--- library_name: peft base_model: NousResearch/CodeLlama-7b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: fdade4ae-5353-4ed7-a954-e89ea189fbc6 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-7b-hf-flash bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 68126dc6c922929d_train_data.json ds_type: json format: custom path: /workspace/input_data/68126dc6c922929d_train_data.json type: field_input: metadata field_instruction: topic field_output: prompt format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 150 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: robiulawaldev/fdade4ae-5353-4ed7-a954-e89ea189fbc6 hub_strategy: end learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: constant max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 7330 micro_batch_size: 4 mlflow_experiment_name: /tmp/68126dc6c922929d_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 saves_per_epoch: null sequence_len: 512 special_tokens: pad_token: strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d6e52fb4-2684-483d-9de0-7fc8ced2855c wandb_project: SN56-36 wandb_run: your_name wandb_runid: d6e52fb4-2684-483d-9de0-7fc8ced2855c warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# fdade4ae-5353-4ed7-a954-e89ea189fbc6 This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-7b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 50 - training_steps: 5956 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0017 | 1 | 3.0169 | | 9.0413 | 0.2518 | 150 | 2.4368 | | 8.9908 | 0.5036 | 300 | 2.4454 | | 8.7721 | 0.7554 | 450 | 2.3292 | | 8.3238 | 1.0080 | 600 | 2.2419 | | 7.1648 | 1.2598 | 750 | 2.3182 | | 7.208 | 1.5115 | 900 | 2.3605 | | 7.0023 | 1.7633 | 1050 | 2.3219 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1