Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- EvaKlimentova/knots_AF
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
---
|
7 |
+
|
8 |
+
# Knots ProtBert-BFD AlphaFold
|
9 |
+
|
10 |
+
Fine-tuned [ProtBert-BFD](https://huggingface.co/Rostlab/prot_bert_bfd) to classify proteins as knotted vs. unknotted.
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
- **Model type:** Bert
|
15 |
+
- **Language:** proteins (amino acid sequences)
|
16 |
+
- **Finetuned from model:** [Rostlab/prot_bert_bfd](https://huggingface.co/Rostlab/prot_bert_bfd)
|
17 |
+
|
18 |
+
Model Sources:
|
19 |
+
|
20 |
+
- **Repository:** [CEITEC](https://github.com/ML-Bioinfo-CEITEC/pknots_experiments)
|
21 |
+
- **Paper:** TBD
|
22 |
+
|
23 |
+
## Usage
|
24 |
+
|
25 |
+
Dataset format:
|
26 |
+
```
|
27 |
+
id,sequence,label
|
28 |
+
A0A2W5F4Z7,MGGIFRVNTYYTDLEPYLQSTKLPIYGALLDGENIYELVDKSKGILVIGNESKGIRSTIQNFIQKPITIPRIGQAESLNAAVATGIIVGQLTL,1
|
29 |
+
...
|
30 |
+
```
|
31 |
+
|
32 |
+
Load the dataset:
|
33 |
+
```
|
34 |
+
import pandas as pd
|
35 |
+
from datasets import Dataset, load_dataset
|
36 |
+
|
37 |
+
df = pd.read_csv(INPUT, sep=',')
|
38 |
+
dss = Dataset.from_pandas(df)
|
39 |
+
```
|
40 |
+
|
41 |
+
Predict:
|
42 |
+
```
|
43 |
+
import torch
|
44 |
+
import numpy as np
|
45 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments
|
46 |
+
from math import exp
|
47 |
+
|
48 |
+
def tokenize_function(s):
|
49 |
+
seq_split = ' '.join(s['Sequence'])
|
50 |
+
return tokenizerM1(seq_split)
|
51 |
+
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained('roa7n/knots_protbertBFD_alphafold')
|
53 |
+
model = AutoModelForSequenceClassification.from_pretrained('roa7n/knots_protbertBFD_alphafold')
|
54 |
+
|
55 |
+
tokenized_dataset = dss.map(tokenize_function, num_proc=4)
|
56 |
+
tokenized_dataset.set_format('pt')
|
57 |
+
tokenized_dataset
|
58 |
+
|
59 |
+
training_args = TrainingArguments(<PATH>, fp16=True, per_device_eval_batch_size=50, report_to='none')
|
60 |
+
|
61 |
+
trainer = Trainer(
|
62 |
+
model,
|
63 |
+
training_args,
|
64 |
+
train_dataset=tokenized_dataset,
|
65 |
+
eval_dataset=tokenized_dataset,
|
66 |
+
tokenizer=tokenizerM1
|
67 |
+
)
|
68 |
+
|
69 |
+
predictions, _, _ = trainer.predict(tokenized_dataset)
|
70 |
+
predictions = [np.exp(p[1]) / np.sum(np.exp(p), axis=0) for p in predictions]
|
71 |
+
df['preds'] = predictions
|
72 |
+
```
|
73 |
+
|
74 |
+
## Evaluation
|
75 |
+
|
76 |
+
Per protein family metrics:
|
77 |
+
|
78 |
+
| M1 ProtBert-BFD | Dataset size | Unknotted set size | Accuracy | TPR | TNR |
|
79 |
+
|:----------------------------:|:------------:|:------------------:|:--------:|:------:|:------:|
|
80 |
+
| All | 39412 | 19718 | **0.9845** | 0.9865 | 0.9825 |
|
81 |
+
| SPOUT | 7371 | 550 | 0.9887 | 0.9951 | 0.9090 |
|
82 |
+
| TDD | 612 | 24 | 0.9901 | 0.9965 | 0.8333 |
|
83 |
+
| DUF | 716 | 429 | 0.9748 | 0.9721 | 0.9766 |
|
84 |
+
| AdoMet synthase | 1794 | 240 | 0.9899 | 0.9929 | 0.9708 |
|
85 |
+
| Carbonic anhydrase | 1531 | 539 | 0.9588 | 0.9737 | 0.9313 |
|
86 |
+
| UCH | 477 | 125 | 0.9056 | 0.9602 | 0.7520 |
|
87 |
+
| ATCase/OTCase | 3799 | 3352 | 0.9994 | 0.9977 | 0.9997 |
|
88 |
+
| ribosomal-mitochondrial | 147 | 41 | 0.8571 | 1.0000 | 0.4878 |
|
89 |
+
| membrane | 8225 | 1493 | 0.9811 | 0.9904 | 0.9390 |
|
90 |
+
| VIT | 14262 | 12555 | 0.9872 | 0.9420 | 0.9933 |
|
91 |
+
| biosynthesis of lantibiotics | 392 | 286 | 0.9642 | 0.9528 | 0.9685 |
|
92 |
+
|
93 |
+
|
94 |
+
## Citation [optional]
|
95 |
+
|
96 |
+
**BibTeX:** TODO
|
97 |
+
|
98 |
+
## Model Authors
|
99 |
+
|
100 |
+
Simecek: [email protected]
|
101 |
+
Klimentova: [email protected]
|
102 |
+
Sramkova: [email protected]
|