134 |
+
output_hidden_states=output_hidden_states,
|
135 |
+
return_dict=return_dict,
|
136 |
+
)
|
137 |
+
pooler_output = encoded.pooler_output
|
138 |
+
logits = self.fc(pooler_output)
|
139 |
+
embedding = self.activation(logits)
|
140 |
+
return embedding, encoded.last_hidden_state
|
141 |
+
|
142 |
+
|
143 |
+
def _get_activation(distance_func: str):
|
144 |
+
if distance_func == "euclidean":
|
145 |
+
activation = torch.nn.Tanh()
|
146 |
+
elif distance_func == "angular":
|
147 |
+
activation = L2Norm() # type: ignore
|
148 |
+
else:
|
149 |
+
raise NotImplementedError()
|
150 |
+
return activation
|