--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-1.7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: b368c922-3f39-4946-92ff-329b272ceb41 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-1.7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0c1367355c2510f8_train_data.json ds_type: json format: custom path: /workspace/input_data/0c1367355c2510f8_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 500 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: robiulawaldev/b368c922-3f39-4946-92ff-329b272ceb41 hub_strategy: end learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: constant max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 14965 micro_batch_size: 4 mlflow_experiment_name: /tmp/0c1367355c2510f8_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 500 saves_per_epoch: null sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a6d954dd-91ca-429a-9051-83e5cd6e3724 wandb_project: SN56-36 wandb_run: your_name wandb_runid: a6d954dd-91ca-429a-9051-83e5cd6e3724 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# b368c922-3f39-4946-92ff-329b272ceb41 This model is a fine-tuned version of [unsloth/SmolLM2-1.7B-Instruct](https://huggingface.co/unsloth/SmolLM2-1.7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 50 - training_steps: 14965 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 0.6366 | | 0.2955 | 0.0814 | 500 | 0.2978 | | 0.2791 | 0.1627 | 1000 | 0.2879 | | 0.283 | 0.2441 | 1500 | 0.2800 | | 0.2736 | 0.3255 | 2000 | 0.2734 | | 0.2768 | 0.4068 | 2500 | 0.2695 | | 0.2699 | 0.4882 | 3000 | 0.2670 | | 0.2636 | 0.5695 | 3500 | 0.2636 | | 0.2505 | 0.6509 | 4000 | 0.2614 | | 0.252 | 0.7323 | 4500 | 0.2607 | | 0.2611 | 0.8136 | 5000 | 0.2593 | | 0.2602 | 0.8950 | 5500 | 0.2575 | | 0.2508 | 0.9764 | 6000 | 0.2556 | | 0.2216 | 1.0577 | 6500 | 0.2587 | | 0.2375 | 1.1391 | 7000 | 0.2572 | | 0.2349 | 1.2205 | 7500 | 0.2566 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1