--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B tags: - axolotl - generated_from_trainer model-index: - name: d68b1f4f-480f-4149-aca3-5ec30d602458 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c77c45561ce0aa3f_train_data.json ds_type: json format: custom path: /workspace/input_data/c77c45561ce0aa3f_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 early_stopping_threshold: 0.0001 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_card: false hub_model_id: romainnn/d68b1f4f-480f-4149-aca3-5ec30d602458 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.3 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 3072 micro_batch_size: 4 mlflow_experiment_name: /tmp/c77c45561ce0aa3f_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4d0fabec-b916-4c39-b6e3-1963a602dd8c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4d0fabec-b916-4c39-b6e3-1963a602dd8c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# d68b1f4f-480f-4149-aca3-5ec30d602458 This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 1007 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9602 | 0.0020 | 1 | 2.9278 | | 2.7774 | 0.1986 | 100 | 2.8134 | | 2.7618 | 0.3972 | 200 | 2.8043 | | 2.8537 | 0.5958 | 300 | 2.7954 | | 2.7592 | 0.7944 | 400 | 2.7874 | | 2.763 | 0.9930 | 500 | 2.7793 | | 2.5112 | 1.1917 | 600 | 2.7881 | | 2.1055 | 1.3903 | 700 | 2.7862 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1