--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: f263595e-91dc-4dbc-aee8-42a3b57e2dde results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 902ecde58c94c532_train_data.json ds_type: json format: custom path: /workspace/input_data/902ecde58c94c532_train_data.json type: field_input: original_version field_instruction: title field_output: french_version format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 300 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: robiulawaldev/f263595e-91dc-4dbc-aee8-42a3b57e2dde hub_strategy: end learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: constant max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 17953 micro_batch_size: 4 mlflow_experiment_name: /tmp/902ecde58c94c532_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 300 saves_per_epoch: null sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fb292aae-3bf8-4614-82a9-5c9ce7b3f999 wandb_project: SN56-36 wandb_run: your_name wandb_runid: fb292aae-3bf8-4614-82a9-5c9ce7b3f999 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# f263595e-91dc-4dbc-aee8-42a3b57e2dde This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 50 - training_steps: 17953 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | No log | 0.0002 | 1 | 2.4685 | | 1.6913 | 0.0510 | 300 | 1.6545 | | 1.5228 | 0.1021 | 600 | 1.5083 | | 1.4568 | 0.1531 | 900 | 1.4199 | | 1.3707 | 0.2042 | 1200 | 1.3690 | | 1.3347 | 0.2552 | 1500 | 1.3241 | | 1.2919 | 0.3063 | 1800 | 1.2925 | | 1.2462 | 0.3573 | 2100 | 1.2656 | | 1.2175 | 0.4083 | 2400 | 1.2438 | | 1.2624 | 0.4594 | 2700 | 1.2318 | | 1.216 | 0.5104 | 3000 | 1.2081 | | 1.2401 | 0.5615 | 3300 | 1.1880 | | 1.2172 | 0.6125 | 3600 | 1.1763 | | 1.1768 | 0.6635 | 3900 | 1.1606 | | 1.1733 | 0.7146 | 4200 | 1.1570 | | 1.1503 | 0.7656 | 4500 | 1.1437 | | 1.1261 | 0.8167 | 4800 | 1.1351 | | 1.124 | 0.8677 | 5100 | 1.1233 | | 1.1614 | 0.9188 | 5400 | 1.1161 | | 1.1346 | 0.9698 | 5700 | 1.1063 | | 1.0797 | 1.0208 | 6000 | 1.1005 | | 1.0431 | 1.0719 | 6300 | 1.0961 | | 1.0795 | 1.1229 | 6600 | 1.0894 | | 1.0587 | 1.1740 | 6900 | 1.0853 | | 1.0899 | 1.2250 | 7200 | 1.0778 | | 1.0412 | 1.2761 | 7500 | 1.0717 | | 1.0829 | 1.3271 | 7800 | 1.0683 | | 1.0652 | 1.3781 | 8100 | 1.0639 | | 1.0164 | 1.4292 | 8400 | 1.0583 | | 1.0589 | 1.4802 | 8700 | 1.0534 | | 1.0337 | 1.5313 | 9000 | 1.0461 | | 1.0161 | 1.5823 | 9300 | 1.0440 | | 1.0422 | 1.6333 | 9600 | 1.0420 | | 1.0025 | 1.6844 | 9900 | 1.0345 | | 0.9963 | 1.7354 | 10200 | 1.0337 | | 1.0322 | 1.7865 | 10500 | 1.0311 | | 1.0424 | 1.8375 | 10800 | 1.0278 | | 0.9842 | 1.8886 | 11100 | 1.0204 | | 0.9802 | 1.9396 | 11400 | 1.0150 | | 0.9941 | 1.9906 | 11700 | 1.0127 | | 0.9759 | 2.0417 | 12000 | 1.0113 | | 0.9635 | 2.0927 | 12300 | 1.0088 | | 0.941 | 2.1438 | 12600 | 1.0050 | | 0.9635 | 2.1948 | 12900 | 1.0041 | | 0.9709 | 2.2459 | 13200 | 1.0028 | | 0.9631 | 2.2969 | 13500 | 1.0006 | | 0.9533 | 2.3479 | 13800 | 0.9955 | | 0.9762 | 2.3990 | 14100 | 0.9941 | | 0.9899 | 2.4500 | 14400 | 0.9924 | | 0.9706 | 2.5011 | 14700 | 0.9898 | | 0.9315 | 2.5521 | 15000 | 0.9859 | | 0.9224 | 2.6031 | 15300 | 0.9868 | | 1.0113 | 2.6542 | 15600 | 0.9829 | | 0.9251 | 2.7052 | 15900 | 0.9817 | | 1.0008 | 2.7563 | 16200 | 0.9793 | | 0.9723 | 2.8073 | 16500 | 0.9787 | | 0.9673 | 2.8584 | 16800 | 0.9739 | | 0.9519 | 2.9094 | 17100 | 0.9714 | | 0.9699 | 2.9604 | 17400 | 0.9713 | | 0.93 | 3.0115 | 17700 | 0.9729 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1