--- library_name: peft license: other base_model: deepseek-ai/deepseek-coder-6.7b-instruct tags: - axolotl - generated_from_trainer model-index: - name: 3341203d-19c2-42e8-a03c-3aa7d0910abb results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: deepseek-ai/deepseek-coder-6.7b-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ad2541ed21d87c9b_train_data.json ds_type: json format: custom path: /workspace/input_data/ad2541ed21d87c9b_train_data.json type: field_input: Doctor field_instruction: Patient field_output: Description format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 500 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: robiulawaldev/3341203d-19c2-42e8-a03c-3aa7d0910abb hub_strategy: end learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: constant max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 10161 micro_batch_size: 4 mlflow_experiment_name: /tmp/ad2541ed21d87c9b_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 500 saves_per_epoch: null sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9a0670a6-e952-4ba1-a194-cc1867f492a2 wandb_project: SN56-36 wandb_run: your_name wandb_runid: 9a0670a6-e952-4ba1-a194-cc1867f492a2 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# 3341203d-19c2-42e8-a03c-3aa7d0910abb This model is a fine-tuned version of [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0792 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 50 - training_steps: 10161 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | No log | 0.0001 | 1 | 3.8251 | | 1.2669 | 0.0328 | 500 | 1.2380 | | 1.1848 | 0.0656 | 1000 | 1.1948 | | 1.1665 | 0.0984 | 1500 | 1.1643 | | 1.163 | 0.1312 | 2000 | 1.1529 | | 1.1133 | 0.1640 | 2500 | 1.1495 | | 1.1507 | 0.1968 | 3000 | 1.1242 | | 1.1134 | 0.2296 | 3500 | 1.1237 | | 1.1482 | 0.2624 | 4000 | 1.1153 | | 1.0965 | 0.2952 | 4500 | 1.1135 | | 1.0856 | 0.3280 | 5000 | 1.1133 | | 1.0786 | 0.3608 | 5500 | 1.1169 | | 1.123 | 0.3936 | 6000 | 1.0996 | | 1.1018 | 0.4264 | 6500 | 1.0887 | | 1.1398 | 0.4592 | 7000 | 1.0909 | | 1.1163 | 0.4919 | 7500 | 1.0804 | | 1.0601 | 0.5247 | 8000 | 1.0890 | | 1.0735 | 0.5575 | 8500 | 1.0819 | | 1.0293 | 0.5903 | 9000 | 1.0798 | | 1.0653 | 0.6231 | 9500 | 1.0809 | | 1.0664 | 0.6559 | 10000 | 1.0792 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1