File size: 24,224 Bytes
1eeaec2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
# Copyright 2024 Rhymes AI. All rights reserved.
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import logging
import os
from typing import Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import nn
from transformers import GenerationMixin, LlamaConfig
from transformers.models.llama.modeling_llama import (
ACT2FN,
LLAMA_ATTENTION_CLASSES,
LlamaDecoderLayer,
LlamaForCausalLM,
LlamaMLP,
LlamaModel,
LlamaRMSNorm,
LlamaRotaryEmbedding,
)
logger = logging.getLogger(__name__)
class AriaMoELMConfig(LlamaConfig):
"""
Configuration class for AriaMoE language model.
This class extends the LlamaConfig to include additional parameters specific to the Mixture of Experts (MoE) architecture.
"""
model_type = "aria_moe_lm"
def __init__(
self,
moe_intermediate_size: int = 4096,
moe_num_experts: int = 8,
moe_topk: int = 2,
moe_z_loss_coeff: float = 1e-5,
moe_aux_loss_coeff: float = 1e-3,
moe_num_shared_experts: int = 2,
**kwargs,
):
"""
Initialize the AriaMoELMConfig.
Args:
moe_intermediate_size (int): The intermediate size for MoE layers. Default is 4096.
moe_num_experts (int): The number of experts in the MoE layer. Default is 8.
moe_topk (int): The number of top experts to route to for each token. Default is 2.
moe_z_loss_coeff (float): The coefficient for the auxiliary z-loss. Default is 1e-5.
moe_aux_loss_coeff (float): The coefficient for the auxiliary load balancing loss. Default is 1e-3.
moe_num_shared_experts (int): The number of shared experts. Default is 2.
**kwargs: Additional keyword arguments to be passed to the parent LlamaConfig.
"""
super().__init__(**kwargs)
self.moe_intermediate_size = moe_intermediate_size
self.moe_num_experts = moe_num_experts
self.moe_topk = moe_topk
self.moe_z_loss_coeff = moe_z_loss_coeff
self.moe_aux_loss_coeff = moe_aux_loss_coeff
self.moe_num_shared_experts = moe_num_shared_experts
# copied from https://github.com/NVIDIA/Megatron-LM/blob/54f1f78529cbc2b9cddad313e7f9d96ac0420a27/megatron/core/transformer/moe/moe_utils.py#L101-L142
class MoEAuxLossAutoScaler(torch.autograd.Function):
"""An AutoScaler that compute and scales the grad for auxiliary loss."""
main_loss_backward_scale: torch.Tensor = torch.tensor(1.0)
@staticmethod
def forward(ctx, output: torch.Tensor, aux_loss: torch.Tensor):
"""Preserve the aux_loss by storing it in the context to avoid garbage collection.
Args:
output (torch.Tensor): The output tensor.
aux_loss (torch.Tensor): The auxiliary loss tensor.
Returns:
torch.Tensor: The output tensor.
"""
ctx.save_for_backward(aux_loss)
return output
@staticmethod
def backward(ctx, grad_output: torch.Tensor):
"""Compute and scale the gradient for auxiliary loss..
Args:
grad_output (torch.Tensor): The gradient of the output.
Returns:
Tuple[torch.Tensor, torch.Tensor]: The gradient of the output, scaled auxiliary loss gradient.
"""
(aux_loss,) = ctx.saved_tensors
aux_loss_backward_scale = MoEAuxLossAutoScaler.main_loss_backward_scale
scaled_aux_loss_grad = torch.ones_like(aux_loss) * aux_loss_backward_scale
return grad_output, scaled_aux_loss_grad
@staticmethod
def set_loss_scale(scale: torch.Tensor):
"""set the scale of the aux loss.
Args:
scale (torch.Tensor): The scale value to set. Please ensure that the scale passed in matches the scale of the main_loss.
"""
MoEAuxLossAutoScaler.main_loss_backward_scale = scale
def z_loss_func(logits, z_loss_coeff):
"""Encourages the router's logits to remain small to enhance stability.
Please refer to the ST-MoE paper (https://arxiv.org/pdf/2202.08906.pdf) for details.
Args:
logits (torch.Tensor): The logits of the router.
Returns:
torch.Tensor: The logits after applying the z-loss.
"""
z_loss = torch.mean(torch.square(torch.logsumexp(logits, dim=-1))) * z_loss_coeff
return z_loss
def switch_load_balancing_loss_func(
probs: torch.Tensor,
tokens_per_expert: torch.Tensor,
topk: int,
moe_aux_loss_coeff: float,
):
"""Calculate the auxiliary loss for better load balancing.
Please refer to the Switch Transformer paper (https://arxiv.org/abs/2101.03961) for details.
Args:
probs (torch.Tensor): The softmax probs output by the router for each token. [num_tokens, num_experts]
tokens_per_expert (torch.Tensor): The number of assigned tokens for each expert. [num_experts]
Returns:
torch.Tensor: The auxiliary loss for load balancing.
"""
num_tokens = probs.shape[0] * topk
num_experts = probs.shape[1]
probs_mean_per_expert = probs.mean(dim=0)
aux_loss = torch.sum(probs_mean_per_expert * tokens_per_expert) * (
num_experts / num_tokens * moe_aux_loss_coeff
)
return aux_loss
# adapted from https://github.com/NVIDIA/Megatron-LM/blob/54f1f78529cbc2b9cddad313e7f9d96ac0420a27/megatron/core/transformer/moe/router.py#L96-L304
class TopKRouter(nn.Module):
"""
Top-K Router for Mixture of Experts (MoE) models.
This router determines which experts should process each token based on the top-k scoring experts.
It also applies auxiliary losses to encourage load balancing among experts.
Args:
config (AriaMoELMConfig): Configuration object containing MoE-related parameters.
"""
def __init__(self, config: AriaMoELMConfig):
super().__init__()
self.config = config
self.weight = nn.Parameter(
torch.empty((self.config.moe_num_experts, self.config.hidden_size))
)
# FIXME: initialize the weight
def gating(self, input: torch.Tensor) -> torch.Tensor:
"""
Compute the gating logits for each token-expert pair.
Args:
input (torch.Tensor): Input tensor of shape [batch_size * seq_len, hidden_size].
Returns:
torch.Tensor: Logits tensor of shape [batch_size * seq_len, num_experts].
"""
logits = torch.nn.functional.linear(input, self.weight)
return logits
def apply_z_loss(self, logits: torch.Tensor) -> torch.Tensor:
"""
Apply z-loss to encourage router logits to remain small for enhanced stability.
Args:
logits (torch.Tensor): Router logits.
Returns:
torch.Tensor: Logits with z-loss applied.
"""
z_loss = z_loss_func(logits, self.config.moe_z_loss_coeff)
logits = MoEAuxLossAutoScaler.apply(logits, z_loss)
return logits
def apply_aux_loss(
self,
logits: torch.Tensor,
tokens_per_expert: torch.Tensor,
activation: torch.Tensor,
) -> torch.Tensor:
"""
Apply auxiliary loss for load balancing among experts.
Args:
logits (torch.Tensor): Router logits.
tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert.
activation (torch.Tensor): Activation values.
Returns:
torch.Tensor: Activation with auxiliary loss applied.
"""
probs = torch.softmax(logits, dim=-1, dtype=torch.float32)
aux_loss = switch_load_balancing_loss_func(
probs,
tokens_per_expert,
self.config.moe_topk,
self.config.moe_aux_loss_coeff,
)
return MoEAuxLossAutoScaler.apply(activation, aux_loss)
def routing(
self, logits: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Perform the routing operation to determine expert assignments.
Args:
logits (torch.Tensor): Router logits.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
- scores: Softmax probabilities for top-k experts.
- top_indices: Indices of top-k experts for each token.
- tokens_per_expert: Number of tokens assigned to each expert.
"""
if self.training:
logits = self.apply_z_loss(logits)
top_logits, top_indices = torch.topk(logits, k=self.config.moe_topk, dim=1)
scores = torch.softmax(top_logits, dim=-1, dtype=torch.float32).type_as(logits)
tokens_per_expert = torch.histc(
top_indices.flatten(),
bins=self.config.moe_num_experts,
min=0,
max=self.config.moe_num_experts - 1,
)
if self.training:
scores = self.apply_aux_loss(logits, tokens_per_expert, scores)
return scores, top_indices, tokens_per_expert
def forward(
self, input: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Forward pass of the TopKRouter.
Args:
input (torch.Tensor): Input tensor of shape [batch_size * seq_len, hidden_size].
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
- scores: Softmax probabilities for top-k experts.
- top_indices: Indices of top-k experts for each token.
- tokens_per_expert: Number of tokens assigned to each expert.
"""
logits = self.gating(input)
logits = logits.view(-1, self.config.moe_num_experts)
scores, top_indices, tokens_per_expert = self.routing(logits)
return scores, top_indices, tokens_per_expert
# adapted from https://github.com/NVIDIA/Megatron-LM/blob/54f1f78529cbc2b9cddad313e7f9d96ac0420a27/megatron/core/transformer/moe/token_dispatcher.py#L291-L587
class TokenDispatcher:
"""
Handles the dispatching and gathering of tokens to and from experts.
This class is responsible for permuting tokens based on expert assignments and
unpermuting them after expert processing.
Args:
config (AriaMoELMConfig): Configuration object containing MoE-related parameters.
"""
def __init__(self, config: AriaMoELMConfig):
self.config = config
self.hidden_states_shape = None
self.reversed_input_permutation_mapping = None
def token_permutation(
self, hidden_states: torch.Tensor, indices: torch.Tensor
) -> torch.Tensor:
"""
Permute tokens based on expert assignments.
Args:
hidden_states (torch.Tensor): Input hidden states.
indices (torch.Tensor): Expert assignment indices.
Returns:
torch.Tensor: Permuted tokens.
"""
self.hidden_states_shape = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_states.size(-1))
flatten_indices = indices.flatten()
sorted_indices = torch.argsort(flatten_indices, stable=True)
permuted_tokens = hidden_states.index_select(
0, sorted_indices // self.config.moe_topk
)
self.reversed_input_permutation_mapping = sorted_indices
return permuted_tokens
def token_unpermutation(
self, permuted_tokens: torch.Tensor, scores: torch.Tensor
) -> torch.Tensor:
"""
Unpermute tokens and combine expert outputs.
Args:
permuted_tokens (torch.Tensor): Tokens after expert processing.
scores (torch.Tensor): Expert assignment scores.
Returns:
torch.Tensor: Unpermuted and combined output.
"""
num_unpermuted_tokens = scores.numel()
unpermuted_tokens = torch.zeros(
(num_unpermuted_tokens, permuted_tokens.size(1)),
dtype=permuted_tokens.dtype,
device=permuted_tokens.device,
)
unpermuted_tokens.index_copy_(
0, self.reversed_input_permutation_mapping, permuted_tokens
)
unpermuted_tokens = unpermuted_tokens.reshape(
-1, self.config.moe_topk, permuted_tokens.size(1)
)
unpermuted_tokens = unpermuted_tokens * scores.unsqueeze(-1)
unpermuted_tokens = unpermuted_tokens.sum(dim=1).type_as(permuted_tokens)
output = unpermuted_tokens.view(self.hidden_states_shape)
return output
class SharedExpertMLP(LlamaMLP):
"""
Shared Expert MLP for shared experts.
Unlike routed experts, shared experts process all tokens without routing.
This class reconfigures the intermediate size in comparison to the LlamaMLP.
Args:
config (AriaMoELMConfig): Configuration object for the AriaMoE language model.
"""
def __init__(self, config: AriaMoELMConfig):
nn.Module.__init__(self)
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = (
config.moe_intermediate_size * config.moe_num_shared_experts
)
self.gate_proj = nn.Linear(
self.hidden_size, self.intermediate_size, bias=config.mlp_bias
)
self.up_proj = nn.Linear(
self.hidden_size, self.intermediate_size, bias=config.mlp_bias
)
self.down_proj = nn.Linear(
self.intermediate_size, self.hidden_size, bias=config.mlp_bias
)
self.act_fn = ACT2FN[config.hidden_act]
def sequential_gemm(input, weight, tokens_per_expert):
"""
Compute the matrix multiplication (GEMM) for each expert sequentially. This approach is computationally inefficient, especially when dealing with a large number of experts.
Args:
input (torch.Tensor): Input tensor of shape (num_tokens, in_features).
weight (torch.Tensor): Weight tensor of shape (num_experts, in_features, out_features).
tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert.
Returns:
torch.Tensor: Output tensor of shape (num_tokens, out_features).
"""
num_tokens = input.shape[0]
out_features = weight.shape[-1]
output = torch.zeros(
num_tokens, out_features, dtype=input.dtype, device=input.device
)
cumsum_num_tokens = torch.cumsum(tokens_per_expert, dim=0)
# Insert zero at the begining for offset index's convenience
zero_tensor = torch.zeros(1, dtype=torch.long, device=cumsum_num_tokens.device)
cumsum_num_tokens = torch.cat((zero_tensor, cumsum_num_tokens))
for expert_num in range(weight.shape[0]):
start = cumsum_num_tokens[expert_num]
end = cumsum_num_tokens[expert_num + 1]
tokens = input[start:end]
out = torch.matmul(tokens, weight[expert_num])
output[start:end] = out
return output
try:
from grouped_gemm.ops import gmm as experts_gemm
if os.environ.get("USE_GROUPED_GEMM", "1") == "0":
logger.warning(
"environment variable USE_GROUPED_GEMM is set to 0, using sequential GEMM instead."
)
experts_gemm = sequential_gemm
except ImportError:
logger.warning(
"`grouped_gemm` is not installed, using sequential GEMM, which is slower."
)
experts_gemm = sequential_gemm
class GroupedGEMM(nn.Module):
"""
Grouped GEMM (General Matrix Multiplication) module for efficient expert computation.
This module utilizes the grouped_gemm library (https://github.com/fanshiqing/grouped_gemm)
for optimized performance. If the grouped_gemm library is not installed, it gracefully
falls back to a sequential GEMM implementation, which may be slower but ensures
functionality.
Args:
in_features (int): Number of input features.
out_features (int): Number of output features.
groups (int): Number of expert groups.
"""
def __init__(self, in_features, out_features, groups):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.groups = groups
self.weight = nn.Parameter(torch.empty(groups, in_features, out_features))
def forward(self, input, tokens_per_expert):
"""
Perform grouped matrix multiplication.
Args:
input (torch.Tensor): Input tensor of shape (num_tokens, in_features).
tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert.
Returns:
torch.Tensor: Output tensor of shape (num_tokens, out_features).
"""
tokens_per_expert = tokens_per_expert.cpu()
# Ensure the CUDA device matches the input tensor's device.
# This mismatch can occur when using `transformers.AutoModel.from_pretrained`
# with `device_map="auto"` on a multi-GPU setup.
torch.cuda.set_device(input.device)
return experts_gemm(input, self.weight, tokens_per_expert)
class GroupedMLP(nn.Module):
"""
Grouped MLP module for Mixture of Experts.
Args:
config (AriaMoELMConfig): Configuration object for the model.
"""
def __init__(self, config: AriaMoELMConfig) -> None:
super().__init__()
self.config = config
self.fc1 = GroupedGEMM(
config.hidden_size, config.moe_intermediate_size * 2, config.moe_num_experts
)
self.fc2 = GroupedGEMM(
config.moe_intermediate_size, config.hidden_size, config.moe_num_experts
)
def glu(x):
x = torch.chunk(x, 2, dim=-1)
return F.silu(x[0]) * x[1]
self.activation_func = glu
def forward(self, permuted_tokens, tokens_per_expert):
"""
Forward pass of the Grouped MLP.
Args:
permuted_tokens (torch.Tensor): Permuted input tokens.
tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert.
Returns:
torch.Tensor: Output tensor after passing through the MLP.
"""
fc1_output = self.fc1(permuted_tokens, tokens_per_expert)
fc1_output = self.activation_func(fc1_output)
fc2_output = self.fc2(fc1_output, tokens_per_expert)
return fc2_output
class MoELayer(nn.Module):
"""
Mixture of Experts (MoE) Layer for the AriaMoE model.
This layer implements the MoE mechanism, which routes input tokens to different experts
based on a routing algorithm, processes them through the experts, and then combines
the outputs.
Args:
config (AriaMoELMConfig): Configuration object for the MoE layer.
"""
def __init__(self, config: AriaMoELMConfig):
super().__init__()
self.router = TopKRouter(config)
self.token_dispatcher = TokenDispatcher(config)
self.experts = GroupedMLP(config)
self.shared_experts = SharedExpertMLP(config)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the MoE Layer.
Args:
hidden_states (torch.Tensor): Input tensor of shape (batch_size, sequence_length, hidden_size).
Returns:
torch.Tensor: Output tensor after passing through the MoE layer.
Process:
1. Route tokens to experts using the router.
2. Permute tokens based on routing decisions.
3. Process tokens through experts.
4. Unpermute and combine expert outputs.
5. Add shared expert output to the final result.
"""
scores, indices, tokens_per_expert = self.router(hidden_states)
permuted_tokens = self.token_dispatcher.token_permutation(
hidden_states, indices
)
expert_output = self.experts(permuted_tokens, tokens_per_expert)
output = self.token_dispatcher.token_unpermutation(expert_output, scores)
shared_expert_output = self.shared_experts(hidden_states)
output += shared_expert_output
return output
class MoEDecoderLayer(LlamaDecoderLayer):
"""
Custom Decoder Layer for the AriaMoE model which modifies the standard `LlamaDecoderLayer` by
replacing the traditional MLP with a Mixture of Experts (MoE) Layer.
Args:
config (LlamaConfig): Configuration object for the layer.
layer_idx (int): Index of the current layer in the model.
"""
def __init__(self, config: LlamaConfig, layer_idx: int):
nn.Module.__init__(self)
self.hidden_size = config.hidden_size
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](
config=config, layer_idx=layer_idx
)
self.mlp = MoELayer(config)
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = LlamaRMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
class AriaMoELMModel(LlamaModel):
"""
Custom LlamaModel for the AriaMoE model which modifies the standard LlamaModel by
replacing the `LlamaDecoderLayer` with `MoEDecoderLayer`.
This model implements a Mixture of Experts (MoE) approach, where each layer contains
multiple expert networks that specialize in different aspects of the input.
Args:
config (LlamaConfig): Configuration object for the model.
"""
def __init__(self, config: LlamaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx
)
self.layers = nn.ModuleList(
[
MoEDecoderLayer(config, layer_idx)
for layer_idx in range(config.num_hidden_layers)
]
)
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = LlamaRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
class AriaMoELMForCausalLM(LlamaForCausalLM, GenerationMixin):
"""
AriaMoE model for causal language modeling tasks.
This class extends LlamaForCausalLM to incorporate the Mixture of Experts (MoE) approach,
allowing for more efficient and scalable language modeling.
Args:
config (AriaMoELMConfig): Configuration object for the model.
"""
_tied_weights_keys = ["lm_head.weight"]
config_class = AriaMoELMConfig
_no_split_modules = ["MoEDecoderLayer"]
def __init__(self, config):
super().__init__(config)
self.model = AriaMoELMModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def set_z_loss_coeff(self, z_loss_coeff: float):
"""
Set the coefficient for the z-loss in the MoE routing.
Args:
z_loss_coeff (float): The coefficient for the z-loss.
"""
self.config.moe_z_loss_coeff = z_loss_coeff
def set_aux_loss_coeff(self, aux_loss_coeff: float):
"""
Set the coefficient for the auxiliary loss in the MoE routing.
Args:
aux_loss_coeff (float): The coefficient for the auxiliary loss.
"""
self.config.moe_aux_loss_coeff = aux_loss_coeff
|