File size: 5,073 Bytes
35b64d1 53c6bbf 35b64d1 53c6bbf 35b64d1 53c6bbf 35b64d1 53c6bbf 35b64d1 53c6bbf 35b64d1 53c6bbf 35b64d1 53c6bbf 35b64d1 53c6bbf 35b64d1 53c6bbf 35b64d1 53c6bbf 35b64d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: Qwen/Qwen2-7B
metrics:
- accuracy
model-index:
- name: QWEN_FACT_updates
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# QWEN_FACT_updates
This model is a fine-tuned version of [Qwen/Qwen2-7B](https://huggingface.co/Qwen/Qwen2-7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5144
- Balanced Accuracy: 0.7801
- Accuracy: 0.7998
- Micro F1: 0.7998
- Macro F1: 0.7392
- Weighted F1: 0.8114
- Classification Report: precision recall f1-score support
0 0.92 0.81 0.86 857
1 0.52 0.75 0.61 232
accuracy 0.80 1089
macro avg 0.72 0.78 0.74 1089
weighted avg 0.84 0.80 0.81 1089
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Accuracy | Balanced Accuracy | Classification Report | Validation Loss | Macro F1 | Micro F1 | Weighted F1 |
|:-------------:|:-----:|:----:|:--------:|:-----------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------:|:--------:|:--------:|:-----------:|
| 0.6846 | 1.0 | 391 | 0.7980 | 0.7553 | precision recall f1-score support
0 0.91 0.83 0.87 857
1 0.52 0.68 0.59 232
accuracy 0.80 1089
macro avg 0.71 0.76 0.73 1089
weighted avg 0.82 0.80 0.81 1089
| 0.5173 | 0.7278 | 0.7980 | 0.8071 |
| 0.5021 | 2.0 | 782 | 0.8044 | 0.7673 | precision recall f1-score support
0 0.91 0.83 0.87 857
1 0.53 0.70 0.60 232
accuracy 0.80 1089
macro avg 0.72 0.77 0.74 1089
weighted avg 0.83 0.80 0.81 1089
| 0.4834 | 0.7374 | 0.8044 | 0.8135 |
| 0.408 | 3.0 | 1173 | 0.8356 | 0.7667 | precision recall f1-score support
0 0.90 0.89 0.89 857
1 0.61 0.65 0.63 232
accuracy 0.84 1089
macro avg 0.75 0.77 0.76 1089
weighted avg 0.84 0.84 0.84 1089
| 0.4296 | 0.7605 | 0.8356 | 0.8375 |
| 0.3032 | 4.0 | 1564 | 0.7511 | 0.7712 | precision recall f1-score support
0 0.93 0.74 0.82 857
1 0.45 0.81 0.58 232
accuracy 0.75 1089
macro avg 0.69 0.77 0.70 1089
weighted avg 0.83 0.75 0.77 1089
| 0.5927 | 0.7015 | 0.7511 | 0.7714 |
| 0.234 | 5.0 | 1955 | 0.5144 | 0.7801 | 0.7998 | 0.7998 | 0.7392 | 0.8114 | precision recall f1-score support
0 0.92 0.81 0.86 857
1 0.52 0.75 0.61 232
accuracy 0.80 1089
macro avg 0.72 0.78 0.74 1089
weighted avg 0.84 0.80 0.81 1089
|
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |