File size: 5,073 Bytes
35b64d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53c6bbf
 
 
 
 
 
35b64d1
 
 
53c6bbf
35b64d1
 
 
53c6bbf
35b64d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53c6bbf
 
 
35b64d1
 
 
 
 
 
 
53c6bbf
 
35b64d1
 
 
 
 
 
 
53c6bbf
 
35b64d1
 
 
 
 
 
 
53c6bbf
 
35b64d1
 
 
 
 
 
 
53c6bbf
 
35b64d1
 
53c6bbf
35b64d1
 
 
53c6bbf
 
35b64d1
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: Qwen/Qwen2-7B
metrics:
- accuracy
model-index:
- name: QWEN_FACT_updates
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# QWEN_FACT_updates

This model is a fine-tuned version of [Qwen/Qwen2-7B](https://huggingface.co/Qwen/Qwen2-7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5144
- Balanced Accuracy: 0.7801
- Accuracy: 0.7998
- Micro F1: 0.7998
- Macro F1: 0.7392
- Weighted F1: 0.8114
- Classification Report:               precision    recall  f1-score   support

           0       0.92      0.81      0.86       857
           1       0.52      0.75      0.61       232

    accuracy                           0.80      1089
   macro avg       0.72      0.78      0.74      1089
weighted avg       0.84      0.80      0.81      1089


## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Accuracy | Balanced Accuracy | Classification Report                                                                                                                                                                                                                                                                                                                  | Validation Loss | Macro F1 | Micro F1 | Weighted F1 |
|:-------------:|:-----:|:----:|:--------:|:-----------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------:|:--------:|:--------:|:-----------:|
| 0.6846        | 1.0   | 391  | 0.7980   | 0.7553            |               precision    recall  f1-score   support

           0       0.91      0.83      0.87       857
           1       0.52      0.68      0.59       232

    accuracy                           0.80      1089
   macro avg       0.71      0.76      0.73      1089
weighted avg       0.82      0.80      0.81      1089
 | 0.5173          | 0.7278   | 0.7980   | 0.8071      |
| 0.5021        | 2.0   | 782  | 0.8044   | 0.7673            |               precision    recall  f1-score   support

           0       0.91      0.83      0.87       857
           1       0.53      0.70      0.60       232

    accuracy                           0.80      1089
   macro avg       0.72      0.77      0.74      1089
weighted avg       0.83      0.80      0.81      1089
 | 0.4834          | 0.7374   | 0.8044   | 0.8135      |
| 0.408         | 3.0   | 1173 | 0.8356   | 0.7667            |               precision    recall  f1-score   support

           0       0.90      0.89      0.89       857
           1       0.61      0.65      0.63       232

    accuracy                           0.84      1089
   macro avg       0.75      0.77      0.76      1089
weighted avg       0.84      0.84      0.84      1089
 | 0.4296          | 0.7605   | 0.8356   | 0.8375      |
| 0.3032        | 4.0   | 1564 | 0.7511   | 0.7712            |               precision    recall  f1-score   support

           0       0.93      0.74      0.82       857
           1       0.45      0.81      0.58       232

    accuracy                           0.75      1089
   macro avg       0.69      0.77      0.70      1089
weighted avg       0.83      0.75      0.77      1089
 | 0.5927          | 0.7015   | 0.7511   | 0.7714      |
| 0.234         | 5.0   | 1955 | 0.5144   | 0.7801            | 0.7998                                                                                                                                                                                                                                                                                                                                 | 0.7998          | 0.7392   | 0.8114   |               precision    recall  f1-score   support

           0       0.92      0.81      0.86       857
           1       0.52      0.75      0.61       232

    accuracy                           0.80      1089
   macro avg       0.72      0.78      0.74      1089
weighted avg       0.84      0.80      0.81      1089
|


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1